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Fig. 1: Head input modality (left) with red cursor on target using ISO 9241-9 style double rings target positioning. Faint target
placeholder dots show where targets can appear. Controller input modality (center), using the same red cursor, with a 0.5m thin
white rod, using Random Web target positioning. Unmodified Eye input modality (right) with no cursor feedback.

Abstract— In this study, we establish a much-needed baseline for evaluating eye tracking interactions using an eye tracking enabled
Meta Quest 2 VR headset with 30 participants. Each participant went through 1098 targets using multiple conditions representative of
AR/VR targeting and selecting tasks, including both traditional standards and those more aligned with AR/VR interactions today. We
use circular white world-locked targets, and an eye tracking system with sub-1-degree mean accuracy errors running at approximately
90Hz. In a targeting and button press selection task, we, by design, compare completely unadjusted, cursor-less, eye tracking with
controller and head tracking, which both had cursors. Across all inputs, we presented targets in a configuration similar to the ISO
9241-9 reciprocal selection task and another format with targets more evenly distributed near the center. Targets were laid out either flat
on a plane or tangent to a sphere and rotated toward the user. Even though we intended this to be a baseline study, we see unmodified
eye tracking, without any form of a cursor, or feedback, outperformed the head by 27.9% and performed comparably to the controller
(5.63% decrease) in throughput. Eye tracking had improved subjective ratings relative to head in Ease of Use, Adoption, and Fatigue
(66.4%, 89.8%, and 116.1% improvements, respectively) and had similar ratings relative to the controller (reduction by 4.2%, 8.9%,
and 5.2% respectively). Eye tracking had a higher miss percentage than controller and head (17.3% vs 4.7% vs 7.2% respectively).
Collectively, the results of this baseline study serve as a strong indicator that eye tracking, with even minor sensible interaction design
modifications, has tremendous potential in reshaping interactions in next-generation AR/VR head mounted displays.

Index Terms—Eye tracking, User experience, Input devices, 3D user interaction, Human factors and ergonomics, Gaze targeting

1 INTRODUCTION

Eye tracking is crucial in enabling next-generation AR/VR interactions
and applications. Over the years, advancements in hardware, sensors,
AI, and compute capability in commercially available technology have
progressed from enabling reliable head-tracking to controller-tracking
and hand-tracking. Advancements in each have allowed us to go from
head targeting, as seen in the HoloLens 1, to rich hand-tracked ma-
nipulations, as seen with the Meta Quest 2 today [17, 52–54]. Eye
tracking sensors have shown up in devices like the HTC Vive Pro Eye,
Magic Leap 1, HoloLens 2, Meta Quest Pro, and Pico Neo 3 Pro Eye,
and will be a foundational component of future AR/VR devices. As it
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advances in capability, eye tracking has the unique potential to unlock
intuitive and efficient interaction schemes alongside head, controller,
hand tracking, and many schemes that would otherwise be impossi-
ble without it. Some examples include eye tracking for hands free
interaction paradigms [34], for contextualized interactions [6], gaze
accelerated interactions [35], or as an interaction disambiguator [40].
Yet, surprisingly, the foundational work which allows exploring the
advantages of eye tracking in the unique contexts afforded by AR/VR
has not been firmly established.

Given multiple possible input modalities in a head-mounted display
(HMD; e.g., controller, head, eyes; see Fig. 1), it can be difficult to
predict the relative performance of one versus another. How do we
compare human performance across these input modalities? Compar-
ing inputs is not straightforward and often depends on the context in
which the particular input is used. For example, voice inputs might be
promising within the privacy of one’s room but might be challenging
in more public settings. Similarly, carrying a controller or using one’s
hands for direct manipulation away from one’s home or office poses
similar challenges. Eye tracking typically provides the privacy and
portability lacking in most other inputs available today. There are many
more trade-offs to consider, but the groundwork to effectively compare



trade-offs between input methods and interaction techniques in a fair
and ecologically valid manner lacks a consistent basis.

While targeting and selection are only one of many potential in-
teraction combinations enabled in AR/VR today, it remains prevalent
through commercial headsets as a method of interacting and navi-
gating through UIs in virtual environments. The 3D head raycast
enables convenient and reliable targeting and selection without the
additional risks and costs associated with controller or hand tracking
hardware. The 6 DOF (degrees of freedom) controller functions as
a low-risk intuitive input device, enabling direct and indirect interac-
tions in 3D [7]. These two input methodologies have found their way
into many AR/VR products today, like the Meta Quest 2, HTC Vive,
HoloLens 1, and Magic Leap 1. Hand tracking technologies continue
to evolve and improve [17, 52–54]. Meanwhile, when considering eye
tracking in AR/VR, it brings up an immediate reaction of words like
“eye-fatigue [36],” “Midas Touch, [20]” or “High Risk.” Eye track-
ing as an input selection modality is not new, and was first explored
decades ago as a potentially empowering tool [55]. The reputation of
eye tracking has been hurt, though, by some strict recommendations
on its use in the absence of clear evidence. An oft-cited example [19]
notes without citations or evidence that people only position the eye
within one degree of accuracy, with the suggestion that this is due to the
width of the fovea; this has led others to conclude incorrectly that eye
tracking cannot target anything smaller than this due to an anatomical
limitation [32], without any consideration of eye tracking fidelity. In
contrast, the original work proposing gaze as an input modality for
targeting noted that the eye can select objects accurately as 10 minutes
of visual angle [55], so the misconception that the eyes can only select
targets of 1 degree or larger is holding back the promise of gaze.

Some past reports have found that within targeting and selection
tasks, particularly in VR, eye tracking has sub-par performance relative
to head-tracking [39] using the ISO 9241-9 reciprocal selection task
[59], and other methods [25,31]. We see similar results when comparing
eye tracking to mouse input and again for head-tracking [18]. There is a
prior study [48] that found a higher throughput compared to these prior
experiments when using gaze; however, it can be challenging to make
comparisons across studies and this work did not have any comparison
to common modalities, which we utilize in our study. Unlike what we
provide in our work, many prior studies, including these three discussed
here [18, 39, 48] do not measure or report eye tracking calibration
statistics in their reports; at best they report the manufacturer’s stated
eye tracking quality, but even that is rare. In cases where the eye
tracker performance is poor, but not reported on a participant level, it is
impossible to know whether poor interaction efficiency is due in earnest
to the experimental manipulation or simply the result of tracking errors.
This perhaps gives rise to the mistaken assumptions about the limits of
eye tracking, such as the misconception noted above that targets must
subtend one degree of visual angle due to the size of the fovea [32],
even though there is no such limitation. Perhaps this is why many
studies of targeting and selection in VR have primarily focused on
hand, wand, or controller modalities [3, 4, 8].

