
Revitalizing Optimization for 3D Human Pose and Shape Estimation:
A Sparse Constrained Formulation

Taosha Fan1,2, Kalyan Vasudev Alwala1, Donglai Xiang3,4, Weipeng Xu3,
Todd Murphey2, Mustafa Mukadam1

1Facebook AI Research, 2Northwestern University,
3Facebook Reality Labs, 4Carnegie Mellon University

Abstract
We propose a novel sparse constrained formulation and

from it derive a real-time optimization method for 3D hu-
man pose and shape estimation. Our optimization method,
SCOPE (Sparse Constrained Optimization for 3D human
Pose and shapE estimation), is orders of magnitude faster
(avg. 4ms convergence) than existing optimization meth-
ods, while being mathematically equivalent to their dense
unconstrained formulation under mild assumptions. We
achieve this by exploiting the underlying sparsity and con-
straints of our formulation to efficiently compute the Gauss-
Newton direction. We show that this computation scales
linearly with the number of joints and measurements of a
complex 3D human model, in contrast to prior work where
it scales cubically due to their dense unconstrained for-
mulation. Based on our optimization method, we present
a real-time motion capture framework that estimates 3D
human poses and shapes from a single image at over
30 FPS. In benchmarks against state-of-the-art methods
on multiple public datasets, our framework outperforms
other optimization methods and achieves competitive accu-
racy against regression methods. Project page with code
and videos: https://sites.google.com/view/
scope-human/.

1. Introduction
Estimating 3D human poses and shapes from an im-

age has a broad range of applications in embodied AI,
robotics, AR/VR, and has seen remarkable progress in re-
cent years. Among leading techniques, optimization meth-
ods [5, 17, 19, 24, 25, 39] have been successful. However,
they can still take up to tens of seconds to fit 3D hu-
man poses and shapes given an image, which is not ideal
for real-time applications. Deep learning based regression
methods [12, 15] have significantly reduced the computa-
tion times down to just tens of milliseconds, but often rely
on optimization during training or for refining the network
outputs. With a novel formulation, we revitalize optimiza-

Figure 1: Example solutions from our motion capture framework
based on our proposed sparse constrained optimization. (left) in-
put image from the 3DPW [37] dataset, (middle) 3D pose and
shape reconstruction overlayed on the input image, (right) 3D re-
construction shown from a rotated viewpoint.

tion towards solving this problem in real-time.
Most optimization methods [5, 17, 19, 24, 25, 39] formu-

late 3D human pose and shape estimation as dense uncon-
strained optimization problems, differing only in terms of
the objective functions. These formulations are dense as
they result in dense Hessian matrices and unconstrained
as the optimization variables are unconstrained. To opti-
mize the objective they use iterative techniques like Gauss-
Newton [26] to find a local minimum given an initial guess.
These formulations however, suffer from high computa-
tion times due to the dense Hessian matrices that lead to
O(K3) +O(K2N) time to compute the Gauss-Newton di-
rection for a 3D human model with K joints and N mea-
surements. In particular, computing this direction involves
the steps of linearization to find the Jacobian, building and
then solving the linear system, where a dense formulation
renders all these steps expensive. Therefore, it is critical to
improve the efficiency of the Gauss-Newton direction com-
putation to develop real-time optimization methods for 3D
human pose and shape estimation.

https://sites.google.com/view/scope-human/
https://sites.google.com/view/scope-human/


In this work, instead of using the dense uncon-
strained formulation from existing optimization methods,
we present a sparse constrained formulation that is math-
ematically equivalent under mild assumptions. We show
how the underlying sparsity and constraints of our formu-
lation can be exploited leading to sparse Hessian matrices
and ultimately computing the Gauss-Newton direction in
O(K) + O(N) time for a 3D human model with K joints
and N measurements. Our optimization method, SCOPE
(Sparse Constrained Optimization for 3D human Pose and
shapE estimation), is thus orders of magnitude faster (av-
erage 4 ms convergence) than existing optimization meth-
ods, particularly when the number of joints K and mea-
surements N is large.

Based on our optimization method, we present a real-
time 3D motion capture framework (illustrated in Figure 2)
that estimates 3D human poses and shapes from a sin-
gle image at over 30 FPS. Example solutions are shown
in Figure 1. Our method allows using a modified SMPL
model [20] that has 75 degrees of freedom and 10 shape pa-
rameters, and estimates both human poses and shapes with
which the 3D human mesh can be fully reconstructed. In
contrast, several real-time 3D motion capture frameworks
using optimization methods [24, 25] adopt a much simpler
3D skeleton model with 33 degrees of freedom and no shape
parameters to reduce the computation complexity and are
therefore unable to reconstruct the 3D human mesh. We
compare our real-time 3D motion capture framework with
numerous state-of-the-art methods [5, 12, 15, 16, 17, 39] on
public benchmark datasets [10, 23, 37]. Our framework
achieves accuracies that outperform optimization meth-
ods [5, 17, 25, 39] and are competitive to regression meth-
ods [12, 15].

In summary, our contributions are: (i) we propose a
sparse constrained formulation for 3D human pose and
shape estimation that is mathematically equivalent to the
dense unconstrained formulation of existing optimization
methods under mild assumptions; (ii) we develop an ef-
ficient algorithm that computes the Gauss-Newton direc-
tion in linear-time complexity with respect to the number of
joints and measurements; and (iii) we present a real-time 3D
motion capture framework that estimates 3D human poses
and shapes from a single image.

2. Related work
Optimization methods estimate human poses and

shapes by matching 3D joints on the human body to 2D
keypoints on the image. Works in human body model-
ing [2, 20, 27] and 2D keypoint detection [6, 8, 36] have
made substantial contributions, but the resulting optimiza-
tion problem remains challenging due to the ambiguity in
the 3D information from an image and the uncertainty of
3D human poses. To address this, recent works have in-

corporated 3D information, such as 3D keypoint positions
[24, 25], part orientation fields [39], silhouette [9], etc, as
additional fitting terms. Additionally, human 3D pose pri-
ors in the form of mixture of Gaussians [5], variational auto-
encoder [28], and normalizing flow [40] have been trained
from numerous datasets [10,11,21] and successfully applied
to human 3D pose and shape estimation. A closer look at
these optimization methods [5,17,24,25,39,40] does reveal
that they primarily differ in their loss terms of the objective
function while still utilizing the same underlying dense un-
constrained formulation. We show that such a formulation
is inherently inefficient in computing the Gauss-Newton di-
rection. Thus despite the considerable progress, these meth-
ods still take tens of seconds to converge and are impractical
for real time applications.

Regression methods use deep neural networks to
regress human poses and shapes directly from images. In
most cases, regression methods [12, 15, 16, 34] take only
tens of milliseconds to process one image and meet the
real-time requirements. Unlike [22, 29, 30, 31, 32] that lift
2D keypoints to 3D keypoints, regression methods for 3D
human pose and shape estimation face a challenge in hav-
ing access to large datasets with ground truth labels of 3D
human pose and shape. To address this, regressions meth-
ods often employ optimization methods to precompute 3D
ground truth for supervision [12] or even have optimization
methods in the loop [15] during training. Other examples
like [34] rely on optimization methods to refine the network
outputs. In these aforementioned scenarios, the computa-
tional efficiency of optimization methods play an important
role both during training and deployment.

3. Problem Formulation
3.1. SMPL Model

The SMPL model [20] is a vertex-based linear blend
skinning 3D human model. In this paper, we use a SMPL
model that has K = 23 rotational joints, N = 6890 ver-
tices, and P = 10 shape parameters.

The SMPL model represents the human body using a
kinematic tree with K + 1 inter-connected body parts in-
dexed with i = 0, 1, · · · , K. In the rest of this paper,
we use par(i) to denote the parent of body part i, and
Ti ∈ SE(3) the pose of body part i, and Ωi ∈ SO(3)
the state of joint i, and β ∈ RP the shape parameters. Note
that body part i is connected to its parent body part par(i)
through joint i.

In the Supplementary Material, we show that it is pos-
sible to extract Si ∈ R3×P and li ∈ R3 from the SMPL
model such that the relative pose Tpar(i),i ∈ SE(3) be-
tween body part i and its parent body part par(i) is

Tpar(i),i ,

[
Ωi Si · β + li
0 1

]
. (1)



Furthermore, if Ti ∈ SE(3) of body part i is represented

as Ti ,

[
Ri ti
0 1

]
∈ SE(3) in which Ri ∈ SO(3) is

the rotation and ti ∈ R3 is the translation, then Ti can be
recursively computed as

Ti = Tpar(i)Tpar(i),i = Tpar(i)

[
Ωi Si · β + li
0 1

]
. (2)

3.2. Rigid Skinning Assumption of Keypoints

We need to select a set of joints and vertices on the
SMPL model as keypoints to calculate 2D and 3D keypoint
losses, part orientation field losses, etc. [5,24,25,39]. In this
paper, we modify the SMPL model and make the following
assumption of the selected keypoints for loss calculation.

Assumption 1. Each keypoint j is rigidly attached to a
body part i, i.e., the position vj ∈ R3 of keypoint j is

vj = Rivj + ti, (3)

in which Ri ∈ SO(3) and ti ∈ R3 are the rotation and
translation of pose Ti ∈ SE(3), and vj ∈ R3 is the relative
position of keypoint j with respect to body part i. Further-
more, there exists Vj ∈ R3×P and vj,0 ∈ R3 such that the
relative position vj ∈ R3 in Eq. (3) is evaluated as

vj = Vj · β + vj,0. (4)

For simplicity, we use Vj and vj,0 extracted from the
joint and vertex positions at the rest pose of the SMPL
model, whose derivation is similar to that of Si and li in
Eq. (1). We remark that Assumption 1 is important for our
sparse constrained formulation presented later in this paper.

Compared to the SMPL model, Assumption 1 keeps
rigid skinning (shape blend shapes) while dropping non-
rigid skinning (pose blend shapes) for the vertex keypoints.
We argue that Assumption 1 is a reasonable and mild mod-
ification for human pose and shape estimation. First, the
SMPL model evaluates the joint keypoints, such as wrists,
elbows, knees, etc, using Eq. (2), which is essentially equiv-
alent to Eqs. (3) and (4) of rigid skinning. While the SMPL
model has each vertex position depend on the poses of all
the body parts, the vertices selected as keypoints, such as
nose, eyes, ears, etc., are mainly affected by a single body
part. Finally, we note that inaccuracies are also present
in 2D and 3D keypoint measurements used for estimation,
which are usually much larger than those induced by the
SMPL model modification using Eqs. (3) and (4).

