
CNNs found to jump around more skillfully than RNNs:
Compositional generalization in seq2seq convolutional networks

Roberto Dessı̀
CIMeC, University of Trento

roberto.dessi@studenti.unitn.it

Marco Baroni
ICREA

Facebook AI Research
mbaroni@fb.com

Abstract

Lake and Baroni (2018) introduced the SCAN
dataset probing the ability of seq2seq models
to capture compositional generalizations, such
as inferring the meaning of “jump around” 0-
shot from the component words. Recurrent
networks (RNNs) were found to completely
fail the most challenging generalization cases.
We test here a convolutional network (CNN)
on these tasks, reporting hugely improved per-
formance with respect to RNNs. Despite the
big improvement, the CNN has however not
induced systematic rules, suggesting that the
difference between compositional and non-
compositional behaviour is not clear-cut.

1 Introduction

Recent deep neural network successes rekindled
classic debates on their natural language process-
ing abilities (e.g., Kirov and Cotterell, 2018; Mc-
Coy et al., 2018; Pater, 2018). Lake and Ba-
roni (2018) and Loula et al. (2018) proposed the
SCAN challenge to directly assess the ability of
sequence-to-sequence networks to perform sys-
tematic, compositional generalization of linguistic
rules. Their results, and those of Bastings et al.
(2018), have shown that modern recurrent net-
works (gated RNNs, such as LSTMs and GRUs)
generalize well to new sequences that resemble
those encountered in training, but achieve very low
performance when generalization must be sup-
ported by a systematic compositional rule, such as
“to X twice you X and X” (e.g., to jump twice, you
jump and jump again).

Non-recurrent models, such as convolutional
neural networks (CNNs, Kalchbrenner et al.,
2016; Gehring et al., 2016, 2017) and self-
attentive models (Vaswani et al., 2017; Chen et al.,
2018) have recently reached comparable or better
performance than RNNs on machine translation

and other benchmarks. Their linguistic proper-
ties are however still generally poorly understood.
Tang et al. (2018) have shown that RNNs and self-
attentive models are better than CNNs at captur-
ing long-distance agreement, while self-attentive
networks excel at word sense disambiguation. In
an extensive comparison, Bai et al. (2018) showed
that CNNs generally outperform RNNs, although
the differences were typically not huge. We evalu-
ate here an out-of-the-box CNN on the most chal-
lenging SCAN tasks, and we uncover the surpris-
ing fact that CNNs are dramatically better than
RNNs at compositional generalization. As they
are more cumbersome to train, we leave testing of
self-attentive networks to future work.

2 SCAN

SCAN studies compositionality in a simple com-
mand execution environment framed as a super-
vised sequence-to-sequence task. The neural net-
work receives word sequences as input, and has
to produce the correspondence action sequence.
Examples are given in Table 1. Lake and Ba-
roni (2018) originally introduced 4 train/test splits,
of which we consider 2.1 In the random split,
the training set includes 80% of randomly se-
lected distinct SCAN commands, with the remain-
ing 20% in the test set. This requires generaliza-
tion, as no test command is encountered in train-
ing, but there is no systematic difference between
the commands in the two sets. In the jump split,

1We also tested our CNNs on SCAN’s length split, where
test commands require systematically longer actions than the
training ones. Accuracy was near 0%, as the learned posi-
tional embeddings of our CNN architecture do not generalize
beyond training lengths. We leave the investigation of more
flexible positional encodings (as in, e.g., Vaswani et al., 2017)
to future work. We also experimented with SCAN’s turn left
split, obtaining near-perfect generalization. As RNNs were
already performing very well in this split, we focus in the
paper on the more challenging jump case.

ar
X

iv
:1

90
5.

08
52

7v
1 

 [
cs

.C
L

] 
 2

1 
M

ay
 2

01
9



Split Train Com-
mand

Test Command

random walk opposite
left; turn left
twice and look

walk and jump
right twice; run
and run thrice

jump jump; turn left
twice after look

turn left twice
after jump; run
twice and jump

around-right jump
around left; turn
opposite right
twice

walk
around right;
look around right
and jump left

Table 1: Training and test examples for the three splits
used in our experiments.

the jump command is only seen in isolation during
training, and the test set consists of all compos-
ite commands with jump. A system able to ex-
tract compositional rules (such as “X twice means
to X and X”) should have no problem generaliz-
ing them to a new verb, as in this split. Loula
et al. (2018) proposed a set of new SCAN splits,
the most challenging one being the around-right
split. The training partition contains examples of
around and right, but never in combination. The
test set contains all possible around right com-
mands. Loula and colleagues want to test “second-
order modification”, as models must learn how
to compositionally apply the around function to
right, which is in turn a first-order function modi-
fying simple action verbs.