Other studies use the eyes to drive a visible cursor [48]. Given
that eye movements are at least partially driven by low-level retinal
inputs [41] and that the oculomotor system is not evolved to physically
manipulate objects in the environment [42], the feedback provided
to the observer is extremely important to ensure consistency with vi-
suomotor expectations [33]. This is one reason why we chose not to
provide any cursor or online visual feedback in our study’s eye tracking
condition. To date, errors that arise in most eye tracking pipelines (e.g.,
latency, bias, noise) have made eye tracking practically unusable with-
out significant workarounds in the user interface. Unfortunately, these
workarounds tend to detract from the design and intuitive use of the
system (e.g., larger target sizes, longer dwell times [47]). Noting that
poor eye tracking performance has been a limitation in the past, we will
use a newer and higher-performing eye tracker to look at the effects of
sub 1 degree mean accuracy errors running at an effective frame rate of
90Hz [57]. These eye tracking performance characteristics will enable
us to effectively measure human performance on designs closer to those
within many UI constraints prevalent in next-generation devices.

It is essential to establish a baseline of comparison for targeting and
selection with eye tracking, most closely representing next-generation
AR/VR hardware, interaction models, and user interfaces. This study
attempts to lay that foundation by first comparing unmodified eye
tracking, using only the signal as provided from the eye tracker’s API
without any visual feedback or adjustment, and a controller trigger press
for selection. We compare eye tracking to other heavily used inputs
for AR/VR, including head tracking (e.g., HoloLens 1) and controller
6-DOF tracking (e.g., Magic Leap, Meta Rift and Quest products, HTC
Vive). We will use controller tracking as an indirect proxy to hand
targeting and selection methods, as controller tracking often offers
higher fidelity tracking and selection, because it is simply less prone
to computer vision errors and physical and behavioral idiosyncrasies
associated with users. For example, a review of past works found that
the mouse was more efficient than a touchpad for this reason [49].
This study does not look into optimizing eye tracking based human
performance and thus does not provide a general conclusion on eye
tracking for interactions, but instead sets the baseline for one specific
but highly prevalent targeting and selection model. As we provide no
visual feedback to the user, and we do not intend to, we will likely not
obtain optimal human performance in subjective and objective terms.
We also provide no form of manipulation to the mechanics of the
interaction, such as performing a nearby search and match of targetable
elements or adjustment to target colliders. Forming such a baseline and
understanding of using unmodified eye tracking for gaze interaction
will allow future refinement of interaction models containing additional
affordances and feedback methods.

Many eye tracking studies have looked at targets locked to a display
or monitor [46, 55]. This target placement, however, does not represent
many interactions now capable in AR/VR devices where virtual objects
can maintain their positions in world space, and users are free to roam
around as they wish [16]. This study proposes a method of targeting and
selection that remains ecologically valid for numerous targeting and
selection tasks available in AR/VR apps today and in the near future.
Targets remain locked in world space for targeting and selection to
occur, and this layout remains consistent for each of the three modalities
presented.

How do we effectively compare eye tracking with other input meth-
ods for world-locked targeting and selection tasks? Fitts’s Law has his-
torically provided a rigorous basis by which novel interaction schemes
can be quantifiably tested [11, 37, 49]. Interestingly, even Fitts at-
tempted to study the role of eye movements in complex tasks, though
the technology was not yet at a level where it could be assessed using
the law that is attributed to him [12]. However, throughput comparisons
in isolation may not be the sole indicator of the success of an input
method. That is, not all interactions in AR/VR require a user to navigate
through a UI quickly. Furthermore, some input methods could produce
a high throughput but are incredibly fatiguing over a longer duration.
Others might take a long time to learn, while others are prone to a high
error rate. Regardless, alongside many other measures, throughput does
serve as one effective means of comparing inputs but should not be
evaluated in isolation.

Fitts’s Law traditionally assumes that targets are set on a 2D plane
[49]. Because targeting and selection in AR/VR typically involve a
form of raycasting in 3D, the targets with the same metric size will
have different angular sizes based on the distance off-center they are
from the user, despite being on the same plane perpendicular to the
user’s forward direction. The actual targetable area is smaller despite
having the same metric size at further distances. Furthermore, a target
that rotates toward a user will, from the user’s point of view, have a
larger targetable area than one that does not. That brings to question
that in targeting tasks in AR and VR, rather than having UI elements
flat on a planar surface, UI should instead be rotated towards the user
and perhaps be laid out radially relative to the user to maximize the
angular targetable area. Given depth and fully navigable space in VR,
we argue that the use of targetable areas in angular space are more
meaningful for VR-based interaction comparisons than targetable areas
fixed in metric space. Our study considers this by placing targets, both
on a plane with a z-distance 1 meter away from the user and by placing



targets radially at a euclidean distance 1 meter from the user while
rotating towards them (see Fig. 3 and 4).

Satisfaction in targeting and selection tasks might be linked to the
error rate. What percentage of intended hits end up being hits, and
what number end up being misses? Current standards, like the ISO
9241-9 reciprocal selection task, leave current eye tracking inputs at
a disadvantage. Eye tracking accuracy in many of today’s systems
typically falls off at larger eccentricities from a tracker’s center [10],
likely attributing to higher error rates. This study explores targeting
and selection with an alternative random web layout of targets and
successions while also using the ISO 9241-9 as a condition.

Finally, despite evaluation from all objective measures, the user
subjectively determines if they prefer a particular form of input over
another. We capture subjective evaluations from users about their
preference of input methodologies and their perceived fatigue as they
complete blocks.

Putting this all together, this is the first study that sets a baseline
for comparing eye tracking to other key interaction modalities in an
ecologically valid manner in VR. Specifically this paper makes the
following contributions:

1. Unlike many studies which use head locked targets, we systemat-
ically form a baseline of unmodified eye tracking performance as
an interaction modality, with a button press for selection, using
world-locked targets. That is, how does relatively capable VR
eye tracking running at (approx. 90Hz and <1.0 degree average
accuracy error) perform as a targeting and selection modality?

2. This is the first study that we are aware of that compares eye track-
ing to a combination of other well known interaction modalities
such as controller and head inputs, as used in AR/VR today. We
establish that eye tracking with trigger selection, even without any
treatments, can serve as a targeting and selection modality that
is comparable to controller targeting and selection, and in most
measures performs better than head tracking using both objective
and subjective measures.

