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Abstract—Blind estimation of the direction of arrival (DOA)
and delay of room reflections from reverberant sound may be
useful for a wide range of applications. However, due to the
high temporal and spatial density of early room reflections
and their low power compared to the direct sound, existing
methods can only detect a small number of reflections. This
paper presents PHALCOR (PHase ALigned CORrelation), a
novel method for blind estimation of the DOA and delay of early
reflections that overcomes the limitations of existing solutions.
PHALCOR is based on a signal model in which the reflection
signals are explicitly modeled as delayed and scaled copies of
the direct sound. A phase alignment transform of the spatial
correlation matrices is proposed; this transform can separate
reflections with different delays, enabling the detection and
localization of reflections with similar DOAs. It is shown that
the DOAs and delays of the early reflections can be estimated
by separately analysing the left and right singular vectors of
the transformed matrices using sparse recovery techniques. An
extensive simulation study of a speaker in a reverberant room,
recorded by a spherical array, demonstrates the effectiveness of
the proposed method.

Index Terms—Direction-of-arrival estimation, room reflections,
MUSIC, Spherical array, sparse recovery

I. INTRODUCTION

Estimation of the direction of arrival (DOA) and delay
of room reflections is useful for many tasks in signal pro-
cessing, such as speech enhancement and dereverberation
[1]], [2], source separation [3]], optimal beamforming [4]] and
room geometry inference [S]. The early reflections have a
key role in sound perception, as they can improve speech
intelligibility and listener envelopment. They are also related
to the impression of source width, loudness and distance
[6], [7]. Therefore, exploitation of the early reflections can
be beneficial in parametric spatial audio methods and spatial
audio coding [8]], [9].

Existing methods for the estimation of the parameters of
early reflections can be categorized as blind and non-blind.
Non-blind methods, operate on room impulse response signals,
or, alternatively, assume that an anechoic recording of the
sound source is available. Blind methods operate on micro-
phone signals directly, and assume that no other information is
available, as is often the case in many real world applications.
This work focuses on blind estimation.

Spatial filtering, i.e. beamforming, can be utilized to blindly
estimate the DOAs of the early reflections, as well as to
separate reflection signals from the direct sound, which enables

The authors are with the School of Electrical and Computer Engineering,
Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel (e-mail:
tomshlomo @gmail.com; br@bgu.ac.il).

This research was supported by Facebook Reality Labs.

delay estimation using cross-correlation analysis [5]. However,
when arrays of practical size are used, the spatial resolution
achieved by beamformers is often insufficient, as the spatial
density of early reflections can be very high [[10]]. Subspace
methods, such as MUSIC or ESPRIT [11]], [[12], can often
provide higher resolution than beamformers. However, these
methods require the sources to be uncorrelated, while in the
case of early reflections, since all sources are delayed copies of
the direct sound, reflected narrowband signals are highly cor-
related. Frequency smoothing is a common method to decor-
relate source signals, enabling the application of subspace
methods. However, frequency smoothing cannot decorrelate
reflections that have similar delays. Furthermore, subspace
methods typically require an estimation of the number of
sources, which is a challenging task when the amplitudes of
the sources greatly vary, as in the case of early reflections.
Also, these methods require that the number of microphones
is larger than the number of significant reflections, which can
limit the the number of detected reflections. By formulating
the problem as an under-determined linear system, sparse
recovery can also be utilized for the localization of early
reflections [[13]]. Since sparsity based methods attempt to find
the smallest set of sources that explain the measured signals,
their performance improves as the actual number of sources
is reduced, and in practice only the first few reflections are
recoverable with practical arrays. A common limitation of
the methods mentioned above is the use of a multiple source
model that does not distinguish between sources with the same
DOA. In summary, due to the challenging nature of this task,
and the limitations of current methods, no adequate solution
seems to be available for blind estimation of the DOA and
delay of early room reflections.

This paper presents PHALCOR (PHase ALigned CORre-
lation), a novel method for blind estimation of the DOA and
delay of early reflections. The proposed approach utilizes the
inherent structure of early reflections - they are delayed and
attenuated copies of the direct sound. More specifically, we use
the property that the narrowband correlation between a source
and its reflections has a phase that is linear in frequency to con-
struct a transform that can separate reflections with different
delays, which also enables the detection of multiple reflections
from the same direction. Since the number of reflections with
similar delays is usually small, the DOAs of reflections with
similar delays are estimated using orthogonal matching pursuit
(OMP), a sparse recovery technique. A simulation study
demonstrates the performance of PHALCOR, in particular its
ability to accurately detect a large number of reflections. Initial
results of this work, with a simplified method and a much-



reduced theoretical and performance analysis, were submitted
for publication at the Interspeech 2020 conference [14].

The rest of this paper is organized as follows. Section
presents the necessary mathematical background on the plane
wave amplitude density function and its spherical Fourier
transform. Section [IIl] presents the system model. Section
presents the theoretical foundations of the proposed method,
while section [V] describes the proposed algorithm. A simula-
tion study and conclusions are presented in sections and

[VIT} respectively.

