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ABSTRACT
In modern code reviews, many artifacts play roles in knowledge-
sharing and documentation: summaries, test plans, and comments,
etc. Improving developer tools and facilitating better code reviews
require an understanding of the quality of pull requests and their
artifacts. This is difficult to measure, however, because they are
often free-form natural language and unstructured text data. In
this paper, we focus on measuring the quality of test plans at Meta.
Test plans are used as a communication mechanism between the
author of a pull request and its reviewers, serving as walkthroughs
to help confirm that the changed code is behaving as expected. We
collected developer opinions on over 650 test plans from more than
500 Meta developers, then introduced a transformer-based model
to leverage the success of natural language processing (NLP) tech-
niques in the code review domain. In our study, we show that the
learned model is able to capture the sentiment of developers and
reflect a correlation of test plan quality with review engagement
and reversions: compared to a decision tree model, our proposed
transformer-based model achieves a 7% higher F1-score. Finally, we
present a case study of how such a metric may be useful in experi-
ments to inform improvements in developer tools and experiences.

CCS CONCEPTS
• Software and its engineering→ Software creation andman-
agement; Acceptance testing; Walkthroughs.
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Code Reviews; Pull Requests; Test Plans; Natural Language Pro-
cessing.
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1 INTRODUCTION
AtMeta, the test plan is a component of our code review process and
culture. In addition to the automated test suites that are run for each
code change, developers also provide free-form documentation sum-
marizing the testing process employed to verify the code changes.
The goal is to describe the manual steps the developer took during
the development process to sanity check the code changes, such as
commands to run specific automation, screenshots of expected UI
changes, or steps to conduct a full end-to-end test.

These test plans are similar to the ones found in the software
quality assurance process or the test plans described in the IEEE
Standard for Software Test Documentation [4]. However, Meta’s
test plans are generally concerned with the scope of one set of code
changes at a time, rather than the entire software product.

Hence, test plans are complementary to other forms of validation.
For example, in code review, the formal compilable source code is
studied to find defects; in testing, regressions are identified by test
failures. In contrast, test plans serve as simple written walkthroughs
of the system behavior that provide assurances and context to
reviewers. Test plans are highly effective at Meta, and one of our
goals is to describe test plans to the larger SE community.

The flexible and lightweight nature of test plans make them
easy to write and easy to understand, but this makes measuring
the quality of test plans significantly more difficult. Our goal is to
develop a model that can differentiate good test plans from bad,
which helps us better understand the overall state of test plans
at Meta. This information could also be used to help suggest to
developers when they may need to improve the quality of test plans
to better improve the code review process.

In particular, this experience paper aims to gain an understanding
of the following research questions:

(1) Modeling Quality: Can we use a data-driven approach to
model holistic test plan quality that aligns with the opinions
of the developers?

(2) Applying NLP Techniques: Do the state-of-the-art
transformer-based models used in NLP tasks translate to
the code review domain and outperform more trivial meth-
ods that require feature engineering?

(3) Correlation With Review Engagement: Is our data-
driven test plan classifier correlated with reviewer engage-
ment?

(4) Correlation With Regressions: Do pull requests that get
reverted or are associated with outages have test plans with
lower quality?

To help us answer these questions, we first need to understand
how test plans are used at Meta (for details, see Section 2.3), but, at
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a high level, test plans at Meta are used to augment the code review
process, acting both as a procedure to exercise functionality and as
part of the documentation. Yet another fundamental characteristic
of a test plan is that it should be repeatable: the contract is that
executing the specified steps should be sufficient to have confidence
that the feature works correctly.

We have some intuition of data that can be mined from test plans,
such as counting words, attached media, or links, and we could turn
these into metrics. These generally make sense as desirable features
to have in a test plan and could indirectly signal the quality of the
test plan. However, they are not easily consolidated into a single
holistic quality metric, and any trivial heuristic is likely neither
flexible nor robust.