3 Experimental setup

Model We use the fully convolutional encoder-
decoder model of Gehring et al. (2017) out of the
box, using version 0.6.0 of the fairseq toolkit.2

The model uses convolutional filters and Gated
Linear Units (Dauphin et al., 2016) along with
an attention mechanism that connects the encoder
and the decoder. Attention is computed separately
for each encoder layer, and produces weighted
sums over encoder input embeddings and encoder
outputs. See the original paper for details.

Training The shift in distribution between train-
ing and test splits makes SCAN unsuitable for
validation-set tuning. Instead, following Lake and
Baroni (2018) and Loula et al. (2018), we train on
100k random samples with replacement from the
training command set. We explore different batch
sizes (in terms of number of tokens per batch:
25, 50, 100, 200, 500, 1000), learning rates (0.1,

2https://github.com/pytorch/fairseq

random jump around-right
LSTM 99.8 1.2 2.5±2.7
GRU 100.0±0.0 12.5±6.6 –
CNN 100.0±0.0 69.2±8.2 56.7±10.2

Table 2: Test accuracy (%) on SCAN splits (means
across 5 seeds, with standard deviation if available).
Top LSTM results from Lake and Baroni (2018)/Loula
et al. (2018), GRU from Bastings et al. (2018).

0.01, 0.001), layer dimensionalities (128, 256,
512), layer numbers (6 to 10), convolutional ker-
nel width (3, 4, 5) and amount of dropout used
(0, 0.25, 0.5). For all other hyperparameters, we
accept recommended/default fairseq values. Each
configuration is run with 5 seeds, and we report
means and standard deviations.

4 Results

Our main results are in Table 2. CNNs, like RNNs,
succeed in the random split, and achieve much
higher accuracy (albeit still far from being perfect)
in the challenging jump and around-right splits.

The SCAN tasks should be easy for a system
that learned the right composition rules. Perhaps,
CNNs do not achieve 100% accuracy because they
only learned a subset of the necessary rules. For
example, they might correctly interpret the new
expression jump twice because they induced a X
twice rule at training time, but fail jump thrice be-
cause they missed the corresponding X thrice rule.
Since SCAN semantic composition rules are asso-
ciated with single words in input commands, we
can check this hypothesis by looking at error dis-
tribution across input words. It turns out (Fig. 1)
that errors are not associated to specific input com-
mands. Error proportion is instead relatively sta-
ble across command words. Direct inspection re-
veals no traces of systematicity: errors cut across
composition rules. Indeed, we often find minimal
pairs in which changing one action verb with an-
other (distributionally equivalent in SCAN) turns
a correctly executed command into a failed one.
For example, in the jump split, the CNN correctly
executes jump left after walk, but fails jump left af-
ter run (jumping is forgotten). Analogously, in the
around-right split, run around right is correctly
executed, but “walk around right” is not (the net-
work stops too early).

Robustness Fig. 2 shows a big difference in sta-
bility between random and the other splits across
top hyperparameter configurations. The random

https://github.com/pytorch/fairseq


Figure 1: Proportion of commands with a certain
command word (over total commands with that word)
wrongly executed by best CNNs.

results are very stable. Jump accuracy is rela-
tively stable across hyperparameters, but has large
variance across initialization seeds. For the most
challenging around-right split, we observe insta-
bility both across seeds and hyperparameters (al-
though even the lowest end of the reported accu-
racies is well above best RNN performance in the
corresponding experiments). Another question is
whether the best configurations are shared, or each
split requires an ad-hoc hyperparameter choice.
We find that there are configurations that achieve
good performance across the splits. In particu-
lar, the best overall configuration, found by mini-
mizing ranks across splits, has 0.01 learning rate,
25-tokens batch size, 0.25 dropout, 6 layers, 512
layer dimensionality, and kernels of width 5. Such
model was 13th best (of about 2.5K explored) on
the random split (with mean cross-seed accuracy
of 99.92%, off by 0.05% from top configuration),
32th on the jump split (60.67% mean accuracy, off
by 8.62%), and 2nd in the around-right split (mean
53.25% accuracy, off by 3.45%).