3.3. Objective Function

Given an RGB image, we use the following objective for
human pose and shape estimation:

E =
∑

0≤i≤K

(
E2D,i + λ3D · E3D,i + λp · Ep,i+

λT · ET,i + λΩ · EΩ,i

)
+ λβ · Eβ , (5)

in which λ3D, λp, λT, λΩ and λβ are scalar weights and
joint state Ω0 ∈ SO(3) for body part 0 is a dummy variable.
Each loss term in Eq. (5) is defined as follows:

1. E2D,i , 1
2

∑
j∈V2D,i

‖ΠK(vj) − v̂2D,j‖2 is the 2D
keypoint loss, where V2D,i is the set of indices of key-
points attached to body part i and selected to calculate
the 2D keypoint loss, ΠK(·) is the 3D to 2D projection
map with camera intrinsics K, vj ∈ R3 is the keypoint
position, and v̂2D,j ∈ R2 is the 2D keypoint measure-
ment.

2. E3D,i , 1
2

∑
j∈V3D,i

‖vj − v̂3D,j‖2 is the 3D keypoint
loss, where V3D,i is the set of indices of keypoints at-
tached to body part i and selected to calculate the 3D
keypoint loss, vj ∈ R3 is the keypoint position and
v̂3D,j ∈ R3 is the 3D keypoint measurement.

3. Ep,i , 1
2

∑
j∈Pi

∥∥ vj−ti
‖vj−ti‖ − p̂j

∥∥2
is the part orienta-

tion field loss [39], where Pi is the set of indices of
keypoints attached to body part i and selected to cal-
culate the part orientation field loss, vj ∈ R3 is the
keypoint position, and ti ∈ R3 is the position of body
part i as well as the translation of pose Ti ∈ SE(3),
and p̂i ∈ R3 is the part orientation field measurement.

4. ET,i , 1
2‖Ti − T̂i‖2 is the prior loss of pose Ti ∈

SE(3), where T̂i ∈ SE(3) is a known prior estimate.
5. EΩ,i , 1

2‖rΩi(Ωi)‖2 is the prior loss of joint state
Ωi ∈ SO(3), where rΩi(·) is a normalizing flow of
SO(3) trained on the AMASS dataset [21]. Please see
the Supplementary Material for more details on EΩ,i.

6. Eβ , 1
2‖β‖

2 is the prior loss of shape parameters β ∈
RP .

From the definitions above, each loss term E(#),i in
Eq. (5) can be in general formulated as

E(#),i =
∑
j

1

2
‖r(#),ij(Ti, Ωi, β, vj)‖2, (6)

in which r(#),ij(·) is a function of Ti, Ωi, β and vj . Since
keypoint j in Eq. (6) is attached to body part i, then Eqs. (3)
and (4) indicate that vj is a function of Ti and β:

vj = Ri

(
Vj · β + vj,0

)
+ ti. (7)

As a result of Eq. (7), we might cancel out vj in Eq. (6) and
simplify r(#),ij(·) as a function of Ti, Ωi and β:

E(#),i =
∑
j

1

2
‖r(#),ij(Ti, Ωi, β)‖2. (8)

We remark that r(#),ij(·) in Eq. (8) is related to Ti ∈
SE(3) and Ωi ∈ SO(3) of a single body part i. Then,
Eq. (8) immediately suggests that Eq. (5) takes the form of

E =
∑

0≤i≤K

1

2
‖ri(Ti,Ωi,β)‖2, (9)

in which each ri(·) is a function of Ti ∈ SE(3), Ωi ∈
SO(3) and β ∈ RP . Besides those in Eq. (5), a number of
losses can be written in the form of Eqs. (6) and (8) as well.



3.4. Dense Unconstrained Optimization

With Eqs. (1) and (2), we might recursively compute
each Ti ∈ SE(3) through a top-down traversal of the
kinematics tree. Thus, each Ti can be written as a func-
tion of the root pose T0 ∈ SE(3), the joint states Ω ,
(Ω0, Ω1, · · · , ΩK) ∈ SO(3)K+1 and the shape parame-
ters β ∈ RP :

Ti , Ti (T0,Ω,β) . (10)

In existing optimization methods [5, 17, 24, 25, 28, 39],
Eq. (10) is substituted into Eq. (9) to cancel out non-root
poses Ti ∈ SE(3) (1 ≤ i ≤ K), which results in a
dense unconstrained optimization problem of T0 ∈ SE(3),
Ω ∈ SO(3)K and β ∈ RP :

min
T0,Ω,β

E =
∑

0≤i≤K

1

2
‖ri(T0,Ω,β)‖2. (11)

In general, Gauss-Newton is the preferred method to
solve optimization problems of the kind in Eq. (11). This
consists of linearization to find the Jacobian matrix, build-
ing and then solving the linear system to find the Gauss-
Newton direction. In the Supplementary Material we show
that Eq. (11) yields a dense linear system when computing
the Gauss-Newton direction. Since the complexity of dense
linear system computation increases superlinearly with their
size, the dense unconstrained formulation of Eq. (11) has
poor scalability when the human model has large numbers
of joints and measurements.

4. Method
In this section, we present a sparse constrained formula-

tion for 3D human pose and shape estimation that is mathe-
matically equivalent to the dense unconstrained one in Sec-
tion 3.4. From our formulation, we derive a method that
scales linearly with the number of joints and measurements
to compute the Gauss-Newton direction.

4.1. Sparse Constrained Optimization

We introduce βi ∈ RP with βi = βpar(i) for each body
part i in the SMPL model. Since βi = βpar(i) indicates
βi = β, and Ti, Ωi and β satisfy the kinematic constraints
of Eq. (2), we formulate 3D human pose and shape estima-
tion of Eq. (9) as a sparse constrained optimization problem
on {Ti, βi, Ωi}Ki=0 ∈

(
SE(3)× RP × SO(3)

)K+1
:

min
{Ti,βi,Ωi}Ki=0

∑
0≤i≤K

1

2
‖ri(Ti,Ωi,βi)‖2 (12)

subject to

Ti = Fi(Tpar(i), βpar(i),Ωi)

, Tpar(i)

[
Ωi Si · βpar(i) + li
0 1

]
,

(13a)

βi = βpar(i). (13b)

In Eq. (13a), note that Fi(·) : SE(3) × RP × SO(3) →
SE(3) is a function corresponding to Eq. (2) and maps
Tpar(i), βpar(i), Ωi to Ti. For notational simplicity, we
define xi , (Ti, βi) ∈ SE(3) × RP . Then, Eqs. (12)
and (13) are equivalent to

min
{xi,Ωi}Ki=0

∑
0≤i≤K

1

2
‖ri(xi,Ωi)‖2 (14)

subject to

xi =

[
Fi(xpar(i), Ωi)

βpar(i)

]
. (15)

In spite of additional optimization variables and kinematic
constraints compared to Eq. (11), we have the following
proposition for our sparse constrained formulation.

Proposition 1. Eqs. (14) and (15) are equivalent to Eq. (11)
(under Assumption 1).

Proof. Please refer to the Supplementary Material.

In the remainder of this section, we will make use of the
sparsity and constraints of Eqs. (14) and (15) to simplify the
computation of the Gauss-Newton direction.

4.2. Gauss-Newton Direction

The computation of the Gauss-Newton direction for
Eqs. (14) and (15) is summarized as follows.

Step 1: The linearization of Eqs. (14) and (15) results in

min
{∆xi,∆Ωi}Ki=0

∆E =
∑

0≤i≤K

1

2

∥∥Ji,1∆xi + Ji,2∆Ωi + ri
∥∥2
,

(16)
subject to

∆xi = Ai∆xpar(i) + Bi, (17)

in which ∆xi , (∆Ti, ∆βi) ∈ R6+P and ∆Ωi ∈ R3

are the Gauss-Newton directions of xi and Ωi, respectively,
and ri in Eq. (16) is the residue, and

Ji,1 ,
∂ri
∂xi

=

[
∂ri
∂Ti

∂ri
βi

]
and Ji,2 ,

∂ri
∂Ωi

, (18)

in Eq. (16) are the Jacobians, and

Ai ,

 ∂Fi
∂Tpar(i)

∂Fi
∂βpar(i)

0 I

 and Bi ,

 ∂Fi∂Ωi
0

 (19)

in Eq. (17) are the partial derivatives of Eq. (15). For
∆xi = (∆Ti, ∆βi) ∈ R6+P in Eqs. (16) and (17), note
that ∆Ti ∈ R6 and ∆βi ∈ RP are the Gauss-Newton di-
rection of Ti and βi, respectively.

Step 2: We reformulate Eqs. (16) and (17) as



Figure 2: Overview of our motion capture framework. Given an image, our preprocessing pipeline estimates a bounding box, 2D and 3D
keypoints. The 2D and 3D keypoints are then sent to our fast sparse constrained optimizer for 3D pose and shape reconstruction. Note that
3D keypoints are used to compute the part orientation fields [39].

min
{∆xi,∆Ωi}Ki=0

∆E=

K∑
i=0

[1

2
∆x>i Hi,11∆xi+∆Ω>i Hi,21∆xi+

1

2
∆Ω>i Hi,22∆Ωi + g>i,1∆xi + g>i,2∆Ωi

]
, (20)

subject to
∆xi = Ai∆xpar(i) + Bi∆Ωi, (21)

in which Hi,11 , J>i,1Ji,1, Hi,21 , J>i,2Ji,1 and Hi,22 ,

J>i,2Ji,2 are the Hessians, and gi,1 , J>i,1ri and gi,2 ,
J>i,2ri are the gradients.

Step 3: Solve Eqs. (20) and (21) to compute the Gauss-
Newton direction {∆xi, ∆Ωi}Ki=0.

Here, Steps 1 to 3 compute the Gauss-Newton direction
{∆xi, ∆Ωi}Ki=0 by solving a constrained quadratic opti-
mization problem. The following proposition is for its com-
pleteness and complexity.