II. MATHEMATICAL BACKGROUND
A. Notation

The notation used in the paper is presented briefly in
this section. Lowercase boldface letters denote vectors, and
uppercase boldface letter denote matrices. The k,! entry of
a matrix A is denoted by [A], ;. The complex conjugate,
transpose, and conjugate transpose are denoted by (-)*, (-)T
and ()" respectively. The Euclidean norm of a vector is
denoted by ||-||. The outer-product of two vectors a and b
is the matrix ab". The imaginary unit is denoted by i.

S? denotes the unit sphere in R3. The symbol Q € S?
represents a direction in 3D-space, i.e a pair of azimuth-
elevation angles. / (€2,€)) £ arccos(2-€)) is the angle
between directions © and €. “-” is the dot product in R3.

B. Sound Field Representation Using Plane Wave Amplitude
Density

Consider a sound field composed of M plane waves with

amplitudes a1 (f),...,an(f) at frequency f, and directions
Q1,--+,Qp. The sound pressure p at any point in space
x € R3 can be formulated as follows:
M
PUfLx) =) am(f)er > (1)
m=1

where k = 27 f/c is the wave-number, and c is the speed of
sound. When the sound field is composed of a continuum of
plane waves, the summation is replaced by an integral over
the entire sphere, and the amplitudes are replaced by the plane
wave amplitude density (PWAD) a(f,):

p(rx) = [ alr. et

For a fixed frequency, the PWAD is a function on the unit
sphere. As such, it is possible to describe it by its spherical
Fourier transform (SFT) coefficients [[15]:

(N [ at W@ @

where Y," is the order-n and degree-m spherical harmonic.
The SFT of the PWAD can be used to represent the sound
pressure as follows [[15]:

p(fix) =Y D> Ami™ (k)Y (Qanm(f) ()

n=0m=—n

where r = ||x||, Q@ = x/r, and j, is the n’th order spherical
Bessel function of the first kind.

Equation (3) can be well approximated by truncating the
infinite sum to order N = [kr] [15]. A microphone array
can be used to estimate the coefficients of the SFT of the
PWAD with order less than or equal to N, by inverting the
(truncated) linear transformation (3)), a process known as plane
wave decomposition. The existence and stability of the inverse
transform depend on the frequency f and physical properties
of the (typically spherical) microphone array. Further details
can be found in [15]]. The resulting signals are stacked in a
vector of length (N + 1)2 as follows:

A

T
Anm = [0,0,01,-1,01,0,01,1,-- -, AN, N]

The rest of this paper is described in terms of the SFT
of the PWAD. Processing and analysis in this domain offer
several advantages. First, the PWAD provides a description of
the sound-field that is independent of the microphone array.
Second, the steering vectors, i.e the response to a plane-
wave from a given direction, are frequency independent. The
steering vector y(€2) is given by [15]:

ym)éﬁl

~ i’rl was chosen for convenience such that

[YOO (Q) 7}/1_1 (Q) et infv (Q)]H (4)

The constant
[y ()] = 1.

III. SYSTEM MODEL

This section presents the system model used in the paper.
Consider a sound field comprised of a single source in a room,
with a frequency domain signal s(f), and a DOA , relative
to a measurement point in the room. As the sound from the
source propagates in the room, it is reflected from the room
boundaries. The k’th reflection is modeled as a separate source
with DOA €, and signal sy (f), which is a delayed and scaled
copy of the source signal [16]:

si(f) = age 2™ s( f) (5)

where 7, is the delay relative to the direct sound, and oy, is
the scaling factor. 7y and g are accordingly normalized to 0
and 1, respectively. It is assumed that the delays are sorted
such that 7,1 < 7%.

Let apm (f) denote the vector of the SFT coefficients of the
PWAD, up to order NV, as a function of frequency. Assuming
the sources are in the far field, apm(f) is described by the
following model:

anm(f) = Ys(f) +n(f) (6)

where:
s(f) £ [so(f), -, sk ()" (7
Y £ [y(Q), -, y(Qx)] ®)

n(f) includes noise and late reverberation terms, and K is the
number of early reflections.

Let R(f) denote the spatial correlation matrix (SCM) at
frequency f:

R(f) £E [anm(f)anm(f)H] 9



Substituting Eq. (6)) into Eq. (9), and assuming n(f) and s(f)
are uncorrelated, yields:

R(f) = YM(f)Y" + N(f) (10)

where:
N(f) £ E [n(f)n(f)"] (11)
M(f) £ E [s(f)s(/)"] (12)

IV. PHASE ALIGNMENT OF THE SPATIAL CORRELATION
MATRICES

PHALCOR is based on a phase alignment transformation of
the SCM. This section presents the definition and properties
of this transformation.

A. Motivation

Before presenting the mathematical details, we first provide
some motivation for this transformation.
Equation (10) can be rewritten as:

K K

R(f) =D > M) y( @)y Q)"+ N(f)  (13)

k=0 k'=0

It is apparent from equation (T3] that neglecting N, the matrix
R is a mixture of the outer products of the steering vectors
of the sources. The mixing coefficients are the entries of M,
and therefore it is henceforth referred to as the mixing matrix.
Note that the mixing coefficients are frequency dependent, but
the steering vectors are not.

