
Automated Hot Text and Huge Pages: An Easy-to-adopt

Solution Towards High Performing Services

Zhenyun Zhuang, Mark Santaniello, Shumin Zhao, Bikash Sharma, Rajit Kambo

Facebook, Inc., 1 Hacker Way, Menlo Park, California 94025

{zhenyun, marksan, szhao, bsharma, rkambo}@fb.com

Abstract. Performance optimizations of large scale services can lead to signifi-

cant wins on service efficiency and performance. CPU resource is one of the most

common performance bottlenecks, hence improving CPU performance has been

the focus of many performance optimization efforts. In particular, reducing iTLB

(instruction TLB) miss rates can greatly improve CPU performance and speed up

service running.

At Facebook, we have achieved CPU reduction by applying a solution that firstly

identifies hot-text of the (software) binary and then places the binary on huge

pages (i.e., 2MB+ memory pages). The solution is wrapped into an automated

framework, enabling service owners to effortlessly adopt it. Our framework has

been applied to many services at Facebook, and this paper shares our experiences

and findings.

Keywords: Huge pages, Hot-text, Performance, iTLB miss

1 Introduction

Large Internet companies like Facebook feature large amount of back-end servers which

serve billions of users that have various types activities (e.g., messaging, video stream-

ing). These servers run many types of services [1]. Given the large scale of the Facebook

computation/storage infrastructure, it is important to ensure our services are running ef-

ficiently.

Many types of performance improvement works have been done at various layers

(e.g., OS, compiler, application/code level, storage level) targeting different services.

At Facebook, we have been treating performance improvement works seriously (e.g.,

[2, 3]) by various types of optimizations. Over the years, we have achieved significant

amount of efficiencies and better service performance across the fleet. To gain concrete

understanding of the cost-saving scale, consider a service that runs on 100K servers.

Assuming the service is bottlenecked by CPU usage, and a performance improvement

effort that saves 1% on server CPU usage will result in about 1K servers being saved.

Performance improvement of services requires software profiling to identify the top

performance bottlenecks, root-causing the fundamental issues, proposing solutions to

address the issues, implementing the solutions, and testing to verify the effectiveness

of the solutions. We have been continuously profiling thousands of services across our

fleet for various types of performance inefficiencies. We found that CPU resource is one



II

of the most common performance bottlenecks, hence improving CPU performance has

been the focus in many performance efforts.

One type of service inefficiency is high iTLB (instruction Translation Look-aside

Buffer) miss rate, which causes CPU to run ineffectively1. The penalty of iTLB misses

is significant as the access latency difference between hit and miss can be 10-100 times

of difference. A hit only takes 1 clock cycle, while a miss takes 10-100 clock cycles.

To understand more about such latency penalty, let’s assume hit and miss take 1 and 60

cycles, respectively. Thus a 1% miss rate will result in average access latency being 159

cycles, or 59% higher than not having any misses (i.e., 1 cycle).

For a service that experiencing high iTLB miss rate, reducing iTLB miss rates can

greatly improve CPU performance and speed up service running time. Various opti-

mization approaches that impprove the software binaries can be applied to reduce iTLB

misses. Overall there are three types of optimizations based on the different stages of

compiling the source code (i.e., compile/link/post-link time). Examples include opti-

mizing compiler options to reorder functions so that hot functions are located together,

or using FDO (Feedback-Driven Optimization) [4] to reduce the size of code regions. In

addition to such compiler optimizations that help reduce iTLB miss rate, we also place

the binary code on huge pages to further speed up the running services.

In this work, we combine both types of optimizations (i.e., identifying hot-text to

co-locate frequently accessed functions and deploying the optimized binary on huge

pages) to reduce iTLB miss rates. More importantly, we design and implement an au-

tomated work flow to make the optimizations transparent and maintenance-free for ser-

vice owners. As a result, various services can benefit from this solution with minimum

efforts, practically rendering this easy-to-adopt solution as a “free lunch optimization”

for service owners.