Proposition 2. The resulting {∆xi, ∆Ωi}Ki=0 for Eqs. (14)
and (15) is also the Gauss-Newton direction for Eq. (11).
Furthermore, Eqs. (14) and (15) take O(K) + O(N) time
to compute {∆xi, ∆Ωi}Ki=0 using Steps 1 to 3, in which
K and N are the number of joints and measurements of the
3D human model, respectively. In contrast, Eq. (11) has a
complexity of O(K3) +O(K2N).

Proof. Please refer to the Supplementary Material.

In general, the computation of the Gauss-Newton direc-
tion occupies a significant portion of workloads in optimiza-
tion. Since our sparse constrained formulation improves
this computation by two orders in terms of the number of
joints and has the number of joints and measurements de-
coupled for the complexity, it is expected that our resulting
method greatly improves the efficiency of optimization.

5. Evaluation
In this section, we present quantitative and qualitative

evaluation of our method against state-of-the-art optimiza-
tion and regression methods on multiple public benchmark
datasets. All experiments are done on an Intel Xeon E3-
1505M 3.0GHz CPU and a NVIDIA Quadro GP 100 GPU.

5.1. Datasets

We evaluate all methods on the following datasets.
Human3.6M (H36M) [7, 10] is one of the most commonly
used datasets for 3D human pose (and shape) estimation
(it was obtained and used by coauthors affiliated with aca-
demic institutions). Following the standard training-testing
protocol established in [29], we use subjects S9 and S11 for
evaluation.
MPI-INF-3DHP [23] is a markerless dataset with multiple
viewpoints. We use subjects TS1-TS6 for evaluation where
the first four (TS1-TS4) are in a controlled lab environment
and the last two are in the wild (TS5-TS6).
3DPW [37] is an in-the-wild dataset captured from a mov-
ing single hand-held camera. IMU sensors are also used
to compute ground-truth poses and shapes using the SMPL
model. We use its defined test dataset for evaluation.

5.2. Real-time Motion Capture Framework

We design a real-time monocular motion capture frame-
work, illustrated in Figure 2, based on our fast optimization
method to recover 3D human poses and shapes from a sin-
gle image. Similar to the other frameworks [24, 25], ours
consists of a preprocessing pipeline with the input image
fed to YOLOv4-CSP [4, 38] for human detection, then to
AlphaPose [8] for 2D keypoint estimation, and finally to a
light-weight neural network that is a modification of Video-
Pose3D [30] for 2D-to-3D lifting. The output of the prepro-
cessing pipeline is then sent to our fast optimizer for 3D re-
construction. The Python API of NVIDIA TensorRT 7.2.1
is used to accelerate the inference of the preprocessing neu-
ral networks. Please refer to the Supplementary Material
for more details on our motion capture framework.

5.3. Computation Times

We evaluate all methods on their computation or infer-
ence times on the Human3.6M dataset [10] dataset. We
compare optimization methods against ours on the opti-
mization only time and compare all methods on the total
computation time per image.

Optimization time is reported in column 4 of Table 1.



Method
Time (s) Protocol 1 Protocol 2

Preprocessing Optimization Regression Total MPJPE ↓ PA-MPJPE ↓ PA-MPJPE ↓

Po
se

on
ly

Rogez et al. [31] – n/a – – – – 87.3
Rogez et al. [32] – n/a – – 87.7 71.6 –
Pavlakos et al. [29] – n/a – – 71.9 51.2 51.9
Martinez et al. [22] – n/a – – – – 47.7
Pavllo et al. [30] – n/a – – 51.8 40 –
*VNect [25] 0.026 0.008 n/a 0.034 80.5 – –

Po
se

an
d

sh
ap

e

HMR [12] 0.017 n/a 0.032 0.049 88.0 58.1 56.8
Kolotouros et al. [16] 0.017 n/a 0.023 0.040 74.7 51.9 50.1
SPIN [15] 0.017 n/a 0.012 0.029 65.6 44.6 41.1
*SMPLify [5] 0.029 45 n/a 45 – – 82.3
*UP-P91 [17] 0.029 40 n/a 40 – – 80.7
*MTC [39] 0.029 20 n/a 20 64.5 – –
*Ours 0.029 0.004 n/a 0.033 61.5 48.2 46.3

(*) optimization method (n/a) not applicable (–) unreported statistic

Table 1: Evaluation on the Human3.6M dataset comparing computational times (s) and accuracy (mm) with Protocols 1 and 2. Overall,
our method significantly outperforms all optimization methods with orders of magnitude speed up, and is competitive against the best
performing regression method SPIN [15]. Preprocessing time for regression methods is the generation of human bounding boxes with
YOLOv4-CSP [38], and for optimization methods is the inference time of the front-end neural network. All the optimization is run on
CPU. VNect, MTC and ours are in C++, and SMPLify and UP-P91 are in Python.

Our method converges in 20-50 iterations taking less than
4ms on average to reconstruct 3D human poses and shapes.
In contrast to existing optimization methods that estimate
pose and shape [5, 17, 39] in 20-45s, ours is 4 orders of
magnitude faster. As discussed earlier, our method uses
the SPML model with 2.6 times as many variables (75
degrees of freedom and 10 shape parameters) as the 3D
skeleton in VNect [25] (33 degrees of freedom and no
shape parameters)—note that the complexity of optimiza-
tion problems typically increases superlinearly with the
number of optimization variables. Our optimization method
is still twice as fast as VNect that only estimates poses (with
an objective function with fewer loss terms). We attribute
the significant improvements in optimization times to our
sparse constrained formulation whose computation of the
Gauss-Newton direction has linear rather than cubic com-
plexity with the number of joints and measurements. The
ablation studies in Section 5.6 and the Supplementary Ma-
terial further support our complexity analysis.

Total time includes the preprocessing time and any op-
timization or regression time and reflects the overall time
it takes for a method to produce estimates given an image.
All timings are reported in columns 3-6 of Table 1. The
regression methods [12, 15, 16] use ground-truth bounding
boxes during evaluation. Therefore, we assume YOLOv4-
CSP [4, 38] (17ms) is used in practice to obtain bounding
boxes from images and count it as the preprocessing time
per image. For the optimization methods, the preprocessing
time of VNect [25] is computed from its own neural net-
works while for others [5,17,39] the preprocessing pipeline
is similar to ours and we assume their times (29ms) are
close to ours. Note that in our method the 29ms prepro-

cessing time is a significant portion of the total time, while
for the other optimization methods (that estimate pose and
shape) it is negligible compared to their optimization times.
SPIN [15] has the lowest total time of 29ms and ours is a
close second with 33ms. Our motion capture framework
thus has a speed of over 30 FPS which is sufficient for real-
time applications.

5.4. Accuracy

Human3.6M. We evaluate all methods on the Mean
Per-Joint Position Errors without (MPJPE) and with (PA-
MPJPE) Procrustes Alignment on two common protocols.
Protocol 1 uses all the four cameras and Protocol 2 only
uses the frontal camera. The results are reported in columns
7-9 of Table 1. Our framework outperforms the other meth-
ods on Protocol 1 MPJPE, and achieve the second lowest
PA-MPJPE slightly behind SPIN [15] on both Protocols 1
and 2. Though not presented in Table 1, our method also
has the lowest MPJPE on Protocol 2, which is 60.3 mm.

MPI-INF-3DHP. This is a more challenging dataset
than Human3.6M dataset. In addition to MPJPE, we also
compare on Percentage of Correct Keypoints (PCK) with a
threshold of 150 mm and Area Under the Curve (AUC) for
a range of PCK thresholds as alternate metrics for evalua-
tion. The results of MPI-INF-3DHP without and with rigid
alignment are presented in Table 2. Our method achieves
the state-of-the-art performance on all metrics.

3DPW. The results are reported in Table 3. Our method
has the second lowest MPJPE and PA-MPJPE, and is com-
petitive against the regression method SPIN [15]. Our
method also outperforms regression methods that use mul-
tiples frames [3, 13].



Method PCK ↑ AUC ↑ MPJPE ↓
Absolute (w/o rigid alignment)

Mehta et al. [5] 75.7 39.3 117.6
HMR [12] 72.9 36.5 124.2
SPIN [15] 76.4 37.1 105.2
*XNect [24] 77.8 38.9 115.0
*VNect [25] 76.6 40.4 124.7
*Ours 83.0 41.9 91.5

Rigid aligned
HMR [12] 86.3 47.8 89.8
SPIN [15] 92.5 55.6 67.5
*VNect [25] 83.9 47.3 98.0
*Ours 94.6 59.0 62.1

Table 2: Evaluation on the MPI-INF-3DHP dataset. Our method
outperforms optimization (denoted by *) and regression methods
over multiple accuracy metrics before and after rigid alignment.

Method MPJPE ↓ PA-MPJPE ↓
HMR [12] 130 81.3
Kolotouros et al. [16] – 70.2
SPIN [15] 96.9 59.2
‡Arnab et al. [3] – 72.2
‡Kanazawa et al. [13] 116.5 72.6
*XNect [24] 134.2 80.3
*Ours 98.6 68.0

Table 3: Evaluation on the 3DPW dataset. Our method is compet-
itive against the best regression method SPIN. * denotes optimiza-
tion method and ‡ indicates that the method uses multiple frames.

5.5. Qualitative Results

We present typical failure cases due to inaccurate de-
tection of our preprocessing pipeline in Fig. 3 and quali-
tative comparisons with SPIN [15] and SMPLify [5] on dif-
ficult examples from the Human3.6M, MPI-INF-3DHP and
3DPW datasets in Fig. 4. For a fair comparison, we add ex-
tra 3D keypoint measurements to SMPLify to improve its
performance. We also show more qualitative results in the
Supplementary Material. In Fig. 4 and Supplementary Ma-
terial, it can be seen that our method has better pixel align-
ment than SPIN [15] and generates results of higher quality
than SMPLify [5].

5.6. Ablation Studies

In the ablation stuidies, we perform the following exper-
iments on the SMPL model [20] with K = 23 joints and
SMPL+H model [33] with K = 51 joints to compute the
Gauss-Newton direction.

Experiment 1. The number of shape parameters P is 0
and the number of measurements N increases from 120 to
600 for both of the SMPL and SMPL+H models.

Experiment 2. The number of shape parameters P is 10
and the number of measurements N increases from 120 to
600 for both of the SMPL and SMPL+H models.

