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Figure 1. Given a segmentation map defining the layout of semantic regions in a texture map, our proposed method generates diverse
high-resolution texture maps which are then used to render 3D humans. Each example shows a UV map in the inset and the corresponding
3D mesh rendered with the map. The style of each region/class can be controlled individually by manipulating the input style vectors. Note
that along each column, the styles of the same classes are the same (for example, the man in the first row and the woman in the second row
of the first column are wearing green colored pants).

Abstract

We introduce a novel approach to generate diverse high
fidelity texture maps for 3D human meshes in a semi-
supervised setup. Given a segmentation mask defining the
layout of the semantic regions in the texture map, our net-
work generates high-resolution textures with a variety of
styles, that are then used for rendering purposes. To accom-
plish this task, we propose a Region-adaptive Adversarial
Variational AutoEncoder (ReAVAE) that learns the proba-
bility distribution of the style of each region individually so
that the style of the generated texture can be controlled by

sampling from the region-specific distributions. In addi-
tion, we introduce a data generation technique to augment
our training set with data lifted from single-view RGB in-
puts. Our training strategy allows the mixing of reference
image styles with arbitrary styles for different regions, a
property which can be valuable for virtual try-on AR/VR ap-
plications. Experimental results show that our method syn-
thesizes better texture maps compared to prior work while
enabling independent layout and style controllability.

∗This work was conducted during an internship at FRL Research.



1. Introduction
3D human avatar creation has recently gained popularity

with the growing use of AR/VR devices and virtual com-
munication. A human body is represented by a 3D sur-
face mesh modeling its shape, and a texture map (an image
in UV space) encoding its appearance mapped to the 3D
surface. Realistic textures for avatars are crucial for more
immersive experiences with believable digital humans. To
date, it is still tedious to create texture maps as it may re-
quire hours of manual work by a technical artist or special
equipment (e.g., 3D scans, multiview-camera setting, etc.)
to capture all the body and cloth details. Hence in this work,
we develop a novel method to synthesize photorealistic tex-
ture maps for human 3D meshes in a semi-supervised setup
with the following properties: i) high resolution, ii) high
fidelity, iii) large diversity, and iv) editability.

Recent deep learning-based techniques for textured 3D
human generation [22, 15, 24] infer the textures from 2D
clothed human images, which cause their textures to be lim-
ited to the garment styles in the image dataset. The fidelity
of the inferred textures is also constrained by the resolution
of the 2D images. Prior work [23, 29, 44] relies on image-
to-image translation networks to convert a human body part
segmentation mask into a textured image. These techniques
directly generate a clothed human image instead of a tex-
ture image that can be applied to a 3D mesh. Besides,
their style controllability is limited to mostly changing gar-
ment colors but not the actual styles like floral or check-
ered patterns. Among the unsupervised image synthesis
works, StyleGAN [18] and StyleGAN2 [19] can generate
high-resolution and high-fidelity results with their uncon-
ditional image synthesis setup, but such a setup does not
allow easy controllability for texture maps that come with
a predefined layout in the UV space. Conditional image
synthesis techniques like Pix2PixHD [42] and SPADE [33]
use a conditional GAN to associate each input segmentation
mask to a unique output image. While the VAE version of
SPADE introduces some controllability, it can only control
the global style but not class-specific styles of the output
image. The authors of SEAN [52] overcame this problem
by encoding class-specific styles that are then used to learn
the normalization parameters for the conditional GAN. This
allows them to apply different styles to different regions
using different exemplar images, one per region. As a re-
sult, exemplar-based approaches are limited to reconstruct-
ing the existing textures or linearly interpolating between
them. Besides, it is difficult and time-consuming to find
several different exemplar images for different styles.