But, most importantly, these trivial extractions ignore the most
valuable data in a test plan, which is the free-form natural language
text. Developers often use test plans to detail replication steps
or end-to-end integration steps. The conciseness and clarity of
the natural language descriptions could be informative of a test
plan’s quality, as might interactions between the text and attached
media or links. Therefore, we look to data-driven natural language
processing (NLP) techniques to leverage such information.

We define the problem as a binary classification model, with
labeled test plans professionally rated as GOOD or BAD by 500
Meta developers. We leverage a pre-trained RoBERTa language
model [15] for our architecture, which takes the test plan as a natu-
ral language input. We tokenize the test plan string and generate
an embedding, using that model, then utilize the few-shot learn-
ing Matching Network architecture [10] to classify the test plan
embedding as either GOOD or BAD.

We observed that the natural language approach, via fine-tuning
a RoBERTa-based model, outperformed our decision tree baseline
and improved the F1 score by 7%. This suggests that the general
pre-trained RoBERTa model is successful at learning the patterns of
test plan quality, simply through fine-tuning on this “code review”-
specific domain. By capturing both structural and semantic infor-
mation, our transformer-based approach outperforms the baseline
without the need of manual feature engineering for its input fea-
tures.

To summarize, this paper makes the following contributions:
• We define test plans at Meta and how they are used to aug-
ment the code review process.

• We demonstrate that NLP architectures, such as a RoBERTa-
based model, can be applied to the code review domain to
quantify the quality of test plans.

• We evaluate our approach on the task of measuring the
quality of test plans and demonstrate how such a quality
heuristic may be used to inform improvements in developer
tools.

The main take-away message of this paper is that:

Pull requests with high quality test plans are observed to: �
be involved in fewer outages,� be reverted fewer times, and
� have more reviewer engagement.

The remainder of this paper is structured as follows: in Section 2,
we describe how code review is done at Meta, discuss what test

plans are in the context of code review at Meta, and introduce our
internal code review engagement metric. In Section 3, we introduce
our NLP-based holistic approach to modeling test plan quality. We
also introduce a baseline technique based on decision trees. In
Section 4, we present our results and discuss threats to validity. In
Sections 5 and 6, we discuss our findings in the context of related
work and describe potential applications to downstream tasks. In
Section 7, we conclude the paper.

2 BACKGROUND
This section details the Meta code review process, introduces a
custom code review engagement metric, and discusses what test
plans are in that context. It is noteworthy that test plans are a
communication channel between the author and the reviewers, not
a proof that the changes were tested. One common workflow is
allowing a reviewer to try out the modification in the pull request
before it gets committed.

2.1 Code Review Workflow at Meta
Phabricator, an open-source project, is the backbone of Meta ’s
Continuous Integration system1, and is the surface for the modern
code review process. Developers use Phabricator both to submit
pull requests and to comment on others’ requests before they are
accepted into the codebase (or are discarded). More than 100, 000
pull requests are committed to the central repository every week
at Meta, using Phabricator as a central gate-keeping, reporting,
curating, and testing system [9].

The author uploads the changed code to Phabricator, includes a
test plan, assigns reviewers (or groups of reviewers) and “publishes”
the pull request, . The act of publishing a pull request sets its status
to “needs review”, making it visible to all assigned reviewers. At
least one reviewer’s approval is required to accept (and, therefore,
ship) a pull requests.

Phabricator’s UI displays the contents of the pull request (see
Figure 1): a title, summary, the code changes, and the test plan;
detailed in Section 2.3. The reviewer can add comments (which
are visible to everyone), accept, send back to the author (requiring
further changes), resign, or commandeer (becoming the author).

The author of the pull request, meanwhile, has several available
actions. They can amend their code change and update the pull
request to a new iteration, request another review pass, add com-
ments (to, e.g., explain an update or address reviewer feedback),
pause the review process until all changes are complete, abandon
the request, or (once the request is accepted) ship it to production.
Shipping a code change is gated on approval by reviewers.