Figure 3: Typical failure cases of our method due to (left)
body part occlusion, (middle) incorrect body orientation detection,
(right) depth ambiguity of monocular camera.

Figure 4: Qualitative comparisons of our method (second row in
pink), SPIN [15] (third row in gray), and SMPLify [5] (fourth
row in purple) on the Human3.6M, MPI-INF-3DHP and 3DPW
datasets. Please see Supplementary Material for more qualitative
comparisons.

Experiment 3. The number of shape parameters P in-
creases from 0 to 10, and each joint of the SMPL and
SMPL+H models is assigned with a 2D keypoint, a 3D key-
point, and a part orientation field as measurements.

The SMPL and SMPL+H models have different numbers



(a) Experiment 1 (b) Experiment 2 (c) Experiment 3

Figure 5: The CPU times on the SMPL and SMPL+H models w/
and w/o our method in Experiments 1 to 3.

(a) Experiment 1 (b) Experiment 2 (c) Experiment 3

Figure 6: The CPU time ratios of the SMPL+H vs. SMPL models
w and w/o our method in Experiments 1 to 3.

(a) Experiment 1 (b) Experiment 2 (c) Experiment 3

Figure 7: The speedups on the SMPL and SMPL+H models w/
our method in Experiments 1 to 3.

of joints, and Experiments 1 to 3 have varying numbers of
measurements and shape parameters. Thus, these experi-
ments are sufficient to evaluate the impacts of the number of
joints K, measurements N and shape parameters P on the
computation of the Gauss-Newton direction. A more com-
plete analysis of ablation studies is presented in the Supple-
mentary Material.

The CPU times on the SMPL and SMPL+H models w/
and w/o our method are reported in Fig. 5. In all the experi-
ments, our method using the sparse constrained formulation
is a lot faster than that using the dense unconstrained formu-
lation regardless of the number of joints, measurements and
shape parameters.

The CPU time ratios of the SMPL+H vs. SMPL models
w and w/o our method are reported in Fig. 6. As mentioned
before, the SMPL and SMPL+H models have K = 23 and
K = 51 joints, respectively, and as a result, such CPU time
ratios reflect the influences of the number of joints K on
the computation of the Gauss-Newton direction. The cal-
culation of the expected CPU ratios w/ and w/o method in
Fig. 6 is provided in the Supplementary Material. In Fig. 6,
it can be seen that the impacts of the number of joints is
around O(K2) times less on our method, which is consis-

tent with the O(K) complexity of our sparse constrained
formation against O(K3) of the dense unconstrained one.

The speedups on the SMPL and SMPL+H models w/
our method are reported in Fig. 7. In Figs. 7(a) and 7(b),
our method has greater speedup if there are more measure-
ments, and achieves better performance on the SMPL+H
model with more joints, whose results are expected since
our sparse constrained formulation hasO(N) complexity—
note that N is not coupled with K—in contrast to the dense
unconstrained formulation with O(K2N) complexity, in
whichK andN are the number of joints and measurements,
respectively. In Fig. 7(c), it can be seen that that speedup de-
creases with more shape parameters, and this is due to that
both formulations have the same complexities for the shape
parameters.

6. Discussion
We revitalized the optimization approach to address the

problem of 3D human pose and shape estimation by pre-
senting a sparse constrained formulation that performs on
par with regression methods. We demonstrated how to ex-
ploit the sparsity in our formulation and build an optimizer
that can compute the Gauss-Newton direction in only linear
complexity (with respect to the number of joints and mea-
surements in the human model). This was a key contribut-
ing factor in bringing down the computation times of exist-
ing optimization methods by orders of magnitude to 4ms. In
benchmarks across multiple datasets on several metrics our
framework, that uses a preprocessing neural network plus
our optimizer, was highly competitive against the best per-
forming regression method in terms of speed and accuracy.

We note that our fast framework can also benefit regres-
sion methods by quickly refining their outputs or by reduc-
ing training times for methods that train with some opti-
mization in the loop.

The qualitative results illustrate that our framework was
mainly limited by the reliability of the preprocessor. While
our primary focus in this work was on the optimization
side, some investment in engineering the preprocessor could
yield further improvements in performance. Although we
employed the SMPL model in our current implementation,
our optimizer has the flexibility to support other types of 3D
human models if the appropriate loss terms are specified for
the objective. In particular, sparse 3D human models such
as STAR [27] would be well suited for our method. With an
additional preprocessor, and model and loss terms to sup-
port human hands and facial expressions, our framework
can also be extended to address the total 3D human capture
problem.
Acknowledgments. For this work authors affiliated with
Northwestern University were partially supported by the
National Science Foundation under award DCSD-1662233.



Supplementary Materials
Revitalizing Optimization for 3D Human Pose and Shape Estimation:

A Sparse Constrained Formulation

Taosha Fan1,2, Kalyan Vasudev Alwala1, Donglai Xiang3,4, Weipeng Xu3,
Todd Murphey2, Mustafa Mukadam1

1Facebook AI Research, 2Northwestern University,
3Facebook Reality Labs, 4Carnegie Mellon University

Abstract
In this supplementary material, we present the proofs of

the propositions in the paper and a comprehensive com-
plexity analysis of the dense unconstrained and sparse con-
strained formulations for 3D human pose and shape estima-
tion, from which we derive an efficient algorithm to compute
the Gauss-Newton direction. In addition, we present more
results of qualitative comparisons and ablation studies to
validate our work. Finally, we provide a more detailed de-
scription of our real-time motion capture framework, the
prior loss of joint states, and how to implement our method
on similar articulated tracking problems.

A. Proofs
A.1. Proof of Proposition 1

In this proof, we show the following two optimization
problems are equivalent:

min
T0,Ω,β

E =

K∑
i=0

1

2
‖ri(T0, Ω, β)‖2, (22)

and

min
{Ti,Ωi,βi}Ki=0

E =

K∑
i=0

1

2
‖ri(Ti, Ωi, βi)‖2 (23)

subject to

Ti =Fi(Tpar(i), βpar(i), Ωi)

,Tpar(i)

[
Ωi Si · βpar(i) + li
0 1

]
,

(24a)

βi = βpar(i). (24b)

In Eqs. (22) and (23), Ti ∈ SE(3) is the rigid body
transformation of body part i, and Ωi is the state of joint

i, and Ω , (Ω1, · · · , ΩK) ∈ SO(3)K are the joint
states, and β and βi ∈ RP are the shape parameters, and
Fi(·) : SE(3) × RP × SO(3) → SE(3) is a function that
maps Tpar(i), βpar(i) and Ωi to Ti. Note that Eqs. (22)
and (23) are the dense unconstrained and sparse constrained
formulations, respectively, for 3D human pose and shape
estimation that are defined in the paper.

From Eq. (24b), if we let β0 = β, then, βi = β for all
i = 1, · · · , K. Thus, Eq. (23) is reduced to

min
{Ti,Ωi,βi}Ki=0

E =

K∑
i=0

1

2
‖ri(Ti, Ωi, β)‖2 (25)

subject to

Ti =Fi(Tpar(i), β, Ωi)

=Tpar(i)

[
Ωi Si · β + li
0 1

]
.

(26)

Next, as mentioned in the paper, if we perform a top-down
traversal of the kinematic tree of the SMPL model and re-
cursively exploit Eq. (26) for each body part i = 1, · · · , K,
then, all of Ti ∈ SE(3) can be represented as a func-
tion of the root pose T0 ∈ SE(3), and the joint states
Ω ∈ SO(3)K , and the shape parameter β ∈ RP , i.e.,

Ti , Ti (T0, Ω, β) (27)

If we use Eq. (27) to cancel out non-root rigid body trans-
formations Ti (1 ≤ i ≤ K), then, each ri(·) in Eq. (25) is
rewritten as a function of T0 ∈ SE(3), and Ω ∈ SO(3)K ,
and β ∈ RP , from which we obtain an optimization prob-
lem of a dense unconstrained formulation

min
T0,Ω,β

E =

K∑
i=0

1

2
‖ri(T0, Ω, β)‖2

that is the same as Eq. (22). Therefore, it can be concluded
that Eqs. (22) and (23) are equivalent. The proof is com-
pleted.

9



A.2. Proof of Proposition 2

The proof of proposition 2 is organized as follows: we
present an overview of the steps to compute the Gauss-
Newton direction in Section A.2.1, and show that the steps
for the two formulations result in the same Gauss-Newton
direction in Section A.2.2, and derive a dynamic program-
ming algorithm to solve the quadratic program of the sparse
constrained formulation in Section A.2.3, and analyze the
complexity of the aforementioned steps to compute the
Gauss-Newton direction in Section A.2.4.

A.2.1 Steps to Compute the Gauss-Newton Direction

With similar notation to the paper, we introduce x ,
(T0, Ω, β) ∈ SE(3) × SO(3)K × RP and xi ,
(Ti, βi) ∈ SE(3) × RP . Then Eqs. (22) and (23) can
be rewritten as

min
x

E =

K∑
i=0

1

2
‖ri(x)‖2, (28)

and
min

{xi,Ωi}Ki=0

E =

K∑
i=0

1

2
‖ri(xi, Ωi)‖2 (29)

subject to

xi =

[
Fi(xpar(i), Ωi)

βpar(i)

]
, (30)

respectively. For analytical clarity, we assume with no loss
of generality that the residues ri(x) and ri(xi, Ωi) areNi×
1 vectors for i = 0, · · · , K.

Following the procedure originally given in the paper, an
overview of steps to compute the Gauss-Newton direction
for the dense unconstrained and sparse constrained formu-
lations is given in Table 4, which will be frequently used in
the rest of this proof.

A.2.2 The Equivalence of the Gauss-Newton Direction

In Table 4, since Steps 2 and 3 are the reformulation of
Step 1, we only need to show that the linearizations of dense
unconstrained and sparse constrained formulations in Step
1, i.e., Eqs. (31) and (33), are equivalent. From Eq. (27), the
rigid body transformation Ti ∈ SE(3) of body part i can
be written as a function of T0, Ω and β. Furthermore, it is
by the definition of ri(·) that

ri(T0, Ω, β) = ri
(
Ti(T0, Ω, β), Ωi, β

)
.