Kernel width One important difference be-
tween recurrent and convolutional architectures is
that CNN kernel width imposes a strong prior on
the window of elements to be processed together.
We conjecture that relatively wide encoder and
decoder widths, by pushing the network to keep
wider contexts into account, might favour the ac-
quisition of template-based generalizations, and
hence better compositionality. To investigate this,

Figure 2: Accuracies (%) of top-10 models on random,
jump and around-right. Arrows denote standard devia-
tions, dashed lines average accuracy across top-10.

we varied encoder and decoder widths of the best-
overall model between 1 and 5.3

Fig. 3 shows that the random split confirms our
expectations, as both wider encoder and decoder
windows improve performance. The jump results
follow the same trend, although in a less clear-cut
way. Still, the narrowest encoder-decoder combi-
nation has the worst performance, and the widest
one the top one. For the around-right split, it is
also better to use the widest encoder, but top per-
formance is achieved with the narrowest decoder
(width=1). Indeed, with the narrow decoder we
obtain around-right accuracies that are even above
the absolute-best jump-split performance. Since
the novel output templates in the around-right split
are by construction long (they involve executing
an around command that requires repeating an
action 4 times), we would have rather expected
models keeping track of a larger decoding win-
dow to fare better, particularly in this case. We
tried to gain some insight on the attested behaviour
by looking at performance distribution in function
of input and output length, failing to detect dif-
ferent patterns in the wide-decoder jump model
vs. the narrow-decoder around-right model (anal-
ysis not reported here for space reasons). Look-
ing qualitatively at the errors, we note that, for
both splits, the narrower decoder tends to skip tra-
jectory sub-chunks (e.g., executing “jump around
right” with 3 instead of 4 right turns followed by

3At least on the encoder side, larger widths seem exces-
sive, as the longest commands are 9-word-long.



Figure 3: Mean accuracies (%) across 5 seeds, in function of decoder (x axis) and encoder (colors) kernel widths.
Arrows denote standard deviations. Best viewed in color.

jumps), whereas the wider kernel is more likely
to substitute actions (e.g., turning left instead of
right) than undershooting the length. This impres-
sionistic observation is supported by the fact that,
for both splits, the narrow-kernel errors have con-
siderably larger variance than the wide-kernel er-
rors with respect to ground-truth length, indicating
that, with narrow decoder kernel, the model is less
stable in terms of output sequence length. This,
however, only confirms our conjecture that a wider
decoder kernel helps length management. We still
have no insight on why the narrower kernel should
be better on the around-right split.

Multi-layer attention The fairseq CNN has at-
tention from all layers of the decoder. Is the pos-
sibility to focus on different aspects of the input
while decoding from different layers crucial to its
better generalization skills? Fig. 4 reports accura-
cies when applying attention from a subset of the 6
layers only. The random split differences are min-
imal, but ablating attentions greatly affects perfor-
mance on the compositional splits (although, in
both cases, there is a single ablated configuration
that is as good as the full setup).

5 Conclusion

Compared to the RNNs previously tested in the
literature, the out-of-the-box fairseq CNN archi-
tecture reaches dramatically better performance
on the SCAN compositional generalization tasks.
The CNN is however not learning rule-like com-
positional generalizations, as its mistakes are non-
systematic and they are evenly spread across dif-
ferent commands. Thus, the CNN achieved a con-

Figure 4: Accuracy (%) of overall-best model with at-
tention only from first layer (bottom1), first two layers
(bottom2), . . . , last two layers (top2), top layer only
(top1). Means and standard deviations across 5 seeds.
Dashed lines show full multi-layer attention results.

siderable degree of generalization, even on an ex-
plicitly compositional benchmark, without some-
thing akin to rule-based reasoning. Fully under-
standing generalization of deep seq2seq models
might require a less clear-cut view of the divide
between statistical pattern matching and symbolic
composition. In future work, we would like to fur-
ther our insights on the CNN aspects that are cru-
cial for the task, our preliminary analyses of kernel
width and attention.
Concerning the comparison with RNNs, the best
LSTM architecture of Lake and Baroni has two
200-dimensional layers, and it is consequently
more parsimonious than our best CNN (1/4 of
parameters). In informal experiments, we found
shallow CNNs incapable to handle even the sim-



plest random split. On the other hand, it is hard to
train very deep LSTMs, and it is not clear that the
latter models need the same depth CNNs require
to “view” long sequences. We leave a proper for-
mulation of a tighter comparison to future work.