To address these issues, we propose a novel architec-
ture that we call Region-adaptive Adversarial Variational
AutoEncoder (ReAVAE) that learns the probability distri-
butions of per-region styles from texture maps using a VAE
in an semi-supervised setup and allows per-region style con-

trollability of the output texture using the learned distribu-
tions. Our architecture has three components. First, the
style encoder encodes an input texture map and performs
region-wise average pooling of the encoded features based
on the semantic segmentation mask corresponding to the in-
put texture to produce per-class feature vectors. Second, the
VAE bottleneck learns to approximate the features of each
class by a standard normal distribution, from which a ran-
dom sample is generated to produce a transformed feature
vector. Lastly, the generator takes the per-class transformed
feature vectors, a segmentation mask, and random Gaus-
sian noise as inputs to generate the desired texture map.
The generated map is then converted to higher resolution by
passing it through a pretrained image super-resolution net-
work and finally rendered using a differentiable renderer.
During inference, we solely use the generator that enables
independent layout controllability through the input mask
and per-region style controllability through the input ran-
dom vectors, which results in the generation of a wide va-
riety of textures. We also introduce a training strategy that
enables our network to perform both reconstruction of an
input image and generation of an arbitrary image. Hence,
we can mix the styles of some regions of the input image
with arbitrary styles for the remaining regions by manipu-
lating the input per-region feature vectors of the generator.
Finally, to alleviate the problem of having limited data orig-
inating from textures from 3D scans, we introduce a method
to generate training data for our network by lifting textures
from full-body clothed human images to the UV space. In
summary, our contributions are:

1. We propose a novel architecture for semi-supervised
synthesis of diverse high-fidelity texture maps for 3D
humans, given the layouts (segmentation masks) as in-
put, with independent layout and style controllability.
The textures can be used for high-resolution render-
ing. To the best of our knowledge, no existing work
has tackled this task to date.

2. We utilize a VAE to learn the distributions of the styles
of each region separately, thereby allowing the user to
sample from region-specific distributions during infer-
ence to generate a variety of textures. Our training
scheme allows mixing styles from exemplar images for
some regions with arbitrary styles for other regions, a
useful property for 3D virtual try-on applications.

3. We introduce a training data generation technique that
lifts textures from single-view RGB images of full-
body clothed humans to the UV space.

2. Related Work
Image synthesis: Among the recent works on unsuper-
vised data generation using Generative Adversarial Net-
works (GANs) [7], papers such as the Progressive GAN



[16], StyleGAN [18], and StyleGAN2 [19] can generate
high resolution and high fidelity images. Since the diver-
sity of the generated images is directly proportional to the
size of the training data, a recent line of works has pro-
posed techniques that can generate considerable diversity
with limited data. This is done by effectively fine-tuning a
pretrained StyleGAN2 network [43] or by apply differential
augmentation [17, 50] at the generator outputs.

However, for our texture map generation, the latent vec-
tors of StyleGAN2 encode both the layout and the global
styles together in a complicated manner which does not al-
low for easy editability. Given a segmentation map as input,
Pix2PixHD [42] used an image-to-image translation [4, 14,
25, 26] method to generate output image and SPADE [33]
improved upon Pix2PixHD by using the segmentation map
in the spatially-adaptive normalization layers. To overcome
their limitation of allowing no or only global style controlla-
bility, SEAN [52] introduced semantic-region adaptive nor-
malization to add class-specific style controllability to con-
ditional image synthesis. However, SEAN relies on one or
more exemplar images for the style transfer and hence can-
not be used in our desired non-exemplar based setup.
Textured human image synthesis: Recent works on
clothed human image generation usually perform garment
transfer using exemplar-based conditional image synthe-
sis technique. For example, [45] uses a full-body sketch
as a condition and a texture patch image as an exemplar,
[38, 41, 47] use a 2D human pose image[37] as a condition
and clothed human images as exemplars. Non-exemplar
based methods include [23, 44], which learn to generate
textured human images given input segmentation masks via
image-to-image translation. However, these methods gen-
erate low-resolution textured humans directly in the 2D
space, and hence cannot be utilized on 3D human meshes.
Methods which generate 3D textured humans in cloth-
ing [1, 2, 15, 24, 36, 49] are mainly focused on reconstruct-
ing the 3D geometry from one [15, 36, 49] or more [1, 2]
RGB images with the texture colors embedded as vertex in-
formation in the geometry. While the work of Lazova et
al. [24] generates a texture map as an intermediate step,
the method is reconstruction-based only. Other works such
as [9, 11, 30, 51] generate 3D garment textures from a
dataset of 2D garment RGB images either by using garment
templates or by using body shape and pose as reference.