From the equation above, Ji∆x in Eq. (31) can be com-
puted using Ji,1 and Ji,2 in Eq. (33):

Ji∆x = Ji,1

[
∂Ti

∂T0
∆T0 + ∂Ti

∂Ω ∆Ω + ∂Ti

∂β ∆β

β

]
+Ji,2∆Ωi.

(42)

Note that the partial derivatives ∂Ti

∂T0
, ∂Ti

∂Ω and ∂Ti

∂β in the
right-hand side of Eq. (42) are obtained by the recursive
implementation of Eq. (34). Therefore, it can be con-
cluded that Eqs. (31) and (33) are equivalent to each other,
which suggests that the dense unconstrained and sparse con-
strained formulations result in the same Gauss-Newton di-
rection.

A.2.3 Algorithm to Solve Eq. (40)

In Table 4, it is straightforward to follow Steps 1–2 of
the sparse constrained formulation to compute the Gauss-
Newton direction. Next, we need to solve the quadratic pro-
gram of Eq. (40) in Step 3, which is nontrivial. In this sub-
section, we derive a dynamic programming algorithm that
exploits the sparsity and constraints of Eq. (34) such that
the Gauss-Newton direction can be exactly computed.

For notational simplicity, we let par(i), chd(i) and
des(i) be the parent, children and descendants of body part
i in the kinematics tree, and assume i > par(i) for all
i = 1, · · · , K.

First, we define Ei(·) : R6+P → R to be a function of
∆xpar(i) ∈ R6+P in the form of an optimization problem
of {∆xj , ∆Ωj} for j ∈ {i} ∪ des(i)

Ei(∆xpar(i)) ,

min
{∆xj ,∆Ωj}j∈{i}∪des(i)

∑
j∈{i}∪des(i)

[1

2
∆x>j Hj,11∆xj+

∆Ω>j Hj,21∆xj +
1

2
∆Ω>j Hj,22∆Ωj+

g>j,1∆xj + g>j,2∆Ωj

]
(43)

subject to

∆xj = Aj∆xpar(j) + Bj∆Ωj , ∀j ∈ {i} ∪ des(i), (44)

in which ∆xpar(i) ∈ R6+P is given. Furthermore, if
Ej(·) : R6+P → R is defined for all j ∈ chd(i), then, it
is from Eq. (43) that Ei(·) can be reduced to an optimiza-
tion problem of ∆xi and ∆Ωi

Ei(∆xpar(i)) , min
∆xi,∆Ωi

[1

2
∆x>i Hi,11∆xi+

∆Ω>i Hi,21∆xi +
1

2
∆Ω>i Hi,22∆Ωi + g>i,1∆xi+

g>i,2∆Ωi +
∑

j∈chd(i)

Ej(∆xi)
]

(45)

subject to

∆xi = Ai∆xpar(i) + Bi∆Ωi,

in which ∆xpar(i) ∈ R6+P is given. Note that Eq. (45) is
an intermediate procedure that is essential for our dynamic
programming algorithm.



Dense Unconstrained Formulation Sparse Constrained Formulation

Step 1

The linearization of Eq. (28) results in

min
∆x

∆E =

K∑
i=0

1

2
‖Ji∆x + ri‖2, (31)

in which ∆x , (∆T0, ∆Ω, ∆β) ∈ R6+3K+P , ∆T0 ∈
R6, ∆Ω ∈ R3K and ∆β ∈ RP are the Gauss-Newton
directions of x, T0, Ω and β, respectively, and

Ji ,

[
∂ri
∂T0

∂ri
∂Ω

∂ri
∂β

]
∈ RNi×(6+3K+P ) (32)

is the Jacobian of ri(·), and ri ∈ RNi is the residue.

The linearization of Eq. (29) results in

min
{∆xi,∆Ωi}Ki=0

∆E =

K∑
i=0

1

2
‖Ji,1∆xi + Ji,2∆Ωi + ri‖2

(33)
subject to

∆xi = Ai∆xpar(i) + Bi∆Ωi, (34)

in which ∆xi , (∆Ti, ∆βi) ∈ R6+P , ∆Ti ∈ R6,
∆Ωi ∈ R3 and ∆βi ∈ RP are the Gauss-Newton di-
rections of xi, Ti, Ωi and βi, respectively, and

Ji,1 ,

[
∂ri
∂Ti

∂ri
∂βi

]
∈ RNi×(6+P ) (35)

and
Ji,2 ,

∂ri
∂Ωi

∈ RNi×3 (36)

are the Jacobians of ri(·), and

Ai ,

 ∂Fi
∂Tpar(i)

∂Fi
∂βpar(i)

0 I

 ∈ R(6+P )×(6+P ) (37)

and

Bi ,

 ∂Fi∂Ωi
0

 ∈ R(6+P )×3 (38)

are the partial derivatives of Eq. (34), and ri ∈ RNi is the
residue.

Step 2

Reformulate Eq. (31) as

min
∆x

∆E =
1

2
∆x>H∆x + g>∆x (39)

in which H ,
∑K
i=0 J>i Ji ∈ R(6+3K+P )×(6+3K+P ) is

the Hessian, and g ,
∑K
i=0 J>i ri ∈ R(6+3K+P ) is the

gradient.

Reformulate Eq. (33) as

min
{∆xi,∆Ωi}Ki=0

∆E =

K∑
i=0

[1

2
∆x>i Hi,11∆xi+

∆Ω>i Hi,21∆xi +
1

2
∆Ω>i Hi,22∆Ωi+

g>i,1∆xi + g>i,2∆Ωi

]
(40)

subject to

∆xi = Ai∆xpar(i) + Bi∆Ωi,

in which Hi,11 , J>i,1Ji,1 ∈ R(6+P )×(6+P ), Hi,21 ,

J>i,2Ji,1 ∈ R3×(6+P ), and Hi,22 , J>i,2Ji,2 ∈ R3×3

are the Hessians, and gi,1 , J>i,1ri ∈ R6+P and gi,2 ,
J>i,2ri ∈ R6+P are the gradients.

Step 3

Compute the Gauss-Newton direction from Eq. (39),
which has a closed-form solution

∆x = −H−1g. (41)

Compute the Gauss-Newton direction from Eq. (40),
which can be exactly solved by Algorithm 1.

Table 4: Steps to compute the Gauss-Newton direction for the dense unconstrained and sparse constrained formulations.



Algorithm 1 Solve Eq. (40) and compute the Gauss-
Newton direction

Input: {Hi,11,Hi,21,Hi,22,gi,1,gi,2}Ki=0

Output: {∆xi,∆Ωi}Ki=0 and ∆E0

1: for i = K → 1 do
2: Ni,11 = Hi,11 +

∑
j∈chd(i) Mj,11

3: Ni,21 = Hi,21

4: Ni,22 = Hi,22

5: n1,i = gi,1 +
∑
j∈chd(i) mj,1

6: ni,2 = gi,2

7: ∆Ei =
∑
j∈chd(i) ∆Ej

8: Qi,11 = A>i Ni,11Ai

9: Qi,21 = B>i Ni,11Ai + Ni,21Ai

10: Qi,22 =B>i Ni,11Bi+Ni,21Bi+B>i N>i,21 +Ni,22

11: qi,1 = A>i ni,1

12: qi,2 = B>i ni,1 + ni,2

13: Ki = −Q−1
i,22Qi,21

14: ki = −Q−1
i,22qi,2

15: Mi,11 = Qi,11 −Q>i,21Q
−1
i,22Qi,21

16: m1,i = qi,1 −Q>i,21Q
−1
i,22qi,2

17: ∆Ei = ∆Ei − 1
2q>i,2Q

−1
i,22qi,2

18: end for
19: ∆Ω0 = 0

20: M0 = H0,11 +
∑
j∈chd(0) Mj,11

21: m0 = g0,1 +
∑
j∈chd(0) mj,1

22: ∆E0 =
∑
i∈chd(0) ∆Ei

23: x0 = −M−1
0 m0

24: ∆E0 = ∆E0 − 1
2m>0 M−1

0 m0

25: for i = 1→ K do
26: ∆Ωi = Ki∆xpar(i) + ki

27: ∆xi = Ai∆xpar(i) + Bi∆Ωi

28: end for

Next, suppose that there exists Mj ∈ R(6+P )×(6+P ),
mj ∈ R6+P and ∆Ej ∈ R for all j ∈ chd(i) such that
Ej(∆xi) can be written as

Ej(∆xi) =
1

2
∆x>i Mj∆xi + m>j ∆xi + ∆Ej . (46)

Applying Eq. (46) to Eq. (45), we obtain

Ei(∆xpar(i)) = min
∆xi,∆Ωi

1

2
∆xiNi,11∆xi+

∆Ω>i Ni,21∆xi +
1

2
∆Ω>i Ni,22∆Ωi+

n>i,1∆xi + n>i,2∆Ωi + ∆Ei (47)

subject to

∆xi = Ai∆xpar(i) + Bi∆Ωi,

in which
Ni,11 = Hi,11 +

∑
j∈chd(i)

Mi, (48a)

Ni,21 = Hi,21, (48b)

Ni,22 = Hi,22, (48c)

ni,1 = gi,1 +
∑

j∈chd(i)

mj , (48d)

ni,2 = gi,2, (48e)

∆Ei =
∑

j∈chd(i)

∆Ej . (48f)

Substitute Eq. (34) into Eq. (47) to cancel out ∆xi and sim-
plify the resulting equation to an unconstrained optimiza-
tion problem on ∆Ωi ∈ R3:

Ei(∆xpar(i)) = min
∆Ωi

1

2
∆xpar(i)Qi,11∆xpar(i)+

∆Ω>i Qi,21∆xpar(i) +
1

2
∆Ω>i Qi,22∆Ωi+

q>i,1∆xpar(i) + q>i,2∆Ωi + ∆Ei, (49)

in which
Qi,11 = A>i Ni,11Ai, (50a)

Qi,21 = B>i Ni,11Ai + Ni,21Ai, (50b)

Qi,22 = B>i Ni,11Bi + Ni,21Bi+

B>i N>i,21 + Ni,22, (50c)

qi,1 = A>i ni,1, (50d)

qi,2 = B>i ni,1 + ni,2. (50e)