Note that though the hot-text optimization mostly applies to services written in stat-

ically compiled languages (e.g., C/CPP), huge page optimization can apply to all ser-

vices. Given the fact that many of largest scale backend infrastructures in the world

(e.g., Facebook, Google, Microsoft) are written in C/CPP, thanks to C/C++’s high effi-

ciency, our proposed solution can be applied to many services running on these infras-

tructures. Furthermore, for dynamically compiled languages (e.g., Java), the insights

gained in this work can also help improve their compiling performance (e.g., in JVM).

This work shares our design, efficiency gains and some issues found. In particular,

we focus on the key questions that could be asked by potential adopters including:

– What is the performance issue this solution addresses? For instance, why is high

iTLB miss rate bad?

– What is the design of the solution (i.e., how does it work internally)?

– How much code change is needed?

– How much maintenance overhead is involved?

– What is the downside of this solution?

– How to verify the optimization is applied to my service?

The following writing is organized as follows. Section 2 provides relevant back-

ground knowledge. Section 3 walks through the high level design, followed by detailed

1 Please refer to Section 2 for detailed explanations of iTLB misses.



III

work flow of the solution in Section 4. Section 5 presents performance results of apply-

ing this solution. Some related issues are discussed in Section 6, and related works are

presented in Section 7. Finally Section 8 concludes the paper.

2 Background

2.1 iTLB (Instruction TLB) misses

In x86 computing architectures, memory mappings between virtual and physical mem-

ory are facilitated by a memory-based page table. For fast virtual-to-physical transla-

tions, recently-used portions of the page table are cached in TLB (translation look-aside

buffers). There are two types of TLBs: data and instructions, both are of limited sizes.

Since memory access latency is much higher than TLB access latency, address trans-

lations that hit TLBs are much faster than missing TLBs. Invariably, the more transla-

tion requests that miss the TLBs and have to fall back to page tables (aka, ‘page walks’),

the slower the instruction executions. iTLB miss rate is a metric to estimate the per-

formance penalty of page walks induced on iTLB (instruction TLB) misses.When the

iTLB miss rate is high, a significant proportion of cycles are spent handling the misses,

which results in slower execution of the instructions, hence sub-optimal services.

2.2 Huge pages

Today’s computing architecture typically support larger page sizes (2MB and 1GB on

x86 64, both referred to as huge pages) in addition to the traditional 4KB pages size.

Huge pages reduce number of TLB entries needed to cover the working set of the binary,

leading to smaller page tables and reducing the cost of page table walks.

There are two ways of obtaining huge pages on Linux: (1) using THP (transparent

huge pages) [5] and (2) reserving huge pages and mounting them as hugetlbfs in the

application. THP requires minimum changes to the application, however the availability

of huge pages is not guaranteed. To reserve huge pages, applying configurations such

as hugepagesz=2MB hugepages=64 (i.e., reserving 64 huge pages of 2MB each) when

booting kernel works.

3 Design

3.1 Overview

When running a service on servers, the corresponding binary needs to be loaded into

memory. The binary consists of a set of functions, and they collectively reside in the

text segment of the binary and are typically loaded during execution using 4K pages.

Each page attempts to occupy an iTLB entry for the virtual-to-physical page transla-

tion. Since commodity servers typically have limited number of iTLB entries (e.g., 128

entries for 4KB pages in Intel HasWell architecture [6]), iTLB misses will occur if the

text segment is larger than the iTLB entries can cover (e.g., 128*4KB=512KB). iTLB

misses are counted towards CPU time and are effectively wasted CPU time.



IV

iTLB misses can be reduced by identifying and aggregating frequently accessed in-

structions into hot-text in order to increase spatial locality. By packing hot functions into

hot text, instruction fetching and prefetching can be more effective and faster, hence a

high-performing server and service. Based on our studies with many services, at Face-

book more than 90% of the code is cold and the remaining is hot. By separating hot from

cold instructions, expensive micro-architectural resources (iTLB and caches) can more

efficiently deal with the hot segment of a binary, resulting in performance improvement.

This benefit can be further enhanced by putting hot-text on huge pages for suffi-

ciently large binary (i.e., larger than the regular page size of 4KB * iTLB entries). By

using a single TLB entry, a single 2MB huge page covers 512 times as much code as a

standard 4K page. More importantly, CPU architectures typically feature some number

of TLB entries for huge pages, and they will sit there idle if no huge pages are used. By

employing huge pages, those TLB entries can be fully utilized.

