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ABSTRACT
We introduce PyText1 – a deep learning based NLP modeling framework built on PyTorch. PyText addresses the
often-conflicting requirements of enabling rapid experimentation and of serving models at scale. It achieves this by
providing simple and extensible interfaces for model components, and by using PyTorch’s capabilities of exporting
models for inference via the optimized Caffe2 execution engine. We report our own experience of migrating
experimentation and production workflows to PyText, which enabled us to iterate faster on novel modeling ideas
and then seamlessly ship them at industrial scale.

1 INTRODUCTION

When building a machine learning system, especially one
based on neural networks, there is usually a trade-off be-
tween ease of experimentation and deployment readiness,
often with conflicting requirements. For instance, to rapidly
try out flexible and non-conventional modeling ideas, re-
searchers tend to use modern imperative deep-learning
frameworks like PyTorch2 or TensorFlow Eager3. These
frameworks provide an easy, eager-execution interface that
facilitates writing advanced and dynamic models quickly,
but also suffer from overhead in latency at inference and
impose deployment challenges. In contrast, production-
oriented systems are typically written in declarative frame-
works that express the model as a static graph, such as
Caffe24 and Tensorflow5. While being highly optimized
for production scenarios, they are often harder to use, and
make the experimentation life-cycle much longer. This con-
flict is even more prevalent in natural language processing
(NLP) systems, since most NLP models are inherently very
dynamic, and not easily expressible in a static graph. This
adds to the challenge of serving these models at an industrial
scale.

PyText, built on PyTorch 1.0 6, is designed to achieve the
following:

2https://pytorch.org/
3https://www.tensorflow.org/guide/eager
4https://caffe2.ai/
5https://www.tensorflow.org/
6https://pytorch.org/blog/the-road-to-1_0/

1. Make experimentation with new modeling ideas as easy
and as fast as possible.

2. Make it easy to use pre-built models on new data with
minimal extra work.

3. Define a clear workflow for both researchers and en-
gineers to build, evaluate, and ship their models to
production with minimal overhead.

4. Ensure high performance (low latency and high
throughput) on deployed models at inference.

NLP
Framework

Deep Learning
Support

Easy
Prototyping

Industrial
Performance

CoreNLP × X X
AllenNLP X X ×
FLAIR X X ×
Spacy 2.0 X × X
PyText X X X

Table 1. Comparison of NLP Modeling Frameworks

Existing popular frameworks for building state-of-the-art
NLP models include Stanford CoreNLP (Manning et al.,
2014), AllenNLP (Gardner et al., 2017), FLAIR (Akbik
et al., 2018) and Spacy 2.0 7. CoreNLP has been a popu-
lar library for both research and production, but does not
support neural network models very well. AllenNLP and

7http://spacy.io
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FLAIR are easy-to-use for prototypes but it is hard to produc-
tionize the models since they are in Python, which doesn’t
support large scale real time requests due to lack of good
multi-threading support. Spacy 2.0 has some state-of-the-art
NLP models built for production use-cases but is not easily
extensible for quick prototyping and building new models.

2 FRAMEWORK DESIGN

PyText is a modeling framework that helps researchers and
engineers build end-to-end pipelines for training or infer-
ence. Apart from workflows for experimentation with model
architectures, it provides ways to customize handling of raw
data, reporting of metrics, training methodology and export-
ing of trained models. PyText users are free to implement
one or more of these components and can expect the en-
tire pipeline to work out of the box. A number of default
pipelines are implemented for popular tasks which can be
used as-is. We now dive deeper into building blocks of the
framework and its design.

2.1 Component

Everything in PyText is a component. A component is
clearly defined by the parameters required to configure it.
All components are maintained in a global registry which
makes PyText aware of them. They currently include –

Task: combines various components required for a training
or inference task into a pipeline. Figure 1 shows a sample
config for a document classification task. It can be config-
ured as a JSON file that defines the parameters of all the
children components.

Data Handler: processes raw input data and prepare
batches of tensors to feed to the model.

Model: defines the neural network architecture.

Optimizer: encapsulates model parameter optimization us-
ing loss from forward pass of the model.

Metric Reporter: implements the relevant metric compu-
tation and reporting for the models.

Trainer: uses the data handler, model, loss and optimizer
to train a model and perform model selection by validating
against a holdout set.