Suppose that the k,k’ entry of M(f) has a dominant
magnitude, relative to all other entries. This leads to:

R(f) = cy(Qu)y ()" + N(f)

for some ¢ € C. Intuitively, estimating {2, and 2 in such a
case is easier than in the general case. However, according to
(I2), there may not be a dominant entry in M. Not only it is
Hermitian, but also the magnitudes of its entries are products
of amplitudes between pairs of two sources. Assuming the
amplitude of the direct sound may be dominant, the 0,0’th
entry that corresponds to the direct sound only may indeed
be dominant. However, this is not helpful for localizing the
early reflections. The processing presented below is designed
to enhance specific entries in M, so that specific reflections
can be more easily localized.

(14)

B. Phase aligned Spatial Correlation

We define the following matrix, which we call the phase
aligned SCM:

R(r.f) £ ) wR(f +jAf)e?TI8]

Jj=0

(15)

where 7 > 0, Af is the frequency resolution, and J; is an
integer parameter representing the overall number of frequency
points. wo, ..., wy,—1 are non-negative weights. Note that
when 7 = 0 and w; = 1, R is identical to the SCM obtained
by frequency smoothing. The matrices N(7, f) and M(7, f)

are similarly defined by replacing R in with N and M,
respectively, such that:

R(7, /) =Y D> [M(r 1], 0 Y Q)y( Q)" + N(7, f)
k=0k’'=0
(16)

Similarly to Eq. , Eq. presents R as a mixture of
outer-products of pairs of sources’ steering vectors. Next, it
is proven that for a fixed f, the k,k’ entry of M(T, f) is
maximized for 7 = 7, — 7. We begin the proof by deriving
an explicit expression for the absolute value of the entries of
M for an arbitrary 7:

‘ [1\71(7, f)] k, k'

= E[Sk(fj)sk/(fj)] wljeiQﬂ'TjAf

= Z akaz,ai(fj)wjeiQ”jAf(T_(Tk_T’“)) (17)

where f; = f+ jAf and
o2(f;) 2 E [|s(f;)F]

The second equality in Eq.[17]is due to the definition of M( f)
in Eq. (IZ), while the third equality is due to Eq. (3). Now,
by a simple use of the triangle-inequality:

(18)

Jr—1

‘ [M(T’ f)] k k' < Z ’aka?;’ag(fj)wj’
=0

= |[Mr =, )] | 9

The last equality is true since o2 and w; are non-negative.

Along with (I6), this result implies that among all possible
delays T, it is the delay between two sources that maximizes
the contribution of the outer product of their steering vectors
to R(7, f). This observation is at the core of our method.
To better understand its implications, consider the following
special case.

C. Special Case: White Source Signal

In this subsection the source signal is assumed to be white,
such that o2(f) is constant in f. The weights w; are all set
to 1. Equation can thus be further simplified:

r]f71
‘[M(T, f)}hk, = 0’? ol Z G2TIAf(T—(Tk=T3,))
§=0
=o? ’aka,’;,DJf (Af(T— (T — Tk’)))’
(20)
where:
n r €L
Dy(w) 2 4 21
0 ey 152 @



TABLE I
PARAMETERS FOR THE NUMERICAL EXAMPLE

k | 1 (ms) | ag
0 0 1

1 2 0.7
2 6 0.5

QO e

¥ ~ (ms)

()
Fig. 1. (a) Entries of the mixing matrix [M(f)] ;, for different values
of f, with the real and imaginary part of the entries added to the k and &k’
axes for the purpose of illustrating the complex function. (b) Entries of the

transformed mixing matrix [M(T, O)] i.x for different values of 7, with the
absolute value of the entries added to the k axis for the purpose of illustration.

D,,(z) often arises in Fourier analysis, and is related to the
Dirichlet kernel. It has a sinc-like behavior, with a main lobe
centered around z = 0, and a null-to-null width of 2/n.
Correspondingly, |[M(r, fﬂk,k/’ has a main lobe centered

at T = 7 — T, and a width of 2(J;Af)~!. Therefore, J¢
determines the temporal resolution, which affects the ability
to separate reflections with different delays. This result can
be used as a guideline for choosing J;. Note that the same
analysis is valid for non white signals, if the weights satisfy
w; o 1/02(f;).

Next we consider a numerical example where there are
K = 2 reflections, with parameters summarized in table m
Figure [la| presents the entries of the mixing matrix M(f).
Since the signal is white, the k, k' entry is a complex si-
nusoidal of the form o2azaf,e®™ (=7k) (see Egs. and
(12)). Its real and imaginary parts are added to the k and
k' axes respectively, for the purpose of illustration of the

complex function. This illustration demonstrates that as the
delay between two sources is decreased, the period of the
corresponding entry, as a function of f, increases. At the
extreme, the delay between a source and itself is zero, and
so the diagonal entries are constant in frequency.