3.2 Design elements and rationales

The solution consists of three key elements: (a) hot-text optimization, (b) huge page

placement, and (3) automated and decoupled pipeline.

The hot-text optimization consists of the following steps. First, identifying hot in-

structions by profiling the running binary. Linux perf tool is used for this purpose. We

initially used stack traces, but later switched to LBRs [7] for better data quality and less

data footprint. Second, sorting the profiled functions based on access frequencies. We

use a tool called HFSort [8,9] to create an optimized order for the hot functions. Finally,

a linker script will optimize the function layout in the binary based on the access orders.

The result is an optimized binary.

Once the optimized binary with hot-text is obtained, the hot-text region can be fur-

ther placed on huge pages. We designed an almost-transparent approach which needs

little code change for service owners. Specifically, we pre-define a function that remaps

the hot-text to huge pages, and all a service owner has to to do is calling a pre-defined

function early in the main() function

Note that isolating hot-text and placing on huge pages are complementary optimiza-

tions, and they can work independently; but combining them achieves best optimization

results.

The traditional approach of applying hot-text optimization and huge page placement

requires multiple steps, mixes source code and profiled data during linking phase, and

involves manual profiling and refreshing, which prevents the solution from being widely

deployed. We built a pipeline to automate the entire process, practically making this

solution an easy-to-adopt and maintenance-free solution for all applicable services.

The pipeline also decouples the service’s profile data from source code, hence

allowing smooth and frequent profiling update to accommodate code/usage changes.

Specifically, the profiled data are stored in separate storage that is different from source

code repository. The advantages of the decoupling is each profiling update becomes

part of the linearized code commit history, just like any other source code change. The

profiling updates can be treated as source code, enabling easy check-in, review and

reverting. Moreover, the profiled data files are stored and retrieved using file handles,



V

hence we don’t actually pay the cost of storing these huge almost-not-human-readable

files in the source code repository.

In addition to helping reducing iTLB misses, the solution can also help reduc-

ing iCache misses. Computing instructions are fetched from memory and executed by

CPUs. To expedite the instruction accesses, smaller and faster caches (iCache) are used

to hold the instructions. iCache misses can occur when the binary working set is big-

ger than the iCache size. Caches have multiple levels, and the lowest level iCache is

often times much smaller than the binary working set. iCache misses delay the CPU

execution due to longer memory access time.

4 Detailed work flow

We now present the detailed steps and components of this solution. Note that neither

isolating hot-text nor using huge pages is an invention, and both of them have been

tried in several scenarios. However the naive adoption of the solution used to involve

multiple manual and tedious steps (e.g., profiling, linking, regularly refreshing the pro-

files), hence few services have benefited from the solution. To address this issue, we

designed an automated framework and data pipelines to remove the manual involve-

ment by wrapping, aggregating and automating each steps. As a result, the solution

suite becomes maintenance free and requires little code change.

4.1 Diagram and components

The steps and components of this framework are shown in Figure 1. Largely it consists

of three components of profiling, linking and loading.

– Profiling The profiling component is shown on the top of the diagram. A data-

gathering job runs weekly to profile the running service 2. The job is using our

Dataswarm framework [10], a data storage and processing solution developed and

used by Facebook. The job profiles running information of the service (e.g., hot

functions), and the profiling is carefully controlled to have very light overhead.

Profiled data is then sent to a permanent storage called Everstore [11], a disk based

storage service.

– Linking When building the service package, the linker script retrieves the profiled

hot functions from Everstore and reorders functions in the binary based on the

profiles.

– Loading When loading the service binary, OS makes best efforts to put hot-text on

huge pages. If no huge pages available, then put on regular pages.

4.2 Code changes

For a new service that would like to apply this optimization, only three places of small

changes (boilerplate code) are needed: (a) Dataswarm pipeline creation; (b) Source code

(cpp files) change; and (c) Build configuration change.

2 We observed that most services are relatively stable with regard to hot functions, hence weekly

profiling suffices.