Predictor: uses the data handler and model for inference
given a test dataset.

Exporter: exports a trained PyTorch model to a Caffe2
graph using ONNX8.

8https://onnx.ai/

{
"config": {

"task": {
"DocClassificationTask": {

"data_handler": {
"columns_to_read": ["doc_label", "text"],
"shuffle": true

},
"model": {
"representation": {

"BiLSTMPooling": {
"pooling": {

"SelfAttention": {
"attn_dimension": 128,
"dropout": 0.4

}
},
"bidirectional": true,
"dropout": 0.4,
"lstm": { "lstm_dim": 200, "num_layers":

2 }
}

},
"output_config": {

"loss": { "CrossEntropyLoss": {} }
},
"decoder": { "hidden_dims": [128] }

},
"features": {
"word_feat": {

"embed_dim": 200,
"pretrained_embeddings_path": "/tmp/embeds"

,
"vocab_size": 250000,
"vocab_from_train_data": true

}
},
"trainer": {
"random_seed": 0,
"epochs": 15,
"early_stop_after": 0,
"log_interval": 1,
"eval_interval": 1,
"max_clip_norm": 5

},
"optimizer": {
"type": "adam",
"lr": 0.001,
"weight_decay": 0.00001

},
"metric_reporter": {
"output_path": "/tmp/test_out.txt"

},
"exporter": {}

}
}

}
}

Figure 1. Document Classification Task Config

2.2 Design Overview

The task bootstraps a PyText job and creates all the required
components. There are two modes in which a job can be
run:

• Train: Trains a model either from scratch or from a
saved check-point. Task uses the Data Handler to create
batch iterators over training, evaluation and test data-
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Figure 2. PyText Framework Design

sets and passes these iterators along with model, opti-
mizer and metrics reporter to the trainer. Subsequently,
the trained model is serialized in PyTorch format as
well as converted to a static Caffe2 graph.

• Predict: Loads a pre-trained model and computes its
prediction for a given test set. The task Manager, again,
uses the Data Handler to create a batch iterator over
the test data-set and passes it with the model to the
predictor for inference.

Figure 2 illustrates the overall design of the framework.

3 MODELING SUPPORT

We now discuss the native support for building and extend-
ing models in PyText.

3.1 Terminology

Module: is a reusable component that is implemented with-
out any knowledge of which model it will be used in. It
defines a clear input and output interface such that it can be
plugged into another module or model.

Model: has a one-to-one mapping with a task. Each model
can be made up of a combination of modules for running a
training or prediction job.

3.2 Model Abstraction

PyText provides a simple, easily extensible model abstrac-
tion. We break up a single-task model into Token Embed-
ding, Representation, Decoder and Output layers, each of
which is configurable. Further, each module can be saved
and loaded individually to be reused in other models.

Token Embedding: converts a batch of numericalized to-
kens into a batch of vector embeddings for each token. It can
be configured to use embeddings of a number of styles: pre-
trained word-based, trainable word-based, character-based
with CNN and highway networks(Kim et al., 2016), pre-
trained deep contextual character-based (e.g., ELMo(Peters
et al., 2018)), token-level gazetteer features or morphology-
based (e.g. capitalization).

Representation: processes a batch of embedded tokens to
a representation of the input. The implementation of what
it emits as output depends on the task, e.g., the representa-
tion of the document for a text classification task will differ
from that for a word tagging task. Logically this part of the
model should implement the sub-network such that its out-
put can be interpreted as features over the input. Examples
of the different representations that are present in PyText
are; Bidirectional LSTM and CNN representations.

Decoder: is responsible for generating logits from the input
representation. Logically this part of the model should
implement the sub-network that generates model output
over the features learned by the representation.

Output Layer: concerns itself with generating prediction
and the loss (when label or ground truth is provided).

These modules compose the base model implementation,
they can be easily extended for more complicated architec-
tures.

3.3 Multi-task Model Training

PyText supports multi-task training (Collobert & Weston,
2008) to optimize multiple tasks jointly as a first-class citi-
zen. We use multi-task model by allowing parameter sharing
between modules of the multiple single task models. We use
the model abstraction for single task discussed in Section
3.2 to define the tasks and let the user declare which mod-
ules of those single tasks should be shared. This enables
training a model with one or more input representations
jointly against multiple tasks.