2.2 Code Review Quality and Engagement
One research question explored in this paper involves tying our
holistic test plan classifier to downstream metrics of review qual-
ity and engagement. To quantify review quality and engagement,
we developed a custom heuristic that is a function of the size of
the changes, the number of review comments, and the time spent
reviewing.

Code review teams at Meta utilize several review commentary
and cycle characteristic metrics, which are then combined into
1http://phabricator.org

http://phabricator.org
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Figure 1: An example view of a pull request under review in Phabricator. Authors and reviewers can interact via the pull
request review page in Phabricator. The review has several sections: the summary, changes, reviewers, interactions between
the reviewers and author, test case information and status, results of static analysis, historical information, etc.

Figure 2: A simplified example test plan for a diff that imple-
ments a blocked list of users. The test plan details the set of
steps and UI outcomes that will verify that the code works
as expected.

a single engagement metric to conveniently monitor the level of
engagement that pull requests receive. This is also interpreted as
a proxy for the quality of the review at Meta, as it indicates how
developers interact during a “pull request review”, which we define
to be the process of inspection and discussion undertaken by the
reviewers, subscribers, and author of a pull request. Moreover, we
limit discussion to mean the set of review comments posted within

the Meta’s code review tool, Phabricator. This definition excludes
any review discussion that might occur by any other means, such
as in-person, direct messaging, or over videoconferencing.

In the context of this paper, this exact definition is not crucial
to our work. We treat this pull request engagement metric as a
black box (an interested reader can define her own quality and
engagement heuristic to replicate our study in a different compa-
ny/context), and the main idea is that this metric is used at Meta
to measure and represent the quality and engagement of the pull
request review.

We will outline the set of features that are input to this super-
vised, machine learning-based engagement metric, which comes
from two main dimensions: review commentary and cycle charac-
teristics. Regarding review commentaries, the set of features are:
number of substantive comments2, number of substantive com-
ment threads, number of substantive head-level (non-reply) author
comments, and the number of reviewers that leave substantive
comments. With respect to cycle characteristics, the set of features
are: number of pull request versions and number of times the pull
request was set to “Needs Revision” status before landing.

The key takeaway of using an engagement metric is that it mea-
sures the activity and interaction between the reviewer and the
authors. More engagement and activity logically lead to better re-
views, and thus to generally fewer reversions after shipping code.
We validated our engagement metric, and found that this was in-
deed the case: our internal analysis of this engagement metric
indicates that pull requests that have low engagement scores are
6.6×more likely to be reverted than pull requests with high engage-
ment scores. Hence, we use this engagement metric to measure the

2A substantive comment is defined as a comment that is considered nontrivial. We
filter out trivial comments that are not engaging. This is a somewhat loose definition,
but includes simple comments of affirmation, such as “good job” or “nice one”.
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review quality of a pull request, and in later sections we demon-
strate that better test plans, as measured by our proposed technique,
result in better review quality and less pull request reversions.

2.3 What Are Test Plans?
As mentioned before, a test plan is a repeatable list of steps which
documents what the author has done to verify the behavior of a
change, and is a required component of the code review process
at Meta. A good test plan convinces a reviewer that the author
has been thorough in making sure the change works as intended
and has enough detail to allow someone unfamiliar with the code
change to verify its behavior. It is worth noting that test plans are
not meant to replace automated testing mechanisms that may be
added as part of the pull request (e.g., unit testing or UI testing).
Instead, test plans are complementary to automated test plans in
the sense that they are intended as an aid to the reviewer of the pull
request in replicating the functionality that is being implemented.
Hence, a test plan is a (mostly textual) step-by-step guide to anyone
trying to figure out the impact of the modifications in the pull
request: the clear the steps, the more easily developers can execute
it.

We observe that test plans at Meta are used to:
• Allow reviewers to try out features before they are commit-
ted.

• Allow reviewers to identify edge-case user behaviors to con-
sider in an end-to-end test plan.

• Document clear steps for consistent reproduction or testing
if the pull request is updated during the review process.