VI

Fig. 1. Diagram of hot-text and huge pages

Storage pipeline creation On top of our data storage framework of Dataswarm, a data

processing job regularly refreshes the profiled hot functions profiles to reflect updates

on the service: code changes and usage pattern changes. The data pipeline kicks off a

Dataswarm job weekly for each service. When the job kicks off, it profiles the specified

service and generates a file containing the hot functions. The hot function file is stored

to Everstore. The file is uniquely identified by a file handle and content checksum.

The Dataswarm job also automatically creates a code diff (i.e., code checkin) which

updates a meta file containing the newly generated hot-function file handle and check-

sum, it then automatically lands the diff (i.e., updating the meta file) to the services’

source code directory.

Source code change The framework only requires two lines of code change to source

code’s main cpp file. Specifically, the first line of code change is to include a header file

that defines the function that is responsible for putting the hot functions to huge pages

if possible, and it achieves this by copying the text segment of the binary and using

mmap() to map the text segment to huge pages.

The second line of code change is to call hugify self() in main() function. This func-

tion needs to be called in the beginning of the main() function for the best result.



VII

(a) Hot-text region: starting at 0x600000

(b) Hot-text region: ending at 0xd1a113 (total size: 7.4 MB)

Fig. 2. Verifying the existence of hot-text

Hot-text placed on huge pages (AnonHugePages: 8192KB, or 4 huge pages)

Fig. 3. Verifying the hot-text is deployed on huge pages (host name anonymized)

Build configuration change The build configuration change allows the profiled data to

be retrieved and used during linking. Specifically, it adds a few lines to build TARGETS

file. It retrieves the meta file that contains the hot functions information of the particular

service from Everstore. The retrieval is via HTTP, which is supported by Everstore and

Buck [12] using remote f ile call. To ensure correctness, the meta file is checked by

SHA1 hash.

4.3 Verifying the optimization is in place

To make sure the optimization is in place, two things need to be verified: hot-text is in

the binary, and hot-text is placed on huge pages. In the following, we demonstrate the

verification steps under Linux.

Hot-text verification If a binary has the hot-text extracted, the binary should have

symbols that indicate the starting/ending address of the hot-text. Specifically, the hot-



VIII

text region starts with hot start and ends with hot end. nm utility [13] can list the

symbols from the binary, and by examining the output of the symbols (nm -S –numeric-

sort /proc/pid/exe, where pid is the process id of the running binary), we can verify the

existence of hot-text.

Let’s examine an example. As it shows in Figure 2 the hot-text region starts from

0x600000 and ends at 0xd1a113. The total size is 7446803 bytes, or about 7MB.

Huge pages verification To verify the hot-text is stored on huge pages, we can

examine the running process by checking the smaps file, e.g. grep -A 20 “600000-”

/proc/pid/smaps. As shown in Figure 3, the AnonHugePages allocated is 8192 KB, or

about 4 huge pages (2MB each), indicating the hot-text is loaded to huge pages. In

scenarios where hot-text is not put on huge pages, it will show AnonHugePages: 0 KB.

5 Performance results

5.1 Experiences with many services

We applied the hot text and huge page solution to many services and gained deep under-

standing of the improvement degrees on various types of performance metrics. Based

on our experiences, typically the most immediate performance improvement is reduced

iTLB miss rate, it can also help on other metrics.

– iTLB miss rate. This is the most obvious benefit, we consistently see up to 50%

iTLB cache miss drop for almost all the services that adopted this solution.

– CPU usage. CPU usage typically drops by 5% to 10% across the services we

worked on.

– Application throughput. Applications typically enjoys higher throughput, thanks

to the reduced cpu usage.

– Application query latency. The query latency mostly will drop due to reduced iTLB

cache miss and faster execution.

Note that depending on services and workload characteristics, not all of these met-

rics will improve. In addition, different services see improvement on different set of

performance metrics, and the degrees of improvement vary.

5.2 An example service

To understand more about the performance metrics and the extent of improvement, we

choose a service to elaborate on the detailed results. The particular service is an online

one which directly serves the users, hence both application throughput and latencies are

important. Moreover, the service fleet’s footprint is significant with many servers, and

it is desired to reduce CPU usage such that a single host can serve more users and the

service fleet can be shrinked.