Multi-task models make the following assumptions:

• If there are n tasks in the multi-task model setup then
there must be n data sources containing data for one
task each.
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• The single task scenario must be implemented for it to
be reused for the multi-task setup.

Embedding
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Document
Classification
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Word Tagging
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Classification
Output Layer

Word Tagging
Output Layer

Figure 3. Joint document classification and word tagging model

3.3.1 Multi-task Model Examples

PyText provides the flexibility of building any multi-task
model architecture with the appropriate model configura-
tion, if the two assumptions listed above are satisfied. The
examples below give a flavor of two sample model architec-
tures built with PyText for joint learning against more than
one task.

Figure 3 illustrates a model that learns a shared document
representation for document classification and word tagging
tasks. This model is useful for natural language understand-
ing where given a sentence, we want to predict the intent
behind it and tag the slots in the sentence. Jointly optimiz-
ing for two tasks helps the model learn a robust sentence
representation for the two tasks. Further, we can use this
pre-trained sentence representation for other tasks where
training data is scarce.

Figure 4 illustrates a model that learns document and query
representations using query-document relevance and indi-
vidual query and document classification tasks. This is
often used in information retrieval where, given a query
and a document, we want to predict their relevance; but we
also add query and document classification tasks to increase
robustness of learned representations.

3.4 Model Zoo

PyText models are focused on NLP tasks that can be con-
figured with a variety of modules. We enumerate here the
classes of models that are currently supported.
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Figure 4. Joint query-document relevance and document classifica-
tion model

• Text Classification: classifies a sentence or a document
into an appropriate category. PyText includes reference
implementations of Bidirectional LSTM (Schuster &
Paliwal, 1997) with Self-Attention (Lin et al., 2017) and
Convolutional Neural Network (Kim, 2014) models for
text classification.

• Word Tagging: labels word sequences, i.e. classi-
fies each word in a sequence to an appropriate cate-
gory. Common examples of such tasks include Part-
of-Speech (POS) tagging, Named Entity Recognition
(NER) and Slot Filling in spoken language understand-
ing. PyText contains reference implementations of Bidi-
rectional LSTM with Slot-Attention and Bidirectional
Sequential Convolutional Neural Network (Vu, 2016)
for word tagging.

• Semantic Parsing: maps a natural language sentence
into a formal representation of its meaning. PyText pro-
vides a reference implementation for Recurrent Neural
Network Grammars (Dyer et al., 2016) (Gupta et al.,
2018) for semantic parsing.

• Language Modeling: assigns a probability to a se-
quence of words (sentence) in a language. It also as-
signs a probability for the likelihood of a given word
to follow a sequence of words. PyText provides a ref-
erence implementation for a stacked LSTM Language
Model (Mikolov et al., 2010).

• Joint Models: We utilize the multi-task training support
illustrated earlier to fuse and train models for two or
more of the tasks mentioned here and optimize their
parameters jointly.
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4 PRODUCTION WORKFLOW

4.1 From Idea to Production

Researchers and engineers can follow the following steps to
validate their ideas and quickly ship them to production –

New modeling approach

Implement
model in PyText

Publish to PyTorch
prediction service

Run online and
offline evaluations

Good Results?

Export
Compatible?

Implement model with
PyTorch C++ API

Export to
Caffe2 runtime

Publish to production
prediction service

no

yes

no

yes

Figure 5. From Idea to Production flowchart

1. Implement the model in PyText, and make sure offline
metrics on the test set look good.

2. Publish the model to the bundled PyTorch-based infer-
ence service, and do a real-time small scale evaluation
on a live traffic sample.

3. Export it automatically to a Caffe2 net. In some cases,
e.g. when using complex control flow logic and custom

data-structures, this might not yet be supported via
PyTorch 1.0.

4. If the procedure in 3 isn’t supported, use the Py-
Torch C++ API9 to rewrite the model (only the
torch.nn.Module10 subclass) and wrap it in a Caffe2
operator.