3. We question ISO 9241-9 standard as an appropriate method of
performance, specifically for eye tracking. We propose another
layout for targeting and selection tasks in AR/VR.

4. We compare the effects of laying targets in spherical vs planar
coordinates.

In the remainder of this paper, we will dive deep into the experiment
design decisions and their corresponding implementation. Next, we
present a user study that compares eye tracking with controller and head
targeting and selection in planar or spherical coordinates, using either a
variant of the ISO 9241-9 reciprocal selection task or an alternative we
provide. We then discuss the study’s results and present our conclusions
and directions for future work.

2 EQUIPMENT

We used a modified off-the-shelf VR HMD, the Meta Quest 2 headset,
with corresponding controllers and a display refresh rate set at 120Hz.
The display has an approximate per-eye field of 92x96 degrees of visual
angle (deg), resolution of 1832x1920 pixels, with an approximate pixel
density of 21 pixels per degree [22]. We used an HMD-integrated
binocular XR eye tracking platform from Tobii (Tobii AB, Sweden).
This eye tracker has a sampling frequency of 240 Hz and is based on
Tobii’s latest generation off-axis (direct to eye) solution for VR and
AR optical designs – including ‘pancake’ lens designs common in
newer VR products. We used an MSI GS66 Stealth laptop to power
this experience, running an NVIDIA GeForce RTX 3070 graphics card.
The experiment application was developed in Unity, and runs at an
average measured framerate of 87 frames per second.

3 USER STUDY

3.1 Experiment Design
We tested the following conditions (some illustrated in Fig. 1):

1. Input Modality (Eye, Controller, Head)

Fig. 2: Eye calibration quality utility, showing typical results, ran before
each eye tracking block. Eye calibration keyboard button presses are
managed by the experimenter.

2. Standard (Double-ISO, Random-Web)

3. Geometry (Planar, Spherical)

4. Target Diameter (3, 4, 5 degrees)
These result in [3*2*2*3 = 36 unique blocks] per participant. Given

the large number of blocks, we randomly counterbalanced the experi-
ment by shuffling the order of blocks for each participant before they
began the study. A Latin Square or similar method was not used.

In each block, participants are presented with a sequence of 25
or 36 targets for Random-Web or Double-ISO style target sequences,
described in detail below. Following every block, users completed an
in-app survey. Participants went through 1098 targets (366 per input
condition) through the course of the experiment.

3.2 Practice Round
Each participant went through a practice version of the experiment.
They are shown, in a fixed order, the three experiment blocks, repre-
senting controller, head and then eye input modalities. Participants are
calibrated before performing the eye tracking block. We provided only
the Double-ISO standard, Spherical geometry, and 5-degree targets
across each practice block (we describe conditions below). We used
only the Double-ISO standard as we wanted all participants to learn
the fixed pattern associated with the progression of targets for that
standard before the main experiment. We provided 5-degree targets
and the Spherical standard as these would be easier to target, learn, and
generalize to the experiment mechanics.

3.3 Participants
We recruited 32 participants within our general organization, and 30
were successfully able to complete the experiment. The two unsuccess-
ful attempts were a result of wire disconnection when the two physically
adjusted their headset, which compromised their attempts. Out of the
30 participants who completed the experiment, 29 completed the survey
used to provide the stats in this section (10 female; age range 24–53,
average 37 years old); 14 participants reported that they had corrected
vision, out of whom 9 wore contact lenses during the experiment, 1
wore glasses, 4 wore neither, and 1 had corrective refractive surgery;
12 participants indicated that they spend no time in VR per week, while
10 participants indicated that they spend between 0.5-3 hours, and 4
participants indicated they spend > 3 hours.

3.4 Eye Calibration
Participants were required to calibrate the eye tracking system at the
beginning of the experiment. Immediately following this, they were
required to check the quality of the calibration through a test sequence.
Participants were allowed to proceed assuming that their mean calibra-
tion error was less than 1.5 degrees, or otherwise recalibrated.

After the first block, participants were programmatically prompted
to check the quality of the calibration (see Fig. 2) before every eye
tracking block (for a total of 12 blocks). If the experimenter accom-
panying participants during the study believed that participants could
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Fig. 3: Target placed in Double-ISO style standard (left) vs. Random-
Web style alternative (right). Angular placements were consistent in
both Planar vs. Spherical coordinates, but targets were rotated towards
the dummy-camera in Spherical, at 1m Euclidean distance, whereas
targets were placed at 1m z-distance away from the dummy-camera in
Planar. In VR the targets were actually white on blue backgrounds.

improve the calibration quality, they would recalibrate and retest cal-
ibration quality before continuing the study. We recorded calibration
statistics every time the participant completed the calibration quality
check.

3.5 World-Locked Target Design and Input Modalities
Target Appearance: It is known within the literature for eye
tracking that particular target designs are more effective than others in
encouraging stable and accurate fixations [50]. We use such designs
in our eye calibrator. However, most AR/VR UI elements do not
practically fit within these constraints and are not necessarily suited
for controller or head-based selections. Hence, we used plain white,
circular, flat targets with no texture or apparent visual markers to enable
a baseline comparison. Past work [39] varied size and luminance
contrast, which is known to capture attention [38], so that was avoided
here, and was consistent across all trials.

Target Placement: Before each block, we place targets in front of the
user, in world coordinates, with the centroid of the group of targets
set at the user’s head height, regardless of head orientation. We do
this to ensure that the targets will be centered directly in front of the
user at the start of each block, representing many UI panels in AR/VR
headsets today. We accomplish this placement by using a “dummy
camera,” which remains static in world coordinates through each block.
We place targets in the dummy camera’s coordinate frame before each
block. The user remains seated throughout the session, meaning that
the dummy camera coordinate frame approximates an upright, primary
head position.

Right before each block, we set the dummy camera to match the
position and yaw of the main camera. The dummy camera then main-
tains that position and yaw throughout that block. The dummy camera,
however, will hold a pitch and roll of 0. That is, the forward vector
of the dummy camera will be parallel to the ground and perpendicu-
lar to gravity through all trials. We do this to ensure that targets are
perpendicular to the ground while maintaining their position in world
coordinates across all trials per block.

From a user’s perspective, they will see a set of target placeholders
appearing at the start of each block, representing where targets will
be positioned, but they will only see one target at a time (see Fig. 1).
Target placeholders are world locked, set to 0.1 degrees at the start of
the block, but then maintain a constant size in meters – that is, targets
and target placeholders will appear static as participants rotate and
move their heads.