We will examine both application level and server system level metrics. For appli-

cation level metrics, we consider both query/call latencies and application throughput

(i.e., queries per second). We also consider multiple percentiles of latencies. Overall we

observe 15% throughput improvement and 20% of latency reduction.



IX

For system level metrics, we consider host cpu usage (total, user and kernel usages)

and iTLB miss rates. The iTLB miss rate is almost halved, and cpu usage is 5% lower.

Across the 50+ services we have worked on, applying this solution typically reduces

cpu usage by 5% to 10%. We also estimated that about half of such cpu reduction gain

comes from hot-text, while the other half comes from huge page.

Server system performance The iTLB miss rate is shown in Figure 4(a). Before ap-

plying the solution, the iTLB miss rate is up to 800 iTLB misses per million instructions

during peaks, which is very severe. After the optimization is in place, iTLB miss rate

almost drops by half. Specifically, during peaks, the highest iTLB miss rate is about 425

misses per million instructions, or a 49% drop.

As a result of the dropped iTLB miss rate, the CPU usage drops by 5% (i.e., from

32% to 30.5% at their peaks), as shown in Figure 4(b). The user level cpu drops by

15%, while kernel level cpu increases by about 7%, as shown in Figures 5(a) and (b),

respectively.

Application level performance Application level metrics are shown in Figures 5(c)

and 6. The blue curve is before optimization (i.e., data sets of DS1/DS3/F1), and the

yellow curve is after optimization (i.e., data sets of DS2/DS4/F2). P50 of application

query latencies drops by up to 25%, P90 drops by up to 10%, and P99 drops by up to

60%.

The application throughput (qps)increases by up to 15% (i.e., peak throughput in-

creases from 3.6M qps to 4.1M qps). It is very delightful to see both throughput and

latency improvements at application level.

6 Discussions

6.1 Hot-texts not being placed on huge pages

During our performance optimizations with some services, we happened to notice that

for some services that already incorporated the solution we propose in this paper, some

hosts do not place hot-text on huge pages. We digged into that issue and found it is due

to the way the huge pages are handled.

Currently the huge pages are not pre-allocated during OS starts, instead, it is a best-

effort. When the binary loads, OS will try to find continuous memory big enough for a

huge page to place hot-text. If the memory is sufficiently fragmented and no huge pages

can be found, then it will fall back to use regular pages.

To what degree does this issue occur depends on many factors that affect memory

fragmentation, including system up-time and memory pressure level. For instance, we

have found Haswell hosts are more likely to have such issue than Broadwell hosts,

thanks to the former’s higher load and memory pressure.

In addition to reserving huge pages, another solution is to defrag memory before

loading the service binary (e.g., /roc/sys/vm/drop caches and /proc/sys/vm/compact memory).

Memory defragmentation can compact fragmented pages, hence resulting in higher

chances of being able to find huge pages when loading the binary.



X

6.2 Hot function file retrieval failure

Building the binary package with this optimization needs to retrieve the hot function file

from Everstore. Everstore is very reliable based on our experience, and only 1 failure is

encountered when loading hot functions in a year. But in the worst scenario where if it

fails to retrieve the hot function file, the binary build will fail.

6.3 Downside of this approach

There is very little downside (e.g., very little performance overhead) about using this

approach, thanks to the automatic profiling and diff landing. The major downside is

longer binary-building time.

Another concern about using huge pages is the memory waste (i.e., up to 1 page),

depending on the way they are used. Reserved huge pages are always paged into mem-

ory, and the recommendation is to reserve just-enough pages. THP, on the other hand, is

free from this concern. The possible memory waste is when a huge page is not entirely

used. When the number of huge pages used is small compared to the total available

memory, this concern might be negligible. Based on our experiences, most services

only use a few 2MB huge pages, which is trivial compared to the total available mem-

ory (e.g., hundreds of GBs).

7 Related work

Many works optimize the performance of the binary using various types of techniques

during different phases of compiling, linking and post-linking of the binaries.