Figure [ID] presents the entries of the transformed mixing
matrix M(7,0), where AfJ; = 2000Hz. In this plot, only
the absolute value of the matrix entries is shown, and is added
to the k-axis for the purpose of illustration. When 7 is equal
to a delay between two sources, M(7,0) is approximately
sparse, and the most dominant entry is the one corresponding
to the two sources. For other values of 7, all entries of M(7,0)
are relatively small. For 7 = 0, M(r,0) is approximately a
diagonal matrix. Since in that case the off diagonal entries
can be interpreted as correlations between different sources,
this demonstrates the fact that frequency smoothing (7 = 0)
performs decorrelation of the sources. If the reflections had
the same delay, M(0,0) would contain dominant off diagonal
entries, and frequency smoothing would have failed to decor-
relate the sources. Furthermore, while for 7 = 0 all 3 sources
are dominant simultaneously, for values of 7 that correspond
to delays between sources, only a subset of the sources are
dominant.

D. Signal-informed Weights Selection

The analysis presented in the previous subsection shows that
if the weights {w;}, are inversely proportional to o2(f;), the
phase alignment transform can effectively separate reflections
with different delays. As o2(f) is usually unknown, it must be
estimated from the data. A very coarse, yet simple, estimate
is given by the trace of R(f). By neglecting N in Eq.
and substituting Egs. (I2), (3) and (T8), we get:

r (R(f)) = D M) tr (¥ () y ()"
Kk’
=Y E[si(H)sp (N y () y ()
k,k'

=02(f)Y_ e 2T a0k, y () y ()
K,k

=02(H) Y lowl* (1 + bi(f)) (22)
K

where:

bi(f) £ 2R (Z AW gizrf <T“k'>y(9k)Hy(Qk/)> (23)
>k OF

and R returns the real part of a complex scalar. We argue
that by, is typically small in comparison to 1, since usually the
amplitudes decay rapidly. Furthermore, when two reflections
have similar amplitudes, it is usually the case that they have
very different DOAs, which implies that the inner product of
their steering vectors is small [[15].

The weights could have another role. Eq. (20) suggests that
even if the weights are inversely proportional to o2, reflections
with delay other than 7 may still be dominant in M(7, f), as
D,, have strong side lobes. The side lobe levels can be reduced
by introducing a window function, at the expense of increasing
the width of the main lobe [17].



E. Rank 1 Approximation of Phase Aligned SCM

In the following, the dependence on the frequency f is
omitted for brevity. It is important to note that there is no direct
access to M(7); it is only indirectly observed through R(7) as
given by Eq. (I6). When the proposed transformation succeeds
in enhancing a single entry in M(7), R(7) will be dominated
by a single outer product of steering vectors y(Q)y (€2)H. As
an outer product is a rank 1 matrix, it is expected that the rank
1 approximation of R(7) would perform denoising, i.e. reduce
the contribution of N(7). The optimal rank 1 approximation
(in the least squares sense) of R(7) is denoted by R, (7), and
is given by truncating its singular value decomposition (SVD):

Ri(7) = oru, vl

where o denotes the first (largest) singular value of R(7), and
u, and v, denote corresponding left and right singular vectors,
respectively. Beside performing denoising, the SVD also sepa-
rates the two steering vectors, as u, and v, are approximately
equal (up to phase) to y(Q2) and y(£2), respectively. If there
are several reflections with the same delay 7, R(7) is still
approximately of rank 1 since the dominant entries in 1\_/1(7)
all appear at the same column. However, in that case u, is
not a single steering vector, but rather a linear combination of
the steering vectors of the reflections with delay 7.

V. ALGORITHM DESCRIPTION

This section describes the PHALCOR algorithm for esti-
mating the DOAs and delays of the early reflections. The
algorithm is based on the analysis of the first singular vectors
of the phase aligned SCM R(7, f) that was presented in
section The analysis in section requires the plane
wave decomposition signals to be in the frequency domain. In
practice, these are approximated using the short time Fourier
transform (STFT) which enables localized analysis in both
time and frequency. It is assumed that the window length
of the STFT is sufficiently larger than 7x, such that the
multiplicative transfer function (MTF) approximation in the
STFT is applicable for Eq. (3)) [18]. Note that in the following,
T is the parameter of the phase alignment transform as in Eq.
@]), and should not be confused with the time index of the
STFT.

The algorithm is performed in two parts. In the first and
main part, local time frequency estimates of reflection de-
lays and DOAs are computed; this is performed separately
on different regions in the time frequency domain. In the
second part, cluster analysis analysis is performed on the local
estimates to obtain global estimates that are more robust and
accurate.

A. Part 1: Local Time Frequency Estimations

The first, and main, part of the algorithm consists of three
steps as described below.

1) Phase Alignment Transform: For each time-frequency
bin, R is estimated by replacing the expectation in Eq. (9) with
averaging across J; adjacent bins in time. Then, R(7, f) is
calculated for 7 = 0, A7, ..., (J,—1)A7 using Eq. . AT
dictates the delay estimation resolution, while J dictates the

maximal detectable delay of a reflection. The selection of these
parameters is discussed in section as well as a method to
efficiently calculate R using the fast Fourier transform (FFT).
The weights are set using the method described in section
IV-D
W
W — ——J
T w(R(f))
where W; is the j’th sample of a Kaiser window of length
J¢, with the 3 parameter set to 3 [[17].