It is obvious that Eq. (49) has a closed-form solution

∆Ωi = Ki∆xpar(i) + ki, (51)

in which

Ki = −Q−1
i,22Qi,21 and ki = −Q−1

i,22qi,2. (52)

If we use Eq. (51) to eliminate ∆Ωi in Eq. (49), there exists
Mi ∈ R(6+P )×(6+P ), mi ∈ R6+P and ∆Ei ∈ R such that

Ei(∆xpar(i)) =
1

2
∆x>par(i)Mi∆xpar(i)+

m>i ∆xpar(i) + ∆Ei, (53)

in which

Mi = Qi,11 −Q>i,21Q
−1
i,22Qi,21, (54a)



Dense Unconstrained Formulation Sparse Constrained Formulation

Step 1 O
(
N(6 + 3K + P )

)
O
(
K(9 + P )

)
+O

(
N(9 + P )

)
Step 2 O

(
N(6 + 3K + P )2

)
O
(
N(9 + P )2

)
Step 3 O

(
(6 + 3K + P )3

)
O
(
K(9 + P )2

)
+O

(
(6 + P )3

)
Total O

(
(6 + 3K + P )3

)
+O

(
N(6 + 3K + P )2

)
O
(
K(9 + P )2

)
+O

(
(6 + P )3

)
+O

(
N(9 + P )2

)
(a)

Dense Unconstrained Formulation Sparse Constrained Formulation

Step 1 O
(
KN

)
O(K) +O(N)

Step 2 O
(
K2N

)
O
(
N
)

Step 3 O(K3) O(K)

Total O(K3) +O
(
K2N

)
O(K) +O

(
N
)

(b)

Table 5: The summary of the computational complexities for the steps to compute the Gauss-Newton direction for the dense unconstrained
and sparse constrained formulations, in which K is the number of joints, P is the number of shape parameters, N is the number of
measurements for all the body parts. Note that the number of shape parameters P is assumed to be varying in (a) and constant in (b).

mi = qi,1 −Q>i,21Q
−1
i,22qi,2, (54b)

∆Ei = ∆Ei −
1

2
q>i,2Q

−1
i,22qi,2. (54c)

Therefore, if there exists Mj ∈ R(6+P )×(6+P ), mj ∈
R6+P and ∆Ej ∈ R for all j ∈ chd(i) such that Eq. (46)
holds, we might further obtain Mi ∈ R(6+P )×(6+P ), mi ∈
R6+P and ∆Ei ∈ R with which Ei(∆xpar(i)) can be written
as Eq. (53).

In the kinematic tree, a body part i at the leaf node has no
children, for which Eq. (48) is simplified to Ni,11 = Hi,11,
Ni,21 = Hi,21, Ni,22 = Hi,22, ni,1 = gi,1, ni,2 = gi,2
and ∆Ei = 0, then, it is possible to recursively compute
Mi ∈ R(6+P )×(6+P ), mi ∈ R6+P and ∆Ei ∈ R for each
i = 1, · · · , K following Eqs. (48), (50) and (54) through
the bottom-up traversal of kinematic tree.

It is by definition that Ω0 is a dummy variable and
∆Ω0 = 0. Thus, if Ei(∆x0) in Eq. (53) is known for each
i ∈ chd(0), Eq. (40) is equivalent to an unconstrained opti-
mization problem on ∆x0 ∈ R6+P :

min
∆x0

1

2
∆x>0 H0,11∆x0 + g>0,1∆x0 +

∑
j∈chd(0)

Ei(∆x0).

From Eq. (53), the equation above is equivalent to

min
∆x0

1

2
∆x>0 M0∆x0 + m>0 x0 + ∆E0 (55)

in which
M0 = H0,11 +

∑
j∈chd(0)

Mj , (56a)

m0 = g0,1 +
∑

j∈chd(0)

mj , (56b)

∆E0 =
∑

i∈chd(0)

∆Ei. (56c)

It is straightforward to show that

∆x0 = −M−1
0 m0 (57)

solves Eq. (55) with

∆E0 = ∆E0 −
1

2
m>0 M−1

0 m0 (58)

to be the expected cost reduction as well as the minimum
objective value of Eq. (40).

At last, we recursively compute {∆xi, ∆Ωi}Ki=1 using
Eqs. (34), (51) and (52) through a top-down traversal of the
kinematics tree, from which the Gauss-Newton direction is
exactly retrieved.

From our analysis, the resulting algorithm to solve
Eq. (40) and compute the Gauss-Newton direction is sum-
marized in Algorithm 1. In the next subsection, we show
that Algorithm 1 scales linearly with respect to the number
of joints.

A.2.4 Complexity Analysis

In Table 5, we present a short summary of the compu-
tational complexities for each step to compute the Gauss-
Newton direction, and in Table 6, we present a comprehen-
sive analysis of the computational complexities that leads to



Dense Unconstrained Formulation Sparse Constrained Formulation

Step 1

(a) It takes O
(
Ni(6 + 3K + P )

)
time to compute

Ji ∈ RNi×(6+3K+P ) in Eq. (32) for each i =
0, · · · , K.

(b) In total, it takes O
(
N(6 + 3K +P )

)
time to com-

pute Ji ∈ RNi×(6+3K+P ) for all i = 0, · · · , K.

(a) It takes O
(
9 + P

)
time to compute Ai ∈

R(6+P )×(6+P ) and Bi ∈ R(6+P )×3 in Eqs. (37)
and (38) for each i = 0, · · · , K. Note that the
bottom of Ai and Bi in Eqs. (37) and (38) are ei-
ther zero or identity matrices, which simplifies the
computation.

(b) It takes O
(
Ni(9 + P )

)
time to compute Ji,1 ∈

RNi×(9+P ) and Ji,2 ∈ RNi×3 in Eqs. (35)
and (36) for each i = 0, · · · , K.

(c) Note that Ji,1, Ji,2, Ai and Bi are intermediates
to compute Ji in Eq. (32) using the chain rule.

(d) In total, it takes O
(
K(9 + P ) + O

(
N(9 + P )

))
time to compute Ji,1, Ji,2, Ai and Bi for all i =
0, · · · , K.

Step 2

(a) It takes O
(
Ni(6 + 3K+P )2

)
to compute J>i Ji ∈

R(6+3K+P )×(6+3K+P ) for each i = 0, · · · , K.

(b) In total, it takesO
(
N(6+3K+P )2

)
time to com-

pute H =
∑K
i=0 J>i Ji ∈ R(6+3K+P )×(6+3K+P )

in Eq. (39).

(a) It takes O
(
Ni(9 + P )2

)
time to compute Hi,11 ∈

R(6+P )×(6+P ), Hi,21 ∈ R3×(6+P ) and Hi,22 ∈
R3×3 in Eq. (40) for each i = 0, · · · , K.

(b) In total, it takes O
(
N(9 + P )2

)
time to compute

Hi,11 ∈ R(6+P )×(6+P ), Hi,21 ∈ R3×(6+P ) and
Hi,22 ∈ R3×3 for all i = 0, · · · , K.

Step 3
(a) In total, it takesO

(
(6+3K+P )3

)
to compute the

matrix inverse of H ∈ R(6+3P+K)×(6+3P+K) and
solve Eq. (41).

(a) It takes O
(
(9 + P )2

)
time to run lines 2-17 and

lines 26-27 in Algorithm 1 for each i = 1, · · · , K.
Note that Ai and Bi in Eqs. (37) and (38) are zero
and identity matrices at the bottom, which can be
exploited to simplify the computation.

(b) It takes O
(
(6 + P )3

)
time to compute the matrix

inverse of M0 ∈ R(6+P )×(6+P ) in line 23 of Al-
gorithm 1.

(c) In total, it takes O
(
K(9 +P )2

)
+O

(
(6 +P )3

)
to

compute the Gauss-Newton direction.

Total
The overall complexity isO

(
(6+3K+P )3

)
+O
(
N(6+

3K + P )2
)
.

The overall complexity is O
(
K(9 + P )2

)
+ O

(
(6 +

P )3
)

+O
(
N(9 + P )2

)
.

Table 6: The analysis of the computational complexities for the steps to compute the Gauss-Newton direction for the dense unconstrained
and sparse constrained formulations. In this table, K is the number of joints, P is the number of shape parameters, N is the number of
measurements for all the body parts, and Ni is the number of measurements associated with body part i.

results in Table 5. The analysis also proves the complexity
conclusions in Proposition 2.

In Tables 5 and 6, it can be concluded that our sparse
constrained formulation is O(K) times faster for Step 1,
and O(K2) times for Steps 2 and 3 than the dense uncon-

strained formulation in terms of the number of joints K.
In total, our sparse constrained formulation scales linearly
with respect to the number of joints instead of cubically as
the dense unconstrained formulation.

Furthermore, in terms of the number of measure-



(a) (b) (c)

Figure 8: The CPU time ratio of the SMPL+H and SMPL models to compute the Gauss-Newton direction with (a) different numbers of
measurements and no shape parameters, (b) different numbers of measurements and 10 shape parameters, and (c) different numbers of
shape parameters. The SMPL and SMPL+H models have K = 23 and K = 51 joints, respectively. In Figs. 8 (a) to 8(c), the solid lines
denote the actual CPU time ratio of the SMPL+H and SMPL models that is obtained from the experiments, whereas the dashed lines denote
the expected CPU time ratio that is approximated from the complexity analysis in Tables 5 and 6. It can be seen the impact of the number
of joints is around two orders of magnitude less on our method.

ments N , Tables 5 and 6 indicate that the complexity of
our sparse constrained formulation is O

(
N(9 + P )2

)
or

O(N), whereas that of the dense constrained formulation is
O
(
N(6 + 3K + P )2

)
or O(K2N). This suggests that our

sparse constrained formulation has the the number of joints
K and measurements N decoupled in the computation, and
as a result, is much more efficient to handle optimization
problems with more measurements. Note that it is common
in [5, 17, 24, 25, 28, 39] to introduce extra measurements to
improve the estimation accuracy.

B. Ablation Studies

In addition to the results of ablation studies in the paper,
we present a more complete analysis on the impact of the
number of joints K, the number of measurements N , and
the number of shape parameters P on the computation of
the Gauss-Newton direction.

B.1. Experiments

As mentioned in the paper, the CPU time to compute the
Gauss-Newton direction w/ and w/o our method is recorded
for the SMPL and SMPL+H models in the following exper-
iments.