5. Publish the model to the production-grade Caffe2 pre-
diction service and start serving live traffic

4.2 Benchmarks

Model Implementation P50 P90 P99

JointBLSTM
PyTorch 34.08 47.23 64.94
Exported to Caffe2 19.65 24.69 30.21

RNNG
PyTorch 19.74 28.53 36.37
PyTorch C++ 18.73 25.47 32.63

Table 2. Latency Comparison (in milliseconds, smaller is better)
of Python and C++ implementations of PyText models

We compared the performance of Python and C++ models
(either directly exported to Caffe2 or re-written with the
PyTorch C++ API11) on an intent-slot detection task. We
note that porting to C++ gave significant latency boosts
(Table 2) for the JointBLSTM model and a slight boost for
the RNNG model. The latter is still valuable though, since
the highly performant production serving infrastructure in
many companies don’t support Python code.

The experiments were performed on a CPU-only machine
with 48 Intel Xeon E5-2680 processors clocked at 2.5GHz,
with 251 GB RAM and CentOS 7.5. The C++ code was
compiled with gcc -O3.

4.3 Production Challenges

4.3.1 Data pre-processing

One limitation of PyTorch is that it doesn’t support string
tensors; which means that any kind of string manipulation
and indexing needs to happen outside the model. This is
easy during training, but makes productionization of the
model tricky. We addressed this by writing a featurization
library in C++11. This is accessible during training via
Pybind12 and at inference as part of the runtime services
suite shown in Figure 6. This library preprocesses the raw
input by performing tasks like –

9https://pytorch.org/cppdocs/
10https://pytorch.org/docs/stable/nn.html#module
11Currently not a part of PyText’s open-source repository
12https://github.com/pybind/pybind11
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• Text tokenization and normalization

• Mapping characters to IDs for character-based models

• Perform token alignments for gazetteer features

By sharing the featurization code across training and infer-
ence we ensure data consistency in the different stages of
the model.

Training

Featurizer Library (C++)

Raw Data

Data Handler

Trainer

Exporter

Caffe2
Model

Inference

Raw Data

Data Preprocessor

Predictor

Predictions

Figure 6. Training and Inference Workflow Architecture

4.3.2 Vocabulary management

Another consequence of string tensors not being supported
yet is that we can’t maintain vocabularies inside the model.
We explored two solutions to this –

• Maintain the vocabularies in the remote featurization
service.

• After exporting the model, post-process the resultant
Caffe2 graph and prepend the vocabularies to the net

We ultimately opted for the second option since its non-
trivial to maintain synchronization and versioning between
training-time and test-time vocabularies, across different
use cases and languages.

5 FUTURE WORK

Upcoming enhancements to PyText span multiple domains:

• Modeling Capabilities: Adding support for advanced
NLP models for more use cases, e.g.

– Question answering, reading comprehension and
summarization tasks

– Multilingual and language-agnostic tasks

• Performance Benchmarks and Improvements : A
core goal of PyText is to enable building highly scal-
able models, with can run with low latency and high
throughput. We plan to invest in –

– Training speed – by augmenting the current
distributed-training support with lower precision
computations support like fp1613

– Inference speed – by benchmarking performance
and tuning the model deployment for expected load
patterns.

• Model Interpretability: We plan to add more tooling
support for monitoring metrics and debugging model
internals –

– Tensorboard14 and Visdom 15 integration for visu-
alizing the different layers of the models and track
evaluation metrics during training

– Explore and implement different model explana-
tion approaches, e.g LIME 16 and SHAP (Lundberg
& Lee, 2017)

• Model Robustness: Adversarial input, noise, and dif-
ferences in grammar and syntax can often hurt model
accuracy. To analyze and improve robustness against
these perturbations, we plan to invest in adversarial
training and data augmentation techniques.

• Mobile Deployment Support: We utilize the opti-
mized Caffe2 runtime engine to serve our models, and
plan to leverage its optimization for mobile devices 17,
as well as support training light-weight models.

6 CONCLUSION

In this paper we presented PyText – a new NLP modeling
platform built on PyTorch. It blurs the boundaries between

13https://en.wikipedia.org/wiki/Half-precision_floating-
point_format

14https://github.com/tensorflow/tensorboard
15https://github.com/facebookresearch/visdom
16https://github.com/marcotcr/lime
17https://caffe2.ai/docs/mobile-integration.html
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experiments and large scale deployment and makes it easy
for both researchers and engineers to rapidly try out new
modeling ideas and then productionize them. It does so by
providing an extensible framework for adding new models
and by defining a clear production workflow for rigorously
evaluating and serving them. Using this framework and
the processes defined here, we significantly reduced the
time required for us to take models from research ideas to
industrial-scale production.
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