2) Delay Detection: The next step is to detect values of 7
that are equal to a reflection’s delay. Based on the analysis
presented in section we suggest the detection of such
values of 7 by thresholding the following signal:

(24)

H (25)

/

p(7) = max [y (¥)"vr |
where v, is a first right singular vector of R(7). By the
Cauchy-Schwartz inequality, since both v, and y(2) are unit
vectors, p(7) € [0,1] and is equal to 1 if and only if v, is
equal (up to phase) to a steering vector. The threshold is set
empirically to 0.9.

We denote by €'(7) the direction that attains the maximum

in Eq. 23):

H

(Y(r) = arg max |y () (26)

v |
Q' es?

When 7 is equal to a reflection’s delay, () is an estimate
of )y (the DOA of the direct sound). Note that when 7 is
equal to a delay between two reflections (and not a delay
between a reflection and the direct sound), p(7) may be high
as well, leading to false detections. However, such detections
are distinguishable from valid ones, as €'(7) will be different
from Qg; as detailed in section the first step of part 2
discards such detections.

3) DOA Estimation: The next step is estimating the DOAs
of the reflections. This step is performed separately for every
T selected in the previous step. Let u, denote a first left
singular vector of R(7). According to the analysis presented in
section u, is approximately equal to a linear combination
of the steering vectors of the reflections with a delay close
to 7. If there is only a single such reflection, then its DOA
can be estimated using a similar method to that of the direct
sound (Eq. (26)). However, in practice there might be several
reflections with similar delays. Since their number is expected
to be quite small, we utilize sparse recovery to estimate the
DOAs. Specifically, we aim to solve the following problem:
Find the smallest set of directions Ql, ... QS and coefficients
T1,...xs, such that

2

< €u 27)

S
Z xsy(Qs> — Uur
s=1

where ¢, € (0, 1) is a predefined threshold, set experimentally
to 0.4. In the context of sparse recovery, the set of vectors
{y(Q) : Q € S} is known as the dictionary, and its elements
are known as atoms. The optimization problem is computa-
tionally intractable and cannot be exactly solved in practice.
Nevertheless, there has been extensive research on algorithms



that find approximate solutions. In this paper we chose to
apply the orthogonal matching pursuit (OMP) algorithm [|19]].
Although there are more sophisticated sparse recovery al-
gorithms, we chose OMP for several reasons. First, it is
simple, and has a low computational cost. Second, although
originally designed for finite dictionaries, it is easily extended
for our infinite dictionary case. Finally, it is especially suited
for our problem by the following argument. Early reflections
with similar delays usually have very different DOAs as they
typically originate from different walls. If the angle between
the DOAs is larger than w/N, the corresponding steering
vectors are approximately orthogonal [15] and the projection
step in OMP only removes the contribution of steering vectors
of DOAs the have already been found, without affecting the
rest.

The OMP algorithm is applied on u, for every detected
7. Values of 7 where the resulting S is larger than Sp,, are
discarded. The value of Sy was set to 3.

B. Fart 2: Cluster Analysis

The input for this part is a list of the local estimates obtained
from part 1. Each estimate is a triplet of the form (7,, ),
corresponding to the delay of a reflection, its DOA, and the
DOA of the direct sound. The goals of this part are: first, to
remove outliers, and second, to obtain global estimates for the
DOAs and delay of the early reflections.

The first step is to discard estimates where the angle
between Q' and Qq, is larger than some predefined threshold,
set empirically to 10 degrees. In general )y is not known;
however, it can be estimated by selecting the peak in the
histogram of €Y.

Next, a clustering algorithm is executed on the remaining
estimates. We chose the DBSCAN algorithm [20], as it does
not require an estimation of the number of clusters, and can
automatically detect outliers by not assigning them to any
cluster. DBSCAN has two positive parameters € and MINPTS,
and operates as follows. Two points are defined as neighbors
if the distance between them is less then €. A core point is
defined as a point that has MINPTS or more neighbors. A
noise point is a non core point, for which none of its neighbors
are core points. The algorithm iterates over all the points in
the dataset, and assigns two points to the same cluster if one
of them is a core point. Noise points are not assigned to any
cluster.

The metric we used is the following:

d (12, Q) (15, ) = \/<4(9me))2 n <Ta%—7'b)2
(28)

where v and 7, are normalization constants, set to 15
degrees and 500 microseconds, respectively. As the metric is
normalized, the parameter € is simply set to 1. MINPTS is set
to 10 percent of the number of neighbors of the point that has
the largest number of neighbors.

Finally, the global estimates are calculated for each cluster
by averaging the local estimates of the points assigned to it.
The fact that each DOA estimate has an associated delay, is

a major advantage of our method, as it enables the separation
of clusters even if they have similar DOAs.

C. Practical Considerations

Avoiding Redundant Processing: The information captured
in R contains contributions from a rectangular region in
the time-frequency domain of size J; x Jy. Therefore, it is
expected that the results of part 1 of the algorithm would be
similar when applied to regions with a large overlap. To reduce
computation time, the regions for part 1 are selected with an
overlap of 87.5% in frequency.