3. Methodology
3.1. Training Data Generation

Dataset of registered scans Our ground truth training data
is composed of 500 3D scans (single texture per scan) from
the RenderPeople [12] dataset and 400 3D scans (five tex-
tures per scan) from the AXYZ [13] dataset, resulting in
2300 textures for training and 200 for testing. The scans

Figure 2. Training data generation. (a) Pipeline showing lifting
the data from RGB inputs and refining the textures using Garment-
CUT, (b) results of lifting and refining.

are watertight meshes, with the subjects wearing a wide va-
riety of clothes and holding different types of objects such
as backpacks and phones. To obtain the texture maps in the
UV space, we performed non-rigid registration of a body
template similar to SMPL [28] to the scans along with ad-
ditional 2D landmark constraints in order to handle compli-
cated poses. To obtain the segmentation maps we first ren-
dered all scans using Blender Cycles [5] from 180 different
viewpoints and then ran a state-of-the-art cloth segmenta-
tion algorithm [6] to obtain instance segmentations in the
image space. The instances comprised of hair, skin, a vari-
ety of different garments, and a few accessories for a total
of 28 classes. We then lift all the segmentation estimates
from the RGB to the UV space using the method of Lazova
et al. [24] and aggregate their results by selecting the most
frequently predicted class across all views for each pixel.
Finally, we merged the classes that were semantically simi-
lar (e.g., jacket with hoodie) for a total of 20 distinct classes.
Data lifting When we set up our baselines we quickly ob-
served that the amount of data we had was quite small to
learn the distribution of each class, with lack of diversity



Figure 3. Our end-to-end framework. The style encoder encodes the region-wise styles from the input which are then used by our
ReAVAE to learn region-specific style distributions. The generator synthesizes texture maps given per-class style vectors and desired
layout (segmentation map). The generated texture is then upscaled and used to render 3D human meshes.

in terms of identity and garment styles. To overcome this
limitation, we introduce a novel approach that lifts textures
from single-view RGB images of full-body clothed humans
to the UV space inspired by a recent work [24]. Specifically,
we first ran DensePose [8] on the RGB image to obtain IUV
estimates in the image space which are then used to lift the
input RGB image to the UV space to obtain a partial texture
map, which is then passed through a pretrained neural net-
work to generate the complete texture map. Similarly, the
cloth segmentations were first lifted to the UV space and
then completed using a pretrained neural network to obtain
the complete segmentation maps.
Unpaired data refining As one would expect, our lifting
process generates textures that are noisier than the ones ob-
tained from the registered scans, with artifacts on the oc-
cluded portions and baked lighting on the skin and clothes.
To address these shortcomings we propose to use CUT [32],
an unpaired image-to-image translation method that aims to
maximize the mutual information between images of two
different domains. Given a dataset X containing the reg-
istered scan textures and a dataset Y containing the lifted
textures from the RGB images, our network, which we call
GarmentCUT, samples unpaired instances and learns the
mapping from Y to X . To train this network we use the
adversarial GAN loss and the patchwise contrastive loss to-
gether with the hyperparameters as used in [32]. Finally,
while for the clothed regions this approach worked remark-
ably well, this was not the case for the face region. We at-
tribute this outcome to the fact that in the textures obtained
from the registered 3D scans, there is a limited number of
unique identities that ended up affecting the unpaired trans-
lation training to change the identity of the subject to some
extent which is not desirable. Hence we propose to keep
the area that corresponds to the face from the lifted RGB
textures and use the rest of the texture map produced by
GarmentCUT. We show the complete pipeline for the train-

ing data generation in Fig. 2a and examples of the obtained
results in Fig. 2b. We used 8,000 images from the Deep-
Fashion dataset [27] equally sampled in terms of garments
that were then processed using our proposed data generation
approach to enhance our training set.