Experiment 1. The number of shape parameters P is 0
and the number of measurements N increases from 120 to
600 for both of the SMPL and SMPL+H models.

Experiment 2. The number of shape parameters P is 10
and the number of measurements N increases from 120 to
600 for both of the SMPL and SMPL+H models.

Experiment 3. The number of shape parameters P in-
creases from 0 to 10, and each joint of the SMPL and
SMPL+H models is assigned with a 2D keypoint, a 3D key-
point, and a part orientation field as measurements.

B.2. Number of the Joints

The CPU time ratio of the SMPL+H and SMPL models
to compute the Gauss-Newton direction is used as the met-
ric to evaluate the impact of the number of joints K. Note
that the SMPL and SMPL+H models have K = 23 and
K = 51 joints, respectively. The CPU time ratio reflects
the additional time induced as a result of the more joints
on the SMPL+H model. The CPU time ratios of the three
experiments are reported in Fig. 8 and discussed as follows:

1. In Experiment 1, there are no shape parameters and the
computation of the Gauss-Newton direction is domi-
nated by the number of measurements N . From Ta-
bles 5 and 6, it is known that our method has O(N)
complexity, which is not related with the number of
joints K, and thus, the expected CPU time ratio with
our method should be

1

1
= 1.

In contrast, the CPU time without our method is ap-
proximately O

(
(3K + 6)2

)
, which suggests an ex-

pected CPU time ratio of(
3× 51 + 6

3× 23 + 6

)2

= 4.49.

The numbers of 1 and 4.49 in the two equations above
are consistent with the results in Fig. 8(a).

2. In Experiment 2, there are 10 shape parameters. How-
ever, the analysis is still similar to that of Experiment
1. From Tables 5 and 6, the expected CPU time ra-
tio of the SMPL+H and SMPL models w/ and w/o our
method should be around

1

1
= 1



Figure 9: The computation of the Gauss-Newton direction with different numbers of measurements and no shape parameters. The results
are (a) the CPU time with and without our method on the SMPL and SMPL+H models, and (b) the speedup of our method on the SMPL
and SMPL+H models, and (c) the speed up of our method on the SMPL model, and (d) the speed up of our method on the SMPL+H model.

Figure 10: The computation of the Gauss-Newton direction with different numbers of measurements and 10 shape parameters. The results
are (a) the CPU time with and without our method on the SMPL and SMPL+H models, and (b) the speedup of our method on the SMPL
and SMPL+H models, and (c) the speed up of our method on the SMPL model, and (d) the speed up of our method on the SMPL+H model.

and (
3× 51 + 6 + 10

3× 23 + 6 + 10

)2

= 3.95,

respectively, which is consistent with the results in
Fig. 8(b).

3. In Experiment 3, the number of measurements N is
proportional to the number of joints of the SMPL and
SMPL+H models. Then, as a result of Tables 5 and 6,
the CPU time w/ and w/o our method to compute the
Gauss-Newton direction should be around O(K) and
O
(
(3K + 6)3

)
, respectively, and the corresponding

expected CPU time can be also approximated by

51

23
= 2.22

and (
3× 51 + 6

3× 23 + 6

)3

= 9.53,

which is consistent with the results in Fig. 8(c).

4. From Fig. 8 and the discussions above, it can be further
concluded that the number of joints has aroundO(K2)
times less impact on our method, which suggests that
our sparse constrained formulation is more suitable for
human models with more joints.

B.3. Number of the Measurements

The CPU time w/ and w/o our method to compute the
Gauss-Newton direction and the corresponding speedup in
Experiments 1 and 2 are reported in Figs. 9 and 10. It can
be seen from Figs. 9 and 10 that our method has 4.73 ∼
13.91x speedup on the SMPL model and a 12.17 ∼ 43.24x
speedup on the SMPL+H model. Furthermore, no matter
whether there are shape parameters or not, the speedup of
our method is greater as the number of measurements in-
creases, which means that our sparse constrained formula-
tion is more efficient to solve optimization problems with
more more measurements.

B.4. Number of the Shape Parameters

The CPU time w/ and w/o our method to compute the
Gauss-Newton direction and the corresponding speedup in
Experiment 3 are reported in Fig. 11. It can be seen from
Fig. 11 that our method has a 4.92 ∼ 7.78x speedup on
the SMPL model and a 18.63 ∼ 34.18x speedup on the
SMPL+H model, which is consistent with the analysis that
our sparse constrained formulation has better scalability on
human models with more joints. On the SMPL+H model,
the CPU time taken to compute the Gauss-Newton direction
without our method is as many as 2.5 ms, which is difficult
to be used in real time considering that most optimization
methods need around 20 ∼ 30 iterations to converge. As



Figure 11: The computation of the Gauss-Newton direction with different number of shape parameters. The results are (a) the CPU time
with and without our method on the SMPL and SMPL+H models, and (b) the speedup of our method on the SMPL and SMPL+H models,
and (c) the speed up of our method on the SMPL model, and (d) the speed up of our method on the SMPL+H model.

a comparison, our method is significantly faster on both of
the SMPL and SMPL+H models, for which the CPU time
is 0.027 ∼ 0.13 ms. In particular, note that if there are no
shape parameters, our method has a further acceleration of
the computation—this has is important for real-time video
tracking of 3D human pose and shape, in which the shape
parameters that are estimated from the first few frames can
be reused.

C. Qualitative Results
In this section, we present more qualitative comparisons

with SPIN [15] and SMPLify [5] on the Human3.6M, MPI-
INF-3DHP and 3DPW datasets. The results are shown in
Figs. 12 to 14.

D. Real-Time Motion Capture Framework
D.1. Human Detection

The YOLOv4-CSP [4,38] is used for human detection to
make a balance between accuracy and efficiency. The size
of input images for YOLOv4-CSP is 512× 512.

D.2. 2D Keypoint Estimation

The AlphaPose [8] is used for 2D keypoint estimation
with 256 × 192 input images. The following datasets are
used to train AlphaPose.

Human3.6M [7,10] is a popular dataset for 3D human pose
estimation. Following the standard training-testing protocol
in [29], we use subjects S1, S5-S8 for training.

MPI-INF-3DHP [23] is a multi-view markerless dataset
with 8 training subjects and 6 test subjects. We use subjects
S1-S8 that are downsampled to 10 FPS for training.

COCO [18] is a large-scale dataset for 2D joint detection.
We use the COCO training datasets for training.

MPII [1] is a 2D human pose dataset that is extracted from
online videos. We use the MPII training datasets for train-
ing.

D.3. 3D Keypoint Regression

In our real-time motion capture framework, we use a
light-weight fully connected neural network for 2D-to-3D
lifting. The 3D Keypoint regression network can be re-
garded as a modification of VideoPose3D [30]. From the
3D keypoint regression network, we further obtain the part
orientation field [39] for each body part. We use the train-
ing datasets of Human3.6M [10] and MPI-INF-3DHP [23]
that are downsampled to 10 FPS to train the 3D keypoint
regression network.

E. Prior Loss of Joint States
We use the normalizing flow [14] to describe the joint

state prior loss EΩ,i. The normalizing flow is trained on
the AMASS dataset [21] and has the structure of FC6 →
PReLU → FC6 → PReLU → FC6 → PReLU → FC6 →
PReLU → FC6 whose input is the 6D representation of
rotation. We remark that the normalizing flow structure
above to learn admissible joint states is inspired by the work
of [40].

F. Implementation
F.1. Overview

While originally designed for 3D human pose and shape
estimation, we emphasize that our method can be extended
to any types of articulated tracking problems in computer
vision and robotics [35]. The only requirement is that the
objective can be written as

E =
∑

0≤i≤K

1

2
‖ri(Ti,Ωi,β)‖2, (59)

in whichK is the number joints, Ti is the pose of body part
i, Ωi is the joint state and β is the shape parameters. Em-
pirically, such a requirement can be satisfied with ease, e.g.,
we might assume that the keypoints selected to calculate the
losses are rigidly attached to a single body part. As a matter
of fact, as long as the objective is in the form of Eq. (59),



Figure 12: Qualitative comparisons of our method (second row in pink), SPIN [15] (third row in gray), and SMPLify [5] (fourth row in
purple) on the Human3.6M dataset.

the steps to compute the Gauss-Newton direction in Table 4
and the complexity analysis in Tables 5 and 6 hold as well.
Thus, there are no difficulties to implement our method on
practical articulated tracking problems.

F.2. Extract Si and li from the SMPL Model

At the rest pose of the SMPL model [20], it is known that
the joint positions linearly depend on the vertex positions,
and the vertex positions also linearly depend on the shape
parameters β ∈ RP . Thus, we conclude that the joint posi-
tions ti ∈ R3 at the rest pose linearly depend on the shape
parameters, i.e., there exists Ji ∈ R3×P and ci ∈ R3 in the
SMPL model such that ti at the rest pose takes the form of

ti = Ji · β + ci. (60)

Note that joint position ti ∈ R3 is also the translation of

pose Ti =

[
Ri ti
0 1

]
∈ SE(3) where Ri ∈ SO(3) is the

rotation. Moreover, the relative joint position ∆ti ∈ R3

between any connected body parts is constant, and thus, we
obtain ∆ti = ti−tpar(i), in which par(i) denotes the index
of the parent of body part i. Then, joint position ti ∈ R3 at

any poses satisfies

ti = Rpar(i)∆t + tpar(i) = Rpar(i)

(
ti− tpar(i)

)
+ tpar(i).

(61)
In the equation above, Rpar(i) is rotation of pose Tpar(i) ∈
SE(3). Substituting Eq. (60) into Eq. (61) to cancel out ti
and tpar(i), we obtain

ti = Rpar(i)

(
Si · β + li

)
+ tpar(i), (62)

in which
Si = Ji − Jpar(i) ∈ R3×P (63)

and
li = ci − cpar(i) ∈ R3. (64)

It is immediate to show that Si · β + li is the relative joint
position between body parts i and par(i), and thus, the cor-
responding relative pose Tpar(i),i is

Tpar(i),i ,

[
Ωi Si · β + li
0 1

]
, (65)

in which Ωi ∈ SO(3) is the state of joint i.