Acceleration Using the FFT: Part 1 of the algorithm re-
quires the calculation of R(7) for a grid of values of 7. Note
that if (A7 - Af)"" € N, then the sequence

(R(AN)

is equal (up to scaling and appropriate zero-padding) to the
first J, terms of the inverse discrete Fourier transform (taken
entry wise) of the sequence

(w;R(f +JAH)) S

(29)

(30)

so R can be calculated efficiently for the grid of delays using
the FFT. A further reduction in the computation time can be
achieved using the following identity, obtained directly from
Eq. and from the fact that R is Hermitian:

R(r)=R(Af ' —7)" 31
Thus, it is sufficient to perform the FFT on only the upper-
triangular entries of R.

Periodicity of the Phase Aligned SCM: 1t is apparent from
Eq. that R(7) is periodic with respect to 7, with period
Af~1. This periodicity does not introduce ambiguity in the
delay estimation by the following reason. When the STFT
window size is 7', the frequency resolution of the STFT A f
satisfies Af < 1/T'. Therefore, reflections with delay 7 larger
than A f~! necessarily do not satisfy the MTF approximation
criteria, since 7 > 7. This analysis also shows that to
avoid unnecessary calculations, J- should be chosen such that
JAT < Af7L/2.

Selecting the Parameters of the Phase Alignment Trans-
form: The calculation of R requires the selection of three
parameters: .Jy, A7 and .J; (see section [V-AT). The number
of frequency bins J, should be chosen to be high enough such
that the temporal resolution (given by (AfJ¢)~!, see section
IV-C) is sufficient. For example, if JyAf = 2000Hz, then the
phase alignment transform can separate two reflections if their
delays are spaced by more than 0.5ms. However, J; cannot
be set arbitrarily high. First, the frequency independence of
steering vectors (see section is in practice limited to a
given band, depending on the geometry of the microphone
array. Second, some of our model assumptions may only be
valid for bands of limited width. For example, the linear phase
assumption in Eq. (3)) may, in practice, only hold within a local
frequency region.



Once Jy has been determined, a convenient way to set A7,
the delay estimation resolution, is:

!
~ MAf

where M is an integer that satisfies M > J. This choice guar-
antees that A7 < (J;Af)~!, and also that (A7 - Af)"" €N,
so the FFT can be used to calculate R.. Increasing M beyond
Jr would increase the resolution of delay estimation, however
it would also increase the computation time of the algorithm.

Finally, J., the number of grid points over 7, should be
chosen such that (J. — 1)Ar, the maximal detectable delay,
is sufficiently small relative to 7', the window length of the
STFT, such that the MTF criteria for Eq. () holds. From our
experience, (J, — 1)A7r = T'/10 is sufficient.

Maximizating Over the Sphere: Both Eq. (25) and the
OMP algorithm require maximizing functions of the form
f(Q) = |y(2)"x| over the sphere. Note that this is equivalent
to finding the maximum of a signal on the sphere whose
SFT is given by x. We use Newton’s method to perform
this maximization, with initialization obtained by sampling the
sphere with a nearly uniform grid of 900 directions [21]].

AT (32)

D. Relation To Other Methods

In this section we discuss some similarities between
PHALCOR and other methods in array signal processing.

MUSIC and Frequency Smoothing: When 7 = 0 and
w; = 1, R(r) is a frequency-smoothed SCM (as used
for example in [22]). Frequency smoothing is a common
procedure in source localization in the presence of reverber-
ation, as it can can decorrelate signals, which is necessary
for subspace methods such as MUSIC. Furthermore, R(0)
is positive semi-definite, and therefore its singular vectors
are also eigenvectors, so §(0) is the estimate obtained by
MUSIC if the signal subspace dimension is set to 1, and
p(0) is equivalent to the MUSIC spectrum magnitude at this
direction. While the frequency smoothing goal is to decorrelate
the sources, PHALCOR actually utilizes this correlation to
enhance specific reflections.

LI1-SVD: Another well known method for source localiza-
tion that can address correlated sources is L1-SVD [23]. It
is based on the observation that the first eigenvectors of the
SCM are linear combinations of steering vectors. The DOAs
are estimated by decomposing the eigenvectors of the SCM
into a sparse combination of steering vectors. This is similar
to our method, which decomposes a first left singular vector
of the phase aligned SCM to a sparse linear combination of
steering vectors. In general, the performance of sparse recov-
ery methods improves as the vectors are more sparse. While
in L1-SVD the sparsity is determined by the total number of
reflections, in PHALCOR the sparsity is determined by the
number of sources at a specific delay, which is significantly
lower. Furthermore, like MUSIC, in L1-SVD the number of
detectable sources is limited by the number of input channels
(N + 1)2 in our case). In PHALCOR, on the other hand, it
is possible to detect more reflections than input channels, as
each delay is processed independently.

Generalized Cross Correlation:  The relations of
PHALCOR to MUSIC and L1-SVD is related only to
DOA estimation; however PHALCOR is also related to
delay estimation methods that are based on generalized cross
correlation analysis [24]. It can be shown that the entries
of R(7) contain a generalized cross correlation between
each pair of input channels, at lag 7. Although similar, there
are some important distinctions between the two methods.
While cross correlation analysis is typically used to estimate
the delay between two signals that are observed directly,
PHALCOR aims to estimate the delay between multiple
signals that are observed indirectly - each input channel is
a linear combination of the delayed signals, given by the
unknown steering matrix, which is estimated as well.