Target Diameters: We set target diameters at the start of each block
to an intended angular size of either 3, 4 or 5 degrees per block. All
targets/trials per block will maintain the same metric size, position, and
rotation through the block. The user can move their head positionally or
rotationally during a block. Because of this, the visual angle of targets
can appear larger or smaller if the user moves closer or further away
from the targets.

3.5.1 Standard: Double-ISO vs Random-Web
Double-ISO: To allow us to compare our results to studies in the past,
we maintained standards from the ISO 9241-9 reciprocal selection task,
with a ring of 18 targets.

An issue with this task, in particular, is that if we use only a single
diameter for our ring of targets, especially if we use a large diameter
ring, we will likely limit eye tracking inputs. This occurs because
most eye trackers have more significant accuracy errors towards fringe
angles [10]. To offset this issue, rather than having a single ring per
block, we had the users go through two rings, an outer ring followed
by an inner ring, totaling 36 targets per block.

We have users start targeting from the rightmost point, going to the
leftmost point, maintaining this alternating sequence rotating counter-
clockwise until all targets in the outer ring have been selected. The
outer ring is completed first before the inner ring. Participants will see
the same sequence of 36 targets/trials for each block. For each of the
corresponding 18 blocks, targets follow the same alternating pattern,
starting and ending on the same target.

As we show in the left box of Fig. 3, from the dummy camera, we
placed the 18 targets comprising the inner ring at a 16-degree diameter
(8 degree radius). We set the 18 targets compromising the outer ring at
a 30-degree diameter (15 degree radius).

Random-Web: For each of the 18 Random-Web blocks, a participant
will see a shuffled set of targets appearing in one of 25 predefined
locations without repetition. As illustrated in the right box of Fig. 3,
predefined locations include one target at the center of the dummy
camera’s FOV. Next, 8 targets are equally spaced and placed within an
inner ring with a radius of 7 degrees. We placed another 8 at a radius
of 11 degrees and the final 8 at 15 degrees from the center.

3.5.2 Target Geometry: Planar vs Spherical
Planar: As shown in Fig. 4, Planar placement is akin to placing targets
of the same metric size on a wall. Target positions (X,Y) are in degrees
relative to the dummy camera, and Z is the z-distance of the targets
from the dummy camera in meters. Again this is not the radius or
Euclidean distance from the dummy camera. Targets are placed onto
the z-plane and are not rotated towards the camera. Consequently,
targets further from the center will have smaller angular sizes than
those closer to the center, while the metric size remains constant. In
this experiment, all targets in planar coordinates are placed at z=1 away
from the dummy camera, meaning that the euclidean distance to the
target will be > 1 for those off center from the dummy target.

Spherical: In this placement (see Fig. 4), from the user’s perspective,
if all targets were visible at the start of each block, they would appear
to form a sphere around the user’s head. When viewed from the dummy
camera, the centers of the targets will appear to be placed in the same
angular coordinates as "Planar Coordinates." However, there are some
key differences: First, we place targets at a fixed radius rather than
a fixed z-plane. That is, the euclidean distance to the target from the
dummy camera will now always be = 1, whereas previously, distances
in Planar Coordinates could be >=1.Second, we rotate targets towards
the dummy camera. Because of this, the target’s perceived angular size
will match the target’s intended angular size.

3.5.3 Input Modalities And Feedback
Head: We raycast from the center of the head (main) camera. A flat
cursor is visible on the plane’s surface for Planar Geometry. Spherical
Geometry has a cursor at either a fixed radius of 1m, or the distance
of the point of intersection of the rotated target. The simple flat
cursor represents those used in many past commercially available
head-based UIs (like the HoloLens 1). The cursor appears just in front
of the raycasted surface (rather than a fixed distance from the head) to
minimize vergence/focus issues [24].

Controller: We raycast in the direction of the forward vector of the
Meta Quest 2 controller. The cursor visual here is identical to that
of the "Head" input condition. In addition, a thin white rod, starting
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Fig. 4: Simple schematic showing targets tangent to sphere in Spherical
geometry, vs flat on a plane in Planar geometry.

from the controller tip, of a fixed length of 0.5m was visible to users,
visualizing the controller’s forward direction.

Eye: We fire a raycast from the Tobii gaze origin point in the direction
of the gaze direction vector provided. We provide no cursor or target
feedback. Participants simply look at the target before selection.

Rationale of Cursor and Feedback Design: Each input cannot be
fairly compared simply using the same feedback methods. We chose
to maintain existing cursor and head/controller targeting and selection
standards to establish a comparison relative to standards today. The thin
white rod was used to replicate controller cursor and feedback designs
used in highly adopted VR headsets (Meta Quest 2 or HTC Vive). A
simple red dot was used to signify head cursor location, similar to
many world locked cursors (HoloLens). A rod was not used in the case
of head input, as stereoscopic parallax causes one to see double rods
(unless one eye is closed [21]) which is uncomfortable and does not
provide a fair comparison.

Cursor feedback as shown with the head or controller inputs cannot
be simply replicated as feedback for the eye: Adding a similar cursor
for eye trackers does not offer the same value, and can often be prone
to the well known issue of cursor chase when accuracy offsets are
present [29]. There are several other methodologies available aside
from cursor feedback, each with unique advantages and disadvantages
(highlighting, adding a border etc), but none are widely adopted in
current AR/VR. Furthermore, given a certain eye tracking accuracy, we
can expect that items will be targeted just by looking at them, within
a certain accuracy bound. In contrast, one could be quite off target
without a cursor for controller and head tracking. To avoid these risks
and set a baseline to be built upon in future paradigms, it made the
most sense to start with unmodified eye tracking rather than adding
additional variables from visual feedback to our evaluation. Thus, we
showed no visible cursor or visual feedback to the participant in the
eye tracking condition. That said, it is important to note that implicit
feedback - whether the target progression timed-out or continued after
a button press - indicated when they successfully selected the target.

3.5.4 Target Progression
If the raycast intersects with the target and the user presses the Meta
Quest 2 controller trigger, the target progresses immediately to the
subsequent target/trial. If a user fails to hit and activate the target, the
target will automatically advance to the next one in the sequence after
a 5-second timeout. That is, targets progress after 5 seconds whether
the user attempted to select it or not. Given the large number of trials
(1098 targets in total) each user goes through, 5 seconds, which was
longer than > 99% of all selections in pilot tests, would not unnaturally
rush users.