3.2. Network Architecture

Our network ReAVAE comprises of 3 major compo-
nents: (a) style encoder, (b) VAE bottleneck and (c) gen-
erator. An overview of our method is shown in Fig. 3.
Style encoder: The style encoder encodes the style of each
class ck, k ∈ [1, C] into a W -length style vector Ŝc, which
together form a C ×W style matrix. Given the i-th texture
map I tex

i and its corresponding segmentation map Iseg
i as in-

puts, the style encoder first extracts W -length features from
I tex
i using an encoder similar to [52]. Then, for each class

in Iseg
i , the feature values at the pixel locations belonging

to that class are spatially averaged to obtain the style in the
form of a vector. If a class is missing in Iseg

i , its feature
vector is set to the zero vector.
VAE bottleneck: This is the main component that enables
the network to learn the probability distributions of the
styles of each class. Each vector Ŝc is passed through one
fully-connected (FC) layer to generate the W -length mean,
and through another FC layer to generate W -length vari-
ance. Hence we have C pairs of FC layers where each pair
learns the mean and variance of the style of the correspond-
ing class. We then use the reparameterization trick [21] to
generate a random sample from the distribution represented
by the learned mean and variance, which forms the trans-
formed style vector Sc for each class.
Generator: The generator (decoder of VAE) learns to syn-
thesize the desired output texture map by taking the trans-
formed style matrix, a guiding segmentation map Iseg

j and
Gaussian noise as inputs. It comprises multiple ResNet
blocks (i.e., ReAVAE Resblks) followed by upsampling lay-



Figure 4. ReAVAE Resblk and our normalization layer.

ers. We opted for a skip generator architecture [19] since it
consistently outperformed other alternatives and hence, we
convert the output of each Resblk into a 3-channel image us-
ing 1×1 convolutions and add all of them up to produce the
final output. To distill the information from the transformed
style matrix to the decoder of our network, we employ a
normalization layer that is depicted in Fig. 4. Each Sc is
converted to a layer-specific style vector A(Sc) by passing
it through an FC layer. These style codes are then broad-
casted to their respective pixel locations defined by the seg-
mentation map Iseg

j to generate a style feature map, which
is then convolved to generate the pixel-wise γ and β values
for that layer. The addition of sampled Gaussian noise helps
to learn high-frequency details [19, 52].

Finally, the output is passed through a pretrained (with
fixed weights) image Super-Resolution Network (SRN) to
convert it to 4× its resolution and then rendered along with
the ground truth 3D geometry using a differentiable ren-
derer. We re-train a publicly available super-resolution ap-
proach [48] with our training data and use it as our SRN.

3.3. Loss Functions

Adversarial loss: We use the hinge loss as our adversarial
loss with two multi-scale patch-based fully convolutional
networks as the discriminator [52] that takes the generated
and ground truth textures as input.
Reconstruction loss: Instead of the pixel-wise loss which
tends to generate blurry images, we use the perceptual loss
for reconstruction. Specifically, we take multi-layer outputs
of a pre-trained VGG [39] and the discriminator to compare
the features of the generated and ground truth images as
LPerc =

∑L
l=1 ||VGGl(x) − VGGl(G(x))||1 and LFM =∑3

l=1 ||Dl(x)−Dl(G(x))||1 respectively. The loss is given
by Lrec = LPerc + LFM .
Render loss: We render the generated and ground truth tex-
tures with the ground-truth 3D geometry from V different
camera viewpoints. Then, we use the per-view photometric
loss Lph = ||R(x) − R(G(x))||1 and image gradient loss
Lgr = ||G(x) − G(G(x))||1 as our render loss defined by
Lren = 1

V

∑V
v=1(Lph + Lgr).