During compiling time, instrumentation-based schemes have been employed by

GCC and Microsoft C/C++. In GCC world, such optimization is called FDO (Feedback-

Driven Optimization) [4], while Microsoft refers to it as PGO (Profile-Guided Opti-

mization) [4]. These schemes also effectively re-compile hot code for speed and cold

code for size. As a result, the overall code size is typically reduced by FDO/PGO. GCC’s

AutoFDO (Automatic Feedback Directed Optimizer, [14]) is another feature that uses

run-time feedback mechanism to help compiler, enabling wider range of optimizations.

Specifically, LLVM supports AutoFDO framework that easily converts linux perf out-

put into LLVM consumable profile file.

During linking time, techniques such as the hot-text optimization described in this

paper [9] use a linker script and operates on a function-by-function basis. Work [9]

elaborates on some of the internal mechanisms to make this optimization happen, and

we further build a framework to automate the entire process with an end-to-end pipeline.

Safe ICF (Identical Code Folding) [15] takes another approach of detecting functions

that contain redundancies and folding/merging functions into a single copy.

There are also post-link optimizers. BOLT (Binary Optimization and Layout Tool)

[16, 17] is a post-link optimizer developed to improve running performance of non-

trivial binaries. It operates on a finer basic block granularity and achieves the goal by

optimizing application’s code layout based on execution profile gathered by sampling

profilers (e.g., Linux perf ). Specifically for Intel, Ispike [18] is another post-link opti-

mizer.



XI

At system level (i.e., Operating system and hardware), countless works have demon-

strated the potentials and shared the experiences of speeding up software running on

various types of OS and hardware. Work in [19] evaluates the accuracy of multiple

event-based sampling techniques and quantifies the impact of the improvements claimed

by many other techniques.

Moving up to application level, even more places can be optimized for better per-

formance, thanks to the heterogeneity of different types of applications and services. At

Facebook, we have designed and improved many services and products [11, 20]. As an

example, RocksDB [21] a persistent key-value store developed by Facebook, has been

continuously optimized for many different scenarios [2, 22].

8 Conclusion

Facebook, having one of the world’s biggest computing infrastructures, treats perfor-

mance optimizations seriously. During the course of various types of performance im-

provement efforts, we have accumulated techniques, tools and experiences to speed up

our services. One of these approaches is an automated framework to incorporate both

hot-text and huge pages and enable service owners to adopt this optimization with min-

imum effort. The solution identifies hot-text of the binary and places the binary on huge

pages. The solution is further wrapped into an automated framework, enabling service

owners to effortlessly adopt it. The framework has been applied to dozens of our ser-

vices, proved effective and has significantly improved our service efficiencies.

9 Acknowledgements

The solution presented in this paper involves many peoples’ efforts, which include new

services or feature enhancements of existing services. In particular, we thank Guil-

herme Ottoni and Bert Maher for working on HFSort, Mark Williams for implementing

hugify self(), Denis Sheahan and Pallab Bhattacharya for substantiating a generic li-

brary, and Mirek Klimos for the support that allows automated refreshing of profiling

data.

References

1. G. J. Chen, J. L. Wiener, S. Iyer, A. Jaiswal, R. Lei, N. Simha, W. Wang, K. Wilfong,

T. Williamson, and S. Yilmaz, “Realtime data processing at facebook,” in Proceedings of

the 2016 International Conference on Management of Data, ser. SIGMOD ’16, New York,

NY, USA, 2016.

2. S. Dong, M. Callaghan, L. Galanis, D. Borthakur, T. Savor, and M. Strum, “Optimizing space

amplification in rocksdb,” in Proceedings of the 8th Biennial Conference on Innovative Data

Systems Research (CIDR ‘17), Chaminade, California, USA, 2017.

3. M. Annamalai, K. Ravichandran, H. Srinivas, I. Zinkovsky, L. Pan, T. Savor, D. Nagle, and

M. Stumm, “Sharding the shards: Managing datastore locality at scale with akkio,” in Pro-

ceedings of the 12th USENIX Conference on Operating Systems Design and Implementation,

ser. OSDI’18, Berkeley, CA, USA, 2018.