4 MEASUREMENTS

4.1 Quantitative Data
In addition to recording information about the conditions being run
(Input Modality, Standard, Geometry, and Target Diameter), at a frame
level, we recorded each target’s position and rotation in world coordi-
nates and dummy camera coordinates. We also recorded the position
and rotation of the main camera (participant’s head), the controller’s po-
sition and rotation, relevant eye tracking data, and information relevant

Fig. 5: Question 1 and 3 of the in-app Subjective Evaluation user
interface shown after each block.
to transform these values into any of the coordinate systems described
above.

We recorded every time a controller trigger press occurred and
indicated whether it was a hit or miss, and by extension of the data
mentioned previously, the metric and angular distance from the target
to the corresponding cursor or interaction point (in the case of eye
tracking).

4.2 Subjective Evaluation
Following each of the 36 blocks, within the virtual environment, we
prompted users to complete 3 questions displayed on a panel (see Fig.
5). We presented questions in a Likert scale format, with 11 potential
responses, and default values were median values. Participants provided
their input using the Meta Quest 2 controller, using the thumbstick to
increase or decrease values and would press the trigger to select a value.
A left or right thumbstick push would move the cursor one unit to the
left or right. This means that a participant would have to push the
thumbstick left or right 5 additional times to go to the minimum or
maximum values. Although implemented for efficient user experience,
this method did start the cursor at a potential response; however, it was
a neutral score and the user had to exert more effort for extreme values,
and so potentially underestimated the evaluation, but was not biased
positively or negatively.

Q1 Ease of use: How easy was this method of targeting and activation?
A1: -5 hardest, 5 easiest, Default value 0. All integers in between were
visible.

Q2 Adoption: How much do you agree with the statement: “I am
willing to use this as a method of targeting and selecting in an AR/VR
device”? A2: -5 Strongly Disagree, 5 Strongly Agree, Default value 0.
All integers in between were visible.

Q3 Fatigue: Rate your perceived exertion (all feelings of physical
stress and fatigue) to target and select. A3: We presented 11 options
with the left most element titled “Maximal Exertion” and the right most
titled “No Exertion.” Options in between were simply lines.

4.3 User Preferences, Experience and Feedback
Each participant had to fill out a questionnaire through Google Docs
for demographic information and the following questions regarding
their experience:

1. Rank your preferred methods of aiming at the objects (1 being
the best, 3 being the worst): [Controller] [Head] [Eye Gaze]

2. Why did you prefer that method of aiming?



3. Did you use any particular strategy for carrying out each task, and
if so please describe it briefly.

4. How many hours per week on average do you spend doing any
sort of gaming (console, cell phone, etc.)?

5. How many hours per week on average do you spend in Virtual
Reality (head-mounted display, such as Quest 2)?

6. Do you have any other observations, comments, or suggestions
you would like to share?

5 DATA ANALYSIS

We used Fitts’ Law to evaluate human performance across all
conditions. This section will describe the parameters we used to
calculate throughput in bits per second.

Movement Time: We calculated movement time (MT) as the
time from when a target is displayed to when the user successfully
selects that target. We ignore all misses. We use this value in our
per-target/trial throughput calculations.

Index of Difficulty: We used the Shannon Formulation Fitts’s Index of
Difficulty for our calculations, most frequently used in targeting and
selection tasks [28].

ID = log2(D/W +1)

We realize that because we use world-locked targets, there are multi-
ple possible approaches to calculate the distance to the target (D) and
the target size (W), given that we have units in both meters and degrees.
We also have targets positioned in world coordinates, dummy camera
coordinates, or head coordinates. If we used degrees from the main
camera’s coordinate space, participants could move their heads from
the start to the end of any particular trial/target. From the participant’s
perspective, this would change the angular distance between targets
in degrees relative to the head, from when the target is displayed, to
the time it is selected. Similarly, if the participant moves closer to the
target during the trial period, that target’s visual angle will also increase
from the participant’s point of view.

We reduced these ambiguities in calculating ID by using the dummy
camera and the target positions relative to that camera in degrees. We
chose this method because targets remain constant in this coordinate
space throughout the trial. We also used the target size relative to
the dummy camera in degrees. The actual size of the targets, if they
were in planar coordinates, would be <= their intended size (3,4 or
5 degrees), away from the center, whereas this is not the case with
spherical coordinates.

Note on Effective Index of Difficulty: In future studies, we would
like to measure the performance of advanced eye tracking signal
manipulation [45], with contextual information provided from the
scene, or AI, and subsequent collider or cursor manipulation. The
accuracy of the eye tracker and the specific (x-y) points of selection
required to calculate the "Effective" Index of Difficulty, which is
dependent on this, is less relevant as a metric. As the intended goal
of this study is to set up a foundation to calculate the rate at which
participants were able to progress through targets, rather than validate
the accuracy of our eye tracker, we chose to omit using the Effective
Index of Difficulty in our statistical analysis [49].

Throughput Calculations: Throughput in bits per second (TP), was
calculated on an individual target/trial basis using ID and MT, calcu-
lated above. We only calculated throughput and considered MT on
“Hits.” Furthermore, as the first target of each block doesn’t have a prior
target to calculate ID, we also omitted the first target shown in each
block from our calculation.

T P = ID/MT

Miss Calculations: We calculated miss percentages in the following
manner: # miss trigger presses / ( # miss trigger presses + # hit trigger
presses) * 100, per block.

6 RESEARCH HYPOTHESES

Given that this is a baseline study, we expect that participants using
unmodified eye input will not necessarily perform better than using the
controller, but will perform similarly. Specifically:

H1: Participants will have similar throughput (bits/s) and move-
ment time (s) with controllers and eyes in both ISO and Random Web
conditions. Eyes will perform better than the head throughout. The
eyes will lead the head and hand in selecting targets of unknown loca-
tions [9, 13, 15]. Higher quality eye tracking should be able to capture
this, but given the limitations of our eye tracker, especially at fringe
angles, we expect misses to slow down eye tracking throughput on
average to that of controller tracking.

H2: We expect eyes to have the most significant error rate, as we
provide no form of feedback before selection. We expect 3 degree tar-
gets to have the most errors, specifically for eyes, with decreasing error
rates as target size increases. Misses are a function of calibration error.
We expect that 3 degree targets (which represent a 1.5 degree error
threshold), will be closer to the limits of our eye tracker’s accuracy
for participants in fringe angles. Furthermore, as we provide no feed-
back, we expect that users will press the controller trigger when not
necessarily looking straight at the target.