Figure 13: Qualitative comparisons of our method (second row in pink), SPIN [15] (third row in gray), and SMPLify [5] (fourth row in
purple) on the MPI-INF-3DHP dataset.

Figure 14: Qualitative comparisons of our method (second row in pink), SPIN [15] (third row in gray), and SMPLify [5] (fourth row in
purple) on the MPI-INF-3DHP dataset.



References
[1] Mykhaylo Andriluka, Leonid Pishchulin, Peter

Gehler, and Bernt Schiele. 2D human pose estimation:
New benchmark and state of the art analysis. In Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2014. 17

[2] Dragomir Anguelov, Praveen Srinivasan, Daphne
Koller, Sebastian Thrun, Jim Rodgers, and James
Davis. SCAPE: Shape completion and animation of
people. ACM Trans. Graphics, 24(3):408–416, July
2005. 2

[3] Anurag Arnab, Carl Doersch, and Andrew Zisserman.
Exploiting temporal context for 3D human pose esti-
mation in the wild. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion, 2019. 6, 7

[4] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-
Yuan Mark Liao. YOLOv4: Optimal speed
and accuracy of object detection. arXiv preprint
arXiv:2004.10934, 2020. 5, 6, 17

[5] Federica Bogo, Angjoo Kanazawa, Christoph Lassner,
Peter Gehler, Javier Romero, and Michael J. Black.
Keep it SMPL: Automatic estimation of 3D human
pose and shape from a single image. In European con-
ference on computer vision (ECCV), 2016. 1, 2, 3, 4,
6, 7, 15, 17, 18, 19

[6] Zhe Cao, Gines Hidalgo, Tomas Simon, Shih-En Wei,
and Yaser Sheikh. OpenPose: Realtime multi-person
2D pose estimation using part affinity fields. IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, 43(1):172–186, 2019. 2

[7] Cristian Sminchisescu Catalin Ionescu, Fuxin Li. La-
tent structured models for human pose estimation. In
Procedings of the IEEE/CVF International Confer-
ence on Computer Vision, pages 2220–2227, 2011. 5,
17

[8] Hao-Shu Fang, Shuqin Xie, Yu-Wing Tai, and Cewu
Lu. RMPE: Regional multi-person pose estimation.
In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 2334–2343, 2017.
2, 5, 17

[9] Yinghao Huang, Federica Bogo, Christoph Lassner,
Angjoo Kanazawa, Peter V Gehler, Javier Romero,
Ijaz Akhter, and Michael J Black. Towards accu-
rate markerless human shape and pose estimation over
time. In Proceedings of the International Conference
on 3D Vision, pages 421–430, 2017. 2

[10] Catalin Ionescu, Dragos Papava, Vlad Olaru, and Cris-
tian Sminchisescu. Human3.6M: Large scale datasets
and predictive methods for 3D human sensing in nat-
ural environments. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 36(7):1325–1339,
2013. 2, 5, 17

[11] Hanbyul Joo, Tomas Simon, and Yaser Sheikh. Total
Capture: A 3D deformation model for tracking faces,
hands, and bodies. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion, pages 8320–8329, 2018. 2

[12] Angjoo Kanazawa, Michael J. Black, David W. Ja-
cobs, and Jitendra Malik. End-to-end recovery of hu-
man shape and pose. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion, pages 7122–7131, 2018. 1, 2, 6, 7

[13] Angjoo Kanazawa, Jason Y Zhang, Panna Felsen, and
Jitendra Malik. Learning 3D human dynamics from
video. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
5614–5623, 2019. 6, 7

[14] Ivan Kobyzev, Simon Prince, and Marcus Brubaker.
Normalizing flows: An introduction and review of cur-
rent methods. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2020. 17

[15] Nikos Kolotouros, Georgios Pavlakos, Michael J
Black, and Kostas Daniilidis. Learning to reconstruct
3d human pose and shape via model-fitting in the loop.
In Proceedings of the IEEE/CVF Conference on Com-
puter Vision, 2019. 1, 2, 6, 7, 17, 18, 19

[16] Nikos Kolotouros, Georgios Pavlakos, and Kostas
Daniilidis. Convolutional mesh regression for single-
image human shape reconstruction. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2019. 2, 6, 7

[17] Christoph Lassner, Javier Romero, Martin Kiefel,
Federica Bogo, Michael J. Black, and Peter V. Gehler.
Unite the People: Closing the loop between 3D and
2D human representations. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, 2017. 1, 2, 4, 6, 15

[18] Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and
C Lawrence Zitnick. Microsoft coco: Common ob-
jects in context. In European conference on computer
vision, pages 740–755. Springer, 2014. 17

[19] Matthew Loper, Naureen Mahmood, and Michael J
Black. MoSh: Motion and shape capture from sparse
markers. ACM Transactions on Graphics (TOG),
2014. 1

[20] Matthew Loper, Naureen Mahmood, Javier Romero,
Gerard Pons-Moll, and Michael J. Black. SMPL:
A skinned multi-person linear model. ACM Trans.
Graphics (Proc. SIGGRAPH Asia), 34(6):248:1–
248:16, Oct. 2015. 2, 7, 18



[21] Naureen Mahmood, Nima Ghorbani, Nikolaus F.
Troje, Gerard Pons-Moll, and Michael J. Black.
AMASS: Archive of motion capture as surface shapes.
In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 5442–5451, Oct.
2019. 2, 3, 17

[22] Julieta Martinez, Rayat Hossain, Javier Romero, and
James J Little. A simple yet effective baseline for
3D human pose estimation. In Proceedings of the
IEEE/CVF International Conference on Computer Vi-
sion, pages 2640–2649, 2017. 2, 6

[23] Dushyant Mehta, Helge Rhodin, Dan Casas, Pascal
Fua, Oleksandr Sotnychenko, Weipeng Xu, and Chris-
tian Theobalt. Monocular 3D human pose estimation
in the wild using improved cnn supervision. In Pro-
ceedings of the International Conference on 3D Vi-
sion. IEEE, 2017. 2, 5, 17

[24] Dushyant Mehta, Oleksandr Sotnychenko, Franziska
Mueller, Weipeng Xu, Mohamed Elgharib, Pascal
Fua, Hans-Peter Seidel, Helge Rhodin, Gerard Pons-
Moll, and Christian Theobalt. XNect: Real-time
multi-person 3D motion capture with a single RGB
camera. ACM Transactions on Graphics (TOG),
39(4):82–1, 2020. 1, 2, 3, 4, 5, 7, 15

[25] Dushyant Mehta, Srinath Sridhar, Oleksandr Sotny-
chenko, Helge Rhodin, Mohammad Shafiei, Hans-
Peter Seidel, Weipeng Xu, Dan Casas, and Christian
Theobalt. VNect: Real-time 3D human pose estima-
tion with a single RGB camera. ACM Transactions on
Graphics (TOG), 36(4):1–14, 2017. 1, 2, 3, 4, 5, 6, 7,
15

[26] Jorge Nocedal and Stephen Wright. Numerical opti-
mization. Springer Science & Business Media, 2006.
1

[27] Ahmed A A Osman, Timo Bolkart, and Michael J.
Black. STAR: A spare trained articulated human body
regressor. In European Conference on Computer Vi-
sion (ECCV), 2020. 2, 8

[28] Georgios Pavlakos, Vasileios Choutas, Nima Ghor-
bani, Timo Bolkart, Ahmed A. A. Osman, Dimitrios
Tzionas, and Michael J. Black. Expressive body cap-
ture: 3D hands, face, and body from a single image.
In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, 2019. 2, 4, 15

[29] Georgios Pavlakos, Xiaowei Zhou, Konstantinos G
Derpanis, and Kostas Daniilidis. Coarse-to-fine vol-
umetric prediction for single-image 3D human pose.
In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 7025–7034,
2017. 2, 5, 6, 17

[30] Dario Pavllo, Christoph Feichtenhofer, David Grang-
ier, and Michael Auli. 3D human pose estima-
tion in video with temporal convolutions and semi-
supervised training. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion, 2019. 2, 5, 6, 17

[31] Gregory Rogez and Cordelia Schmid. MoCap-guided
data augmentation for 3D pose estimation in the wild.
Advances in Neural Information Processing Systems,
29:3108–3116, 2016. 2, 6

[32] Gregory Rogez, Philippe Weinzaepfel, and Cordelia
Schmid. LCR-net: Localization-classification-
regression for human pose. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, 2017. 2, 6

[33] Javier Romero, Dimitrios Tzionas, and Michael J.
Black. Embodied hands: Modeling and capturing
hands and bodies together. ACM Transactions on
Graphics, 36(6):1–17, 2017. 7

[34] Yu Rong, Takaaki Shiratori, and Hanbyul Joo.
Frankmocap: Fast monocular 3D hand and body mo-
tion capture by regression and integration. arXiv
preprint arXiv:2008.08324, 2020. 2

[35] Tanner Schmidt, Richard Newcombe, and Dieter
Fox. DART: dense articulated real-time tracking
with consumer depth cameras. Autonomous Robots,
39(3):239–258, 2015. 17

[36] Ke Sun, Bin Xiao, Dong Liu, and Jingdong Wang.
Deep high-resolution representation learning for hu-
man pose estimation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion, pages 5693–5703, 2019. 2

[37] Timo von Marcard, Roberto Henschel, Michael Black,
Bodo Rosenhahn, and Gerard Pons-Moll. Recovering
accurate 3D human pose in the wild using IMUs and
a moving camera. In European Conference on Com-
puter Vision (ECCV), sep 2018. 1, 2, 5

[38] Chien-Yao Wang, Alexey Bochkovskiy, and Hong-
Yuan Mark Liao. Scaled-YOLOv4: Scaling
cross stage partial network. arXiv preprint
arXiv:2011.08036, 2020. 5, 6, 17

[39] Donglai Xiang, Hanbyul Joo, and Yaser Sheikh.
Monocular total capture: Posing face, body, and hands
in the wild. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
pages 10965–10974, 2019. 1, 2, 3, 4, 5, 6, 15, 17

[40] Andrei Zanfir, Eduard Gabriel Bazavan, Hongyi Xu,
William T Freeman, Rahul Sukthankar, and Cristian
Sminchisescu. Weakly supervised 3d human pose and
shape reconstruction with normalizing flows. In Euro-
pean Conference on Computer Vision, 2020. 2, 17