• Document testing procedure for future engineers to verify
what the expected behavior of the code should be.

Figure 2 is a simplified example of a test plan for a change in UI.
The plan contains links to verify that the changes are as expected.
Screenshots demonstrating the before and after make it clear to the
reviewers what the intended effects are, rather than only relying on
unit tests, which may be less intuitive to check UI changes during
code review. Moreover, writing UI test scripts can be time consum-
ing and difficult to maintain, as well as UI scripts are inherently
fragile [27].

A non-UI example could be for new API endpoints, in which
test plans can demonstrate example calls to the new endpoints and
detail the expected inputs and outputs after the code changes. This
makes it easier for reviewers to quickly confirm that they agree
with the current behavior of a new feature on an API level, rather
than having to parse test cases, which may be less readable.

It is important to note that test plans are used not just for func-
tional changes; pull requests with non-functional changes also
benefit from high quality test plans. Moreover, note that test plans
are not meant to replace any type of testing, but rather to explain
to reviewers how you know your code is behaving as expected.
Test plans enhance the code review process, serving as additional
readable documentation, along with more rigorous unit tests that
are also enforced at Meta.

The contract of a test plan is that if a developer were to replicate
the steps of a test plan, the developer should be confident that the
code changes work as expected. This means not just testing the
new code, but also making sure that nothing else will be broken. In

an ideal world, there should be tests protecting the rest of the code,
but it is also the responsibility of the pull request’s author to make
sure that the pull request is not introducing any regressions. Test
plans allow authors to easily demonstrate that with more clarity
and precision. For instance, if code is to be deleted in a pull request,
the test plan should include a change impact analysis explaining
how the developer knows this code is not being used — e.g., using
test coverage or code search. In general, a good test plan should
give clear, concise, and reproducible instructions that someone else
can easily follow.

3 OUR TEST PLAN CLASSIFIER APPROACH
We approached the holistic test plan classifier by modeling it using
NLP techniques. The current state-of-the-art for NLP problems,
such as text classification [13], machine translation [17], and text
generation [11], typically involve the now ubiquitous transformer
based architecture [25, 28, 30, 34], and we are interested to see if
such success can transfer over to our code review domain-specific
use case. Specifically, we used the RoBERTa transformer architec-
ture [15] to model test plan quality. Aside from a few basic prepro-
cessing steps, such as using keywords to represent screenshots or
links, we were able to use the test plan string as the raw input data,
like natural language data.

RoBERTa [15], short for Robustly Optimized BERT Pre-training
Approach, is a pretrained natural language processing system that
improves on Bidirectional Encoder Representations from Trans-
formers, or BERT, the self-supervised method released by Google
in 2018 [7]. BERT achieved state-of-the-art results on a range of
NLP tasks while relying on unannotated text drawn from the web,
as opposed to a language corpus that has been labeled specifically
for a given task. The technique has since become popular both
as an NLP research baseline and as a pre-trained model backbone
for downstream language tasks. For RoBERTa [15], the objective
was to optimize the training of BERT architecture in order to take
less time during pretraining. RoBERTa has been shown to pro-
duce state-of-the-art results — including the impact of training
data and training time — on the widely used NLP benchmarks,
such as GLue [33], as well as SuperGLUE [32], and SQuAD (data-
constrained setting) [22, 23].

Our model architecture consists of a RoBERTa model which pro-
duces embeddings of length 1024 for our test plan text input3, which
is then fed into a simple fully-connected layer for classification. We
started with an open-source RoBERTa model from Hugging Face
that is pretrained on general NLP tasks,4 and then fine-tuned the
whole model end-to-end on our test plan data. We used the default
pretrained tokenizer, adding no additional custom tokens.

Our only data preprocessing involved replacing links or screen-
shots that may be arbitrarily long with shorter standardized key-
words. Specifically, all multi-line code markup sections (often rep-
resenting large log outputs) were replaced with “<codeblock>”, url
links were replaced with “<url>”, and attached images or other
media were replaced with “<screenshot>