H3: We expect controller and eye to be similar in terms of prefer-
ence for the Subjective Evaluation questions 1-3, as well as subjective
questions provided in our survey. We expect participants to rate those
two input modalities higher than head in all dimensions. Continuous
head movements require the most effort [1], especially when compared
to 6-DOF wrist controller movements. The eyes require even less ef-
fort [27], but maintaining gaze on a target prior to a trigger press is
slightly unnatural. The misses accrued with eye tracking can be tiring
over time which is why we do not explicitly state the eye will be rated
better than controller tracking in subjective evaluations.

H4: We expect that participants will have a higher throughput for
Double-ISO tasks than for Random-Web tasks, as participants can
learn the pattern of ISO tasks over time. We expect users to have learnt
(implicitly or explicitly [30]) the pattern in Double-ISO tasks over time,
and thus will naturally move to succeeding target locations.

H5: We expect no difference in throughput in Planar vs. Spherical
Geometry when comparing input modalities. For the angular positions
we are testing (max 15 degrees from the center) we will see that target
angular sizes as viewed from the user remain similar despite target
location and rotation towards users in spherical coordinates.

7 EYE TRACKING PERFORMANCE

All 30 participants successfully went through eye calibration and passed
the criteria for calibration accuracy (noted below). Participants had
their calibration quality tested before each eye tracking block. In other
words, calibration quality was tested 12 times per participant, and they
were allowed to recalibrate at any point during those tests.

During calibration quality tests, participants were shown 5 targets
locked in display coordinates (as shown in Fig. 2). These consisted of
1 target positioned at the center of the display and 4 targets forming a
cross, each 10 degrees from the center. On their first calibration quality
check attempt, participants were required to have a mean calibration
accuracy of < 1.5 degrees. All participants were able to meet this
requirement.

If we were to average every single block a participant ran the calibra-
tion test, and then take the average of that number across all participants,
we see that mean calibration error is 0.781 degrees, SD 0.348. Repeat-
ing for p50 error values, we have mean = 0.704, SD = 0.358. For p75
error values, we have mean = 0.942, SD = 0.466, and finally for p95
error values, we have mean = 1.588, SD = 0.811.

We recognize that these values represent the 10-degree radius cov-
ered by the calibration quality test, and we expect these accuracy values
to fall off further away from the center.

8 STATISTICAL ASSUMPTIONS

We first confirmed that the data satisfied the assumptions of a repeated-
measures analysis of variance (ANOVA). We used repeated-measures
ANOVAs to compare the effects of our design variables in terms of the
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Fig. 6: Chart showing how individual participants compared across different input modalities and Standard target placement.

Table 1: Throughput, movement time and misses. N=30.

primary measures (throughput in terms of bits per second, movement
time, and accuracy in terms of misses). ANOVA has been repeatedly
found to be robust to violations of normality [5, 44], therefore that was
not a primary concern; Shapiro-Wilk tests never showed a significant
departure from normality across all conditions for the primary depen-
dent variable, throughput (p > .05), and for most conditions for misses
and response times. We provide visualizations of the distributions for
our results. The survey data were also analyzed by repeated-measures
ANOVAs, as theoretical developments [23, 51] and simulations [56]
support the consideration of what might be termed ordinal data on
interval scales. Note that there were some analyses where Mauchly’s
test of sphericity was significant, indicating that the assumption of
sphericity was violated. In those instances, when ε was greater than
0.75 we then used the Huynh-Feldt correction, and when it was less
then we used the Greenhouse-Geisser correction [14]; these cases are
apparent due to the degrees of freedom not being integers. Paired t-tests
with Holm correction were used for all pairwise comparisons between
conditions of interest to correct for family-wise error rates. All tests
for significance were made at the α = 0.05 level. The figures provide
raincloud plots [2] for extensive visualization of the data. Timeouts:
We observed a total of 114 total timeouts across all participants, 98
(eye), 10 (head), 6 (controller). As this accounts for only 0.35% of total
targets displayed for all participants, we decided to omit timeouts from
our calculations, to simplify our analysis.

9 RESULTS

The descriptive statistics for throughput, movement times and miss
percentage are given in Table 1, and illustrated in Fig. 6.

9.1 Assessing Throughput and Movement Time

To assess H1 and H4, we analyzed throughput as a function of con-
dition. The full ANOVA results reveal that the interaction of Input
Modality by Standard was statistically significant (F(2,58) = 33.728,
p < .001 , η2

p = .538) as were the main effects for Standard (F(1,29)
= 160.348, p < .001, η2

p = .847) and Input Modality (F(1.721,49.902)
= 43.994, p < .001, η2

p = 603). The contrasts between Input Modality
in terms of throughput revealed that there was no significant difference
between Eye and Controller inputs (mean difference of 0.208 in favor
of Controller; p = .058), but Controller and Eye were both significantly
different than Head (mean differences of 0.961 and 0.753, respectively,
with Head the inferior input in both cases; p < .001). The impact of In-
put Modality and Standard presentations on movement time are largely
consistent with throughput, with the exception that post-hoc tests re-
vealed significant differences across all Input Modalities (p < .003).
The results largely support H1 in that Eye and Controller inputs were
largely the same in terms of throughput and movement time, with both
being significantly better than Head, and only different in terms of
movement time. The analysis of throughput also supports H4, in that
the Standard conditions (Double-ISO vs Random-Web) were signif-
icantly different in the ANOVA results, and with the ISO condition
having a higher throughput than the Web condition (mean difference of
0.705; p < .001).

In assessment of H5, we found that there was no impact of Geom-
etry (Planar versus Spherical) presentations on throughput (bits/s), as
seen in the lack of any statistically significant results in the three-way
interaction (Input Modality* Geometry* Standard), in the two-way
interactions (Geometry * Standard; Input Modality* Geometry), and
the main effect of Geometry (all F < 1.0 and p > .05). There was
also no statistically significant impact of Geometry on movement time;
however, there was a significant main effect on misses (planar: 9.71%;
spherical: 8.97%; F(1,29) = 4.864, p = .036, η2

p = .144 ), but no
significant interaction effects of Geometry on misses (all F < 1.0 and
p > .2). Overall, this supports H5, that the presentation of stimuli
in either spherical or planar coordinate does not impact targeting and
selection in terms of throughput and movement time, and only a small
difference in misses.