XII

4. B. Wicht, R. A. Vitillo, D. Chen, and D. Levinthal, “Hardware counted

profile-guided optimization,” CoRR, vol. abs/1411.6361, 2014. [Online]. Available:

http://arxiv.org/abs/1411.6361

5. Transparent Hugepage Support, https://www.kernel.org/doc/Documentation/vm/transhuge.txt.

6. Intel HasWell Architecture, https://ark.intel.com/content/www/us/en/ark/products/codename/42174/haswell.html.

7. Advanced usage of last branch records, https://lwn.net/Articles/680996/.

8. HFSort, https://github.com/facebook/hhvm/tree/master/hphp/tools/hfsort.

9. G. Ottoni and B. Maher, “Optimizing function placement for large-scale data-center appli-

cations,” in Proceedings of the 2017 International Symposium on Code Generation and Op-

timization, ser. CGO ’17, Piscataway, NJ, USA, 2017.

10. Data pipelines at Facebook, https://www.meetup.com/DataCouncil-AI-NewYorkCity-Data-

Engineering-Science/events/189614862/.

11. H. Barrigas, D. Barrigas, M. Barata, P. Furtado, and J. Bernardino, “Overview of facebook

scalable architecture,” in Proceedings of the International Conference on Information Sys-

tems and Design of Communication, ser. ISDOC ’14, 2014.

12. Buck: A high-performance build tool, https://buckbuild.com/.

13. Nm utility, https://sourceware.org/binutils/docs/binutils/nm.html.

14. D. Chen, D. X. Li, and T. Moseley, “Autofdo: Automatic feedback-directed optimization for

warehouse-scale applications,” in Proceedings of the 2016 International Symposium on Code

Generation and Optimization, ser. CGO ’16, New York, NY, USA, 2016.

15. S. Tallam, C. Coutant, I. L. Taylor, X. D. Li, and C. Demetriou, “Safe icf: Pointer safe and

unwinding aware identical code folding in gold,” in GCC Developers Summit, 2010.

16. M. Panchenko, R. Auler, B. Nell, and G. Ottoni, “Bolt: A practical binary optimizer for data

centers and beyond,” in Proceedings of the 2019 IEEE/ACM International Symposium on

Code Generation and Optimization, ser. CGO 2019. Piscataway, NJ, USA: IEEE Press,

2019, pp. 2–14.

17. Binary Optimization and Layout Tool, https://github.com/facebookincubator/BOLT.

18. C.-K. Luk, R. Muth, H. Patil, R. Cohn, and G. Lowney, “Ispike: A post-link optimizer for the

intel itanium architecture,” in Proceedings of the International Symposium on Code Gener-

ation and Optimization: Feedback-directed and Runtime Optimization, ser. CGO ’04, Wash-

ington, DC, USA, 2004.

19. A. Nowak, A. Yasin, A. Mendelson, and W. Zwaenepoel, “Establishing a base of trust with

performance counters for enterprise workloads,” in Proceedings of the 2015 USENIX Con-

ference on Usenix Annual Technical Conference, ser. USENIX ATC ’15, Berkeley, CA, USA,

2015, pp. 541–548.

20. “Scaling server software at facebook,” in Applicative 2016, ser. Applicative 2016, 2016,

speaker-Watson, Dave.

21. RocksDB: A persistent key-value store, https://rocksdb.org/.

22. K. Ouaknine, O. Agra, and Z. Guz, “Optimization of rocksdb for redis on flash,” in Proceed-

ings of the International Conference on Compute and Data Analysis, ser. ICCDA ’17, New

York, NY, USA, 2017.



XIII

(a) iTLB miss rate (per million instructions)

(b) host cpu usage (%)

Fig. 4. System level performance (iTLB miss rates and host cpu usage)



XIV

(a) User cpu usage

(b) Kernel cpu usage

(c) Throughput: Qps (Queries per second)

Fig. 5. System (User/kernel CPU) and application level performance (Throughput)



XV

(a) P50 query latency improvement (ms)

(b) P90 query latency improvement (ms)

(c) P99 query latency improvement (ms)

Fig. 6. Application level performance (query latency)