VI. SIMULATION STUDY

In this section, a simulation study is presented, demonstrat-
ing the performance of PHALCOR. First, a detailed analysis
of the different steps of the algorithm is presented on a
specific test case. Next, a Monte Carlo analysis is presented,
demonstrating the robustness of PHALCOR.

A. Simulation Setup

The setup of the simulations, common to both the case study
and the Monte Carlo study, is as follows. An acoustic scene
that consists of a speaker and a rigid spherical microphone
array in a shoe box room, was simulated using the image
method [16]. The speech signal is a 5 seconds sample, drawn
randomly from the TSP Speech Database [25]. The array
has 32 microphones, and a radius of 4.2 cm (similar to the
Eigenmike [26])), facilitating plane wave decomposition with
spherical harmonics order N = 4. The microphone signals
were sampled at 48 KHz. Sensor noise was added, such that
the direct sound to noise ratio is 30dB. The positions of
the speaker and the array were chosen at random inside the
room, with the restriction that the distance between each other,
and to the room boundaries is no less than 1 meter. Three
different rooms sizes are considered. Their dimensions and
several acoustic parameters, are presented in table

B. Methodology

The signals recorded by the microphones were used to
compute anm(f) as detailed in section An STFT was
applied to the PWAD coefficients signals using a Hanning
window of 8192 samples, and an overlap of 75%. A frequency
range of [500,5000] Hz was chosen for the analysis. The
number of time bins used for averaging, .J;, was set to 6, while
the number of frequency bins used for the phase alignment
transform, Jp, was set such that JyAf = 2000 Hz. The
delay resolution A7 was set to 83.33 microseconds (equivalent
to setting M = 2048 in Eq. (32)), while J, was chosen
such that the maximal delay is 20 ms. With these parameters,
PHALCOR, detailed in section[V] was applied to the simulated
data.

The MUSIC algorithm [22] was applied as a baseline
reference method for DOA estimation, by selecting the peaks



7. Since p(7) measures the similarity between v, a first right
singular vector of R(7), and a steering vector (see Eq. ), it
is high for values of 7 that are close to a reflection’s delay, indi-
cated on the plot using red vertical lines. There are also values
of 7 that are not close to a reflection’s delay, for which p(7) is
high. These correspond to delays between two reflections (as
opposed to delays between a reflection and the direct sound).
For example, the peak near 7 = 2ms, corresponds to the
delay between the second and third reflections, whose delays
are about 3ms and 5ms, respectively. As discussed in section
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Fig. 2. (a) p as function of T (Eq. ). (b) The angle between ' (7)
(Eq. @)) and true direction of the direct sound, as a function of 7. The red
vertical lines correspond to the true delays of the reflections.

in the MUSIC spectrum ||y (€2)"U||, where U is matrix whose
columns are orthonormal eigenvectors that correspond to the L
largest eigenvalues of the time and frequency smoothed SCM.
The time and frequency smoothing parameters are the same as
in PHALCOR. The dimension of the signal subspace L was
determined using the SORTE method [27]. To reduce false
positives, peaks for which the MUSIC magnitude height is
lower than 0.75 are discarded. The local estimates are clustered
using DBSCAN, to obtain global estimates. The delays of
the detected reflections are estimated using the following
method, which is similar to the one proposed in [5f. First,
each reflection signal is estimated by solving Eq. (6) for s in
the least squares sense. Then, the delay of the k’th reflections
is estimated by selecting the maximum of the cross correlation
values between s and sg. Note that in contrast to PHALCOR,
the delays are estimated only after the clustering.

For both PHALCOR and the baseline method, we consider
a detected reflection as a true positive if its delay and DOA
match simultaneously the delay and DOA of a true reflection.
The matching tolerance was chosen to be 500 s for the delay,
and 15 degrees for the DOA. The probability of detection
(PD) at a given maximal delay ¢ is defined as the fraction
of true positive detections with delay less than ¢, out of the
total expected number of reflections with delay smaller than
t. The false positive rate (FPR) at a given maximal delay ¢ is
defined as the fraction of false positive detections with delay
less than ¢, out of the total number of detections with delay
smaller than ¢.

C. Results of a Case Study

The test case presented in this section is of a female speaker
in the medium sized room. There are K = 31 reflections with
a delay less than 20 ms in this case.

Figures [2a] and [2b] illustrate the delay detection routine, as
detailed in section @ Figure shows p(7) as a function of

such cases may be identified by testing / (Q’ (1), QO),

the angle between the DOA of the steering vector that is most
similar_to v, and the DOA of the direct sound. As shown in
figure V4 SQ’ (), QOC? is small for values of T which are
close to a reflection’s delay, and high otherwise. Therefore,
false detections such as 7 = 2 ms, will be discarded during
the first step of the second part of the algorithm.