Q1: Ease of Use

Q2: Adoption

Q3: Fatigue

Fig. 7: Responses to Questions 1-3 of the Subjective Evaluation. Con-
troller and Eye are comparable, and both have more favorable responses
relative to head.

Table 2: Subjective Evaluation results for the questions shown after
each of 36 blocks with values ranging from [-5,5], N = 30.

9.2 Assessing Error Rates

The descriptive statistics for misses are also in Table 1, and illustrated in
the lower panel of Fig. 6. We examined the misses (error rates) to assess
H2, with a primary interest in Input Modality and Target Size, though
the full repeated-measures ANOVA included Geometry and Standard as
well. For misses, there were significant main effects of Input Modality
(F(1.151,33.392) = 33.528, p < .001, η2

p = .536), Target Size (F(2,58)
= 71.528, p < .001, η2

p = .712), Geometry (see paragraph on H5),
and Standard (F(1,29) = 5.933, p = .021, η2

p = .170), but with no
significant interactions (all p> .2) except for that of Input Modality as a
function of Target Size (F(2.947,86.258) = 10.45, p< .001, η2

p = .265).
In support of H2, the post hoc comparisons revealed that the Eye had
more misses than the Controller (12.02, p < .001) and the Head (9.511,
p < .001), but there was no significant difference between the Head
and Controller (2.51, p > .104). Moreover, for Target Size, the 3
degree target had more misses than the 4 degree (3.91, p < .001) and 5
degree (5.37, p < .001) targets, and the 4 degree had more misses than
the 5 degree, too (1.46, p = .003), and the interaction between Input
Modality and Target Size is due to the greater number of misses for the
Eye across all target sizes in comparison to the Controller (p < .001)
and the Head (p < .001), but no significant difference between the
Controller and Head (p > .3) for each paired target size.

In regards to H4, the Standard condition had significant differences
noted for throughput, movement time, and misses, but perhaps not
in the manner always expected. The notable exception is that there
were more misses for the Double-ISO condition (9.816%) than the
Random-Web condition (8.857%, p = .023). Yet, as anticipated by
H4, the ISO outperformed Web conditions for throughput (3.605 and
2.901, respectively, p < .001) and movement time (.891s and .853s,
respectively, p = .003), likely due to certainty of target placement that
aids performance in speed, but not accuracy.

9.3 Survey and Qualitative Results
9.3.1 Subjective Evaluat
We examined preferences predicted in H3 as a function of Input Modal-
ity after each block with the in-app questions and overall at the end
of the experiment, with the results provided in Table 2 and illustrated
in Fig. 7. First, considering the in-app questions, the first question
was regarding how easy they found the method of targeting and se-
lection. We used a repeated-measures ANOVA to assess the impact
of Input Modality, Geometry, and Standard on responses. Only the
main effect of Input Modality was statistically significant (F(2,58) =
36.114, p < .001, η2

p = .524). Post hoc tests revealed that there was
no significant difference between Controller and Eye (mean difference
0.353, p = .449), but both were rated significantly easier than Head
(mean difference compared to Controller 3.572 and compared to Eye
3.219, p < .001).

The second question queried how willing they were to use the
method, and there were significant main effects of Input Modality
(F(2,58) = 49.434, p < .001, η2

p = .599) and Standard (F(1,29) =
5.075, p = .032, η2

p = .001)). Post hoc tests revealed a similar pattern
of results as the first question, with no significant difference between
Controller and Eye (mean difference 0.769, p = .118), but both were
rated significantly more willing to be used than Head (mean difference
compared to Controller 4.506 and compared to Eye 3.736, p < .001).
Interestingly for the Standard, the participants were more willing to
use the Random-Web than the Double-ISO by a small but significant
margin (mean difference 0.185, p = .032).

Finally, the third question measured the degree of exertion the
participants felt they used for each method. Like the second ques-
tion, there were significant main effects of Input Modality (F(2,58) =
43.144, p < .001, η2

p = .560) and Standard F(1,29) = 8.484, p = .007,
η2

p = .002). Post hoc tests revealed a similar pattern of results as the
other questions, with no significant difference between Controller and
Eye (mean difference 0.386, p = .444), but both were rated signifi-
cantly less exerting than Head (mean difference compared to Controller
4.208 and compared to Eye 3.822, p < .001). Again, interestingly for
the Standard, the participants found less exertion for the Random-Web
than the Double-ISO by a small but significant margin (mean difference
0.204, p = .007). Overall, these results support H3, that the participants
would equally favor the Controller and Eye over the Head as an input.

9.3.2 User Preferences, Experience and Feedback
In the post-experimental survey (n = 29, as 1 did not complete the
survey), participants were asked to rank each Input Modality as the
Best, Middle, or Worst, and the Eye was found to be superior to the
other two modalities, in support of H3. The Best ranking was given
the most to the Eye (14), then the Controller (13), and finally the Head
(2). The Middle ranking most frequently went to the Controller (16),
then the Eye (12), and then the Head (1). The Head was most often
rated as the worst (26), compared to the Eye (3), and none thought the
Controller was the worst. In qualitative explanations for why the Eye
was chosen as the best, participants noted: “Once I got used to it, it felt
natural and easy;” “It was the quickest;” and “Easiest.” The Controller
was favored due to: “It’s easy and very accurate” and “Accuracy and
easier to move the wrist.” Although the Head was generally not favored,
it was noted that it was preferable due to: “High reliability” and “More
accurate.” Note that in this study, the Eye condition included natural
head movements as there would be hardly any applications where a
user’s head would be immobilized; indeed this natural connection was
noted by a participant: “I used a combination of moving the headset and
my eyes. When the target was too low or high it would cause eye strain
so I had to use my head to help out.” Finally, we noted in our design
decisions that, while a cursor is natural in use cases for Controller or
Head targeting, it is a nuisance for Eye targeting; indeed, a participant
noted this due to how the experiment begins with a cursor driven by
unmodified eye-signal shown before calibration, but never shown again,
that indicated the common issue of cursor-following behavior with
gaze: “At the beginning I could see a dot following my eye movement.
It was annoying because the dot would jump a lot.”



10 DISCUSSION

In this paper, our goal was to set the groundwork for evaluating eye
tracking as an input and interaction modality. We designed an ex-
periment comparing unmodified eye tracking with other established
input modalities available in commercial headsets, particularly those
using the controller or head, specifically for world-locked targeting
and selecting tasks within AR/VR. We included several factors in our
experimental design, including a Double-ISO or Random-Web target
presentation standard, planar or spherical target geometry, and various
target diameters. We intentionally did not modify the eye tracking
signal provided through the device’s API in any way.