Acknowledgements

We thank Brenden Lake, Michael Auli, Myle Ott,
João Loula, Joost Bastings and the reviewers for
comments and advice.

References
Shaojie Bai, Zico Kolter, and Vladlen Koltun. 2018.

An empirical evaluation of generic convolutional
and recurrent networks for sequence modeling.
https://arxiv.org/abs/1803.01271.

Joost Bastings, Marco Baroni, Jason Weston,
Kyunghyun Cho, and Douwe Kiela. 2018. Jump
to better conclusions: SCAN both left and right.
In Proceedings of the EMNLP BlackboxNLP
Workshop, pages 47–55, Brussels, Belgium.

Mia Xu Chen, Orhan Firat, Ankur Bapna, Melvin
Johnson, Wolfgang Macherey, George Foster, Llion
Jones, Mike Schuster, Noam Shazeer, Niki Parmar,
Ashish Vaswani, Jakob Uszkoreit, Lukasz Kaiser,
Zhifeng Chen, Yonghui Wu, and Macduff Hughes.
2018. The best of both worlds: Combining recent
advances in neural machine translation. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 76–86. Association for Computational
Linguistics.

Yann N. Dauphin, Angela Fan, Michael Auli,
and David Grangier. 2016. Language model-
ing with gated convolutional networks. CoRR,
abs/1612.08083.

Jonas Gehring, Michael Auli, David Grangier, and
Yann N. Dauphin. 2016. A convolutional en-
coder model for neural machine translation. CoRR,
abs/1611.02344.

Jonas Gehring, Michael Auli, David Grangier, Denis
Yarats, and Yann Dauphin. 2017. Convolutional
sequence to sequence learning. In Proceedings of
ICML, pages 1243–1252, Sydney, Australia.

Nal Kalchbrenner, Lasse Espeholt, Karen Simonyan,
Aäron van den Oord, Alex Graves, and Koray
Kavukcuoglu. 2016. Neural machine translation in
linear time. CoRR, abs/1610.10099.

Christo Kirov and Ryan Cotterell. 2018. Recurrent
neural networks in linguistic theory: Revisiting
Pinker and Prince (1988) and the past tense debate.
Transactions of the Association for Computational
Linguistics. In press.

Brenden Lake and Marco Baroni. 2018. Generaliza-
tion without systematicity: On the compositional
skills of sequence-to-sequence recurrent networks.
In Proceedings of ICML, pages 2879–2888, Stock-
holm, Sweden.

Joao Loula, Marco Baroni, and Brenden Lake. 2018.
Rearranging the familiar: Testing compositional
generalization in recurrent networks. In Proceed-
ings of the EMNLP BlackboxNLP Workshop, pages
108–114, Brussels, Belgium.

Thomas McCoy, Robert Frank, and Tal Linzen. 2018.
Revisiting the poverty of the stimulus: Hierarchi-
cal generalization without a hierarchical bias in re-
current neural networks. In Proceedings of CogSci,
pages 2093–2098, Madison, WI.

Joe Pater. 2018. Generative linguistics and neural net-
works at 60: Foundation, friction, and fusion. Lan-
guage. In press.

Gongbo Tang, Mathias Müller, Annette Rios, and Rico
Sennrich. 2018. Why self-attention? A targeted
evaluation of neural machine translation architec-
tures. In Proceedings of EMNLP, pages 4263–4272,
Brussels, Belgium.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 5998–6008.

https://arxiv.org/abs/1803.01271
http://aclweb.org/anthology/P18-1008
http://aclweb.org/anthology/P18-1008
http://arxiv.org/abs/1612.08083
http://arxiv.org/abs/1612.08083
http://arxiv.org/abs/1611.02344
http://arxiv.org/abs/1611.02344
http://arxiv.org/abs/1610.10099
http://arxiv.org/abs/1610.10099