KLD loss: We use the Kullback–Leibler divergence loss to
approximate the learned style distribution for each class to
a standard normal distribution N(0, I) and is formulated as

LKLD = 1
2

∑C
c=1

∑W
w=1(µ

2
cw + σ2

cw − 1− ln(σ2
cw)).

The final loss used to train our network is given by:

Lf = Ladv + λrecLrec + λrenLren + λKLDLKLD. (1)

3.4. Implementation Details

We implement our network using Pytorch [34] and our
differentiable renderer using Pytorch3D [35]. Our network
is trained using Adam [20] optimizer (β1 = 0, β2 = 0.999)
with learning rate 0.0001. The number of classes C is 20,
number of views V is 4 (front, back, left, right), the vector
size W for each style vector is set to 512 and the weighting
parameters of our loss function are set to λrec = 10, λren =
25 and λKLD = 0.01. Training takes about a day on a
single Tesla v100 GPU with a batch size of 4. Spectral
Norm [31] and Synchronized Batch Norm [46] are used in
addition to our normalization layer. The VAE operates at
256 × 256 images, and the final output textures and ren-
dered images of ReAVAE are at 1024× 1024 resolution.
Training: Since our network consists of individual compo-
nents, we introduce a novel training strategy that enables
our network to perform i) reconstruction of an input tex-
ture map, or ii) synthesis of a random texture map, or iii)
a mixture of both. To enable reconstruction, we omit the
VAE bottleneck (i.e. LKLD from Lf ) and directly use the
style matrix as the transformed style matrix, converting the
network into an autoencoder. To enable random synthesis,
we use the entire pipeline provided in Fig. 3. We alternate
between these two types of training at every iteration but
in both cases, we train our framework end-to-end with the
same segmentation map as input to the style encoder and
the generator (i.e. Iseg

i = Iseg
j ).

Testing: Our network is designed in a modular manner that
provides flexibility in our test setup as well. Our network
can operate under four testing scenarios. The first one is
reconstruction of an input texture map I tex

i by using the
trained style encoder followed by the trained generator with
Iseg
i = Iseg

j . The second one is style transfer between lay-
outs, when Iseg

i 6= Iseg
j . The third one is the generation of a

random texture map by using only the generator and giving
a random layout Iseg

j and C standard normal random vec-
tors of length W as inputs to it. We call this the inference
setup in Fig. 3. The fourth one is style mixing, where Ŝc for
some classes from I tex

i are mixed with some random vectors
for other classes. This setup will be further explored in our
qualitative results described in Sec. 4.3.

4. Results
In this section, we evaluate the performance of our

method both qualitatively and quantitatively. Fig. 1 shows
some randomly synthesized textures and the corresponding
human images obtained by rendering the ground truth 3D



Figure 5. Renders of 3D humans with generated textures. Our renders are consistent across multiple viewpoints, and two random style
matrices can be linearly interpolated to generate additional renders with the respective intermediate styles.

geometry meshes with the synthesized textures. Each col-
umn has different layouts but same style (i.e. the random
vectors for that style are generated with the same seed),
whereas each row has same layout but different styles for
different classes (including skin and hair). More examples
of our rendered textures are shown in Fig. 5. We show the
renders from four camera viewpoints to demonstrate that
our textures are seamless and consistent across all views.
We can also interpolate between any pair of random style
vectors to generate a wide variety of styles.

4.1. Comparison with state-of-the-art methods

We compare the quality of our generated textures with
two categories of state-of-the-art conditional image syn-
thesis methods: (a) non-exemplar guided random image
synthesis techniques (Pix2PixHD [42] and SPADE [33]),
and (b) exemplar guided reconstruction techniques (Mul-
timodal synthesis with SPADE (VAE-SPADE) [33] and
SEAN [52]). All comparisons are done at 256×256 reso-
lution to be consistent across all methods.
Quantitative evaluation: We use the following evaluation
metrics for quantitative evaluation: (a) structural similar-
ity (SSIM) and peak signal-to-noise ratio (PSNR) for re-
construction accuracy, and (b) Fréchet Inception Distance
(FID) [10] and mean Kernel Inception Distance (KID) [3]
for image fidelity. Table 1 compares the performance of our
method to state-of-the-art methods. The obtained results
indicate that our method clearly outperforms prior work at
both reconstruction and synthesis metrics.
Qualitative comparison: Fig. 6 visually compares the tex-
tures generated by different methods. We can see that with-

Table 1. Quantitative comparison of our results with respect
to state-of-the-art methods in terms of reconstruction accuracy
(PSNR & SSIM) and fidelity (FID & KID).

Method PSNR↑ SSIM↑ FID↓ KID↓
Pix2PixHD [42] - - 46.19 0.045
SPADE [33] - - 42.89 0.037
VAE-SPADE [33] 16.13 0.66 35.17 0.028
SEAN [52] 18.92 0.74 32.45 0.021
Ours 19.67 0.79 29.54 0.015

out exemplar images, Pix2PixHD and SPADE face diffi-
culty in associating the input layout with appropriate tex-
tures. We also observed that exemplar guided techniques
tend to overfit on the training data, which is the reason be-
hind the poor quality of their textures on test data as in
Fig. 6. More comparisons of our rendered textures with
SEAN [52] are shown in Fig. 7 (our improvements are
highlighted in red). Our network together with our train-
ing strategy ensure that we learn meaningful style features
that can then be broadcasted easily to any layout.
Limitations: We found that ∼15% of our training data
contains patterns/logos, hence our learned distributions are
dominated by solid colors and we have to sample several
times to generate patterns which is easy to do with our de-
signed UI. Logos, especially small ones, are challenging to
generate since they tend to be distorted during the 2D to UV
lifting. However, our method handles well multi-garment
textures like jacket and inner-shirt separately. Also the hu-
man identity, being embedded within the style vector of the
skin class, is sensitive to the layout of the generated texture.



Figure 6. Visual comparison of texture map generation. (a) Inputs, (b) non-exemplar guided random synthesis methods, (c) exemplar-
guided reconstruction methods. Our method generates results with higher fidelity, especially in the face region.

Figure 7. Qualitative comparison with SEAN [52].

To address this, we experimented with adding face parsing
masks but their impact was insignificant. Future work can
investigate ways to explicitly handle the identity by poten-
tially using a face recognition network or by collecting more
diverse data. We will also explore the possibility of auto-
matic segmentation and mask replacement as an intermedi-
ate step in our method in order to lift the constraint of de-
pending on input segmentation masks. However, since vir-
tual try-on applications are generally limited to few (mostly
frontal) views, we assume that existing and future cloth seg-
mentation methods perform well or the masks can be easily
edited manually in case of inaccuracies.

4.2. Ablation study

Importance of training data generation: After adding
more data, we observed: i) less overfitting, ii) more di-
versity in the styles of the classes, and iii) higher fidelity.
To quantify the improvement in fidelity and diversity with
our training data generation, we used the t-SNE [40] plots
which represent the image feature vectors as data sample
points. Fig. 8 demonstrates that adding more training data
helps in moving the distribution of textures generated by

Figure 8. t-SNE plots of training and generated samples. (a) dis-
tribution of samples with registered scan data only, (b) distribution
of samples after adding lifted data.

ReAVAE closer to the distribution of training data (result-
ing in lower FID) compared to using only registered scans
for training. We further fit an ellipse to each distribution and
calculate the area under the ellipse. For the same number of
data points, the generated samples in Fig. 8b occupy a larger
area (area=2948.07) (i.e. have larger diversity) compared to
Fig. 8a (area = 2579.62). Additionally, in order to evaluate
the improvement of a third-party image synthesis task with
our generated textures, we trained StyleGAN2 [19] from
scratch with (a) our original training set and (b) equal num-
ber of textures randomly generated by our trained ReAVAE.
We observed that the FID score of the output textures im-
proved from 6.17 using (a) to 4.89 using (b), indicating that
our generated textures exhibit more diversity than the train-
ing data while maintaining the fidelity.
Importance of different components of ReAVAE: Table 2
measures the importance of different components in our net-
work architecture. The baseline consists of the encoder-
decoder architecture of [52]. We observe that adding each



Table 2. Quantitative evaluation of contribution of individual com-
ponents of our network architecture.

Method PSNR↑ SSIM↑ FID↓ KID↓

Baseline 16.53 0.68 32.15 0.024
+ skip generator 17.42 0.71 31.19 0.022
+ VAE 18.38 0.74 30.87 0.019
+ training str.(final) 19.67 0.79 29.54 0.015
w/ render losses 19.67 0.79 29.54 0.015
w/o render losses 18.65 0.75 30.75 0.018
w/ SRN 19.67 0.79 29.54 0.015
w/o SRN 16.79 0.62 31.97 0.026

Figure 9. Selective style editing. (a) changing only the dress style,
(b) changing only the headband and pants styles.

part, as well as the alternate training strategy, gradually im-
proves the results. The render loss, in addition to adding
more constraints to the texture maps, ensures that the ren-
ders look seamless and capture details like crisp boundaries
and folds, and wrinkles. We also observed that instead of
adding two more layers to our generator to produce a higher
resolution image, generating an image at a lower resolution
and then upscaling it using a super-resolution network is
beneficial. This is because it is hard for normalization pa-
rameters at higher resolutions to distill meaningful informa-
tion to the respective layers.

4.3. Applications

Our independent layout and style controllability together
with the ability to perform either reconstruction or random
synthesis enable us to generate a wide variety of textures
with easy editability. Fig. 10 shows two examples for in-
dependent layout and style editing. Layout editing includes
changing jeans to shorts (10a and 10b), t-shirts to shirts (10b
and 10c), short hair to long hair etc. Style editing enables
changing the style of one or more classes at a time and mix-
ing different styles for different classes. For example, in
Fig. 10d, in the reconstructed texture we mix the styles of
hair, skin, pants, and shoes from the input (exemplar) tex-
ture with a random style for the shirt. This example also
shows that our method not only learns solid colors as gar-
ment styles but also checkered and other non-uniform pat-
terns. We would like to refer the reader to the supplemen-
tary material for a user interface built for such applications.

Figure 10. Layout and style control. We change the styles of
(a) shirt and jeans, (b) skin, (c) pants, (d) shirt and hair. The re-
constructed textures are generated by using all the styles from the
input texture except for the class changed in the layout, for which
an arbitrary style is used.

Another example of selectively changing region styles
in the random synthesis setup is given in Fig. 9. Here, we
first apply random styles to all the classes and then fix all
the styles except the ones we wish to change. Interestingly,
although headband is a rare class (with limited examples in
the training set), our network can generate vivid colors for
this garment type without the need to search for an exemplar
image with the desired headband color.

5. Conclusion
We introduced a novel architecture that generates texture

maps for 3D humans given an input segmentation mask in
a semi-supervised setup. Our network uses a VAE to learn
the per-class style distributions and enables controlling the
generated texture by independently manipulating the layout
through the mask and style by randomly sampling from the
learned distributions. We demonstrated that our approach
outperforms prior work in both the reconstruction and syn-
thesis tasks and can be successfully applied in virtual try-on
AR/VR applications. In the future, it will be interesting to
synthesize the geometry and surface normals along with the
textures for a complete unsupervised 3D avatar generation.
Acknowledgements: We thank Christoph Lassner, Olivier
Maury, Yuanlu Xu and Ronald Mallet from Facebook Real-
ity Labs for valuable discussions as well as the anonymous
reviewers for their constructive feedback.
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