Specifically, in targeting and selection tasks, a person’s natural ten-
dency is not to look at a target, maintain their gaze on that target, and
then select. Rather, in natural gaze explorations, we tend to move our
eyes quickly from one point of interest to the next (e.g., at a frequency
of up to 3 times per second [26, 58]), and hand-eye coordination is also
subject to different sensory-motor latencies [43], making it difficult
for the user to estimate exactly when, relatively, gaze and hand events
occur. However, as we expected in H1, we see that people perform
similarly, though slightly worse, in throughput and movement time
using unmodified eye tracking relative to the controller. Still, eye track-
ing consistently outperforms the head in the same measures. People
also tend to have a similar preference for eye tracking and controllers,
both being better than the head, in the in-app questions and our post-
experiment survey, which is consistent with H3, and some past research
that found eye tracking was not perceived as more effortful than using
a controller [27]. However, eye tracking seems to perform relatively
poorly with target misses.

We hypothesized eye tracking to have the worst selection error rate
(H2), consistent with past work [18,27,39,48]. We did not provide any
online visual feedback to the participant for the eye tracking condition,
and this is more so an issue when calibration errors are large, as targets
of intent might not be selected. In contrast, participants had constant
feedback on where they were pointing with their head or hand through
the red cursor we provided. Indeed, if we removed the cursor from
the controller and head targeting conditions, performance would likely
suffer, because unlike eye tracking, users do not know where precisely
they are pointing with their head or hand. Such a cursor will also not
give the same effect if we drive it using raw gaze. Specifically, it is
well-known that the availability of online cursor-style feedback in a
gaze-interaction system will result in the phenomenon of “chasing,”
where users attempt to place their gaze on an eye tracked cursor with
inherent errors. “Chasing” occurs because retinal position errors par-
tially drive saccades [41]. This highly undesirable scenario results
from the unexpected consequences of saccades in some UI feedback
designs [39], as the visual system is evolved to expect objects in the
world to remain stable, regardless of where the eye is pointed. However,
we can avoid the negative effects of an erratically moving cursor by
providing a visual indicator that the target is selected through an outline,
color change, haptic feedback, or other similar means.

Because we chose to provide no online feedback to the participant
(for reasons described in section 3.5.3), there was no way for them
to know if the system indeed registered that they were looking at a
target or not before selection. This issue of misses is only exacerbated
when participants have poor calibration, targets are small, and select
targets are in fringe angles. With no feedback, in this case, a missed
selection due to system error is far more likely. If participants did not
know that the system failed to recognize their intended target of choice,
they would press the trigger with no success. Instead, participants were
required to use their best guess on whether the eye tracker estimated
their gaze to be on the selected target, increasing the probability of a
measured “miss” and thereby increasing the overall miss percentage,
and possibly also subjective frustration. This effect is akin to the
scenario of flipping a coin, intending to press the button on “heads,”
but not knowing if it is “heads” or “tails” before selection. Appropriate
online feedback that does not introduce new retinal motion, such as a
color change or target highlight, lets the user know if the button press
will be successful before selection. Some of our participants noticed
this effect, e.g.: “Also, there isn’t a targeting feedback in this case

so I worry if I might make false clicks and not know what I clicked.
Otherwise, it is still fairly intuitive and easy to use!”

Participants know they are missing the target when a target does not
progress on a controller press. A question for future work is: If we
provide users with visual feedback and they are shown that the system
does not register their target of intent – how would this affect their
subjective evaluation of eye tracking? One hypothesis is that it could
reduce the experience for low-accuracy systems, as users now visually
know the system is working poorly. However, the opposite could be
true as it also reduces ambiguity from the user’s perspective and allows
them to correct their gaze until their target of intent is registered.

We expect providing feedback will reduce misses (participants will
not press the trigger if they know the intended object is not selected).
That said, any adaptation that the user might make to account for system
error in such a scenario (or one without feedback), may induce visual
fatigue due to unnatural eye movements. Indeed, some participants
reported that they attempted to adjust their gaze: “For eye Gaze method,
aiming target in the center of FOV is helpful, however in one session
maybe due to miscalibration, I had to aim the target a little lower [than]
the center” (sic). While providing feedback can aid participants in
learning how to compensate for this error, this is a design trap. We
should not be training participants to move their eyes unnaturally, but
rather we should adapt the system to account for the natural use of gaze.
Future work could avoid scenarios where users try to learn the system’s
limitations by eliminating their need to adjust for errors altogether. One
example of this would be to adaptively modify the UI scheme, or visual
elements of a scene to account for eye tracking calibration quality.

In support of H4, we saw better throughput and movement time per-
formance in Double-ISO over the Random-Web Standard. This is likely
because participants know where targets are positioned beforehand as
they learn the pattern over trials. These two layouts represent tasks
where users know the position of the intended element beforehand and
others where they would have to navigate to an element at an unknown
location. In support of H5, we saw that participants performed similarly
in planar vs. spherical Geometries, at least for the range of target posi-
tions we provided. These results suggest that the spherical Geometry
presented could be adopted in future similar experiments using similar
target positions. However, as we increase the target position range to
greater than 15 degrees away from the center of the dummy camera,
we cannot conclude that this effect will hold, because the magnitudes
of target depth differences increase with presentation eccentricity.

We use throughput and movement time as human performance mea-
sures, but beyond a certain threshold, it is not always necessary to
optimize for them, and they are not necessarily indicative of what an
application in AR/VR requires. In other words, having a higher through-
put or lower movement time does not necessarily make an input method
better. It depends on the context these measures are applied within.
Most applications do not require users to progress through scenes and
UIs non-stop at high throughputs with a known sequence (like in the
ISO-style layout). In such scenarios, marginal increases to an already
high throughput provide little to no additional value. For many system
UI navigation tasks, we suspect that navigating at a throughput similar
to our results for unmodified gaze will likely be sufficient.

In conclusion, eye tracking could be valuable in scenarios where
portability and privacy are required, which might not be best suited
for other inputs. Even out of the context of these scenarios, our post-
experimental survey showed that participants still preferred unmodified
eye tracking. Our novel experimental paradigm has helped lay the
groundwork for improving eye tracking based inputs and interactions
in AR and VR HMDs. We can expect eye tracking errors to reduce
over time as investments in eye tracking technologies continue. Taken
together, this study provides a strong indicator that eye tracking has
tremendous potential, not just in its role in targeting and selection tasks
but generally in reshaping future AR/VR interactions.
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