Figure [3] illustrates the process of DOA estimation, as
detailed in section [V-A3] Each plot shows a different function
on the sphere, which is projected onto the 2D page using the
Hammer projection. In the top row, the function |y (Q2)v| is
shown, where each column corresponds to a different value of
7. Recall that when 7 equals a reflection’s delay, we expect
the direction that maximizes the response to be that of the
direct sound. Indeed, as 7 varies across columns, the location
of the peak remains, and is equal to 2y, the DOA of the direct
sound.

In the middle row, the function |y(Q)u,| is shown. It is
similar to the top row, except that a first left singular vector is
used instead of a right one. Recall that when 7 is a reflection’s
delay, u, is approximately equal to a linear combination of
the steering vectors of reflections with delays of approximately
7. When the DOAs are sufficiently separated, they can be
identified as peaks in |y (€2)u,|. For 7, and 7, only one such
peak is apparent, and its location matches the DOA of the
corresponding reflection. When 7 = 74, it is apparent that
there are two dominant peaks, at directions €24 and 5. This
is due to the fact that the 4th and 5th reflections have similar
delays. Similarly, since the 8th and 9th reflections have similar
delays, when 7 = 75 the two peaks correspond to {2g and (9.

Figure [3] demonstrates the effectiveness of PHALCOR in
separating reflections from the direct sound, as well as reflec-
tions with different delays. This is in contrast to the MUSIC
spectrum (shon the same figure), which shows only a few
peaks, which are much less separable; as a result, fewer
reflections are potentially identified.

Figures [ and [3] present the local estimates obtained with
PHALCOR (as detailed in section and the baseline
methods (as detailed in section [VI-B), respectively. It is
apparent that, compared to the baseline, PHALCOR is able
to detect significantly more reflections. PHALCOR detected
successfully 29 reflections, while the MUSIC based method
could only detect 8 (not including the direct sound). Further-
more, figures[d]and [3illustrate the advantage of simultaneously
estimating DOA and delay for cluster analysis.



TABLE II
ROOM PARAMETERS USED IN THE SIMULATION STUDY
. . Reverberation Critical Average Distance Between Average Number of Reflections
Room Dimensions (m) . . .

Time (s) Distance (m) Source and Array (m) With Delay Smaller Than 20 ms

Small 5x4x2.5 0.6 0.5 1.7 52

Medium 7Xx5x%x3 0.8 0.7 2.5 31

Large 10 x 7 x 3.5 1.1 1 3.8 21

T =T
T =T

MUSIC

0 0.2

T = T8
T = T8

0.8 1

T = T4
T =T4
0.4 0.6

Fig. 3. Top row: |y(Q)HvT| as a function of €, for different values of 7. Middle row: |y(Q)HuT| as a function of €, for different values of 7. Bottom

figure: MUSIC spectrum. The red markers correspond to ground truth DOAs Qo,

used to project the sphere onto the plane.
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Fig. 4. Local DOA and delay estimates obtained by PHALCOR, colored by
assigned cluster number. The 6 and ¢ axes are for elevation and azimuth,
respectively. The red circles correspond to true DOAs and delays.
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Fig. 5. Local DOA estimates obtained by MUSIC, colored by assigned cluster
number. The red circles correspond to Qo, . .., 231. The Hammer projection
is used to project the sphere onto the plane.

D. Monte Carlo Analysis

The simulation described above is repeated 50 times for
each of the 3 rooms, varying the speakers, their location,
and the microphone array location, as detailed in section

I-A] Figure [6] presents PD and FPR, as defined in section

-B| for different values of ¢, the maximum delay of the
identified reflections. Compared with the baseline method,
the performance of PHALCOR is significantly better, both in
terms of probability of detection and false positive rates, by
a factor ranging from 3 to 20. As the delay of a reflection
increases, the probability of detection decreases. This is since
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Fig. 6. PD and FPR, as defined in section [VI-B] of PHALCOR and the
baseline method

TABLE III
AVERAGE ESTIMATION ERRORS FOR THE ENTIRE MONTE CARLO
SIMULATION
Method ‘ DOA Error | Delay Error Average Number Of
RMS (deg) RMS (us) True Positive Detections
PHALCOR 4.3 k4 24.8
Baseline ‘ 6.5 ‘ 43 ‘ 3.8

later reflections usually have lower amplitudes. Furthermore,
the reflection density is higher as the delay increases, making
it more difficult to separate the reflections spatially.

The root mean square (RMS) for DOA and delay estimation
errors for each method are computed and averaged for all the
estimates in this Monte Carlo simulation, and are presented in
table The RMS is calculated excluding the direct sound.
The table shows that the performance in terms of estimation
error is comparable between the two methods, but note that the
errors are calculated only on true positive detections, which
are considerably more frequent in PHALCOR, as is evident
from figure [6] and the last column of table

VII. CONCLUSIONS

In this work, PHALCOR, a novel method method for
estimating the DOA and delay of early reflections, is proposed.
The method is based on a phase alignment transform of the
spatial correlation matrices, which enables the detection of
reflections with similar DOAs. A simulation study showed
that the proposed method is able to detect and localize a
large number of reflections compared to existing methods. The
estimation of reflection amplitudes and the validation of the
method performance on measured data are proposed for future
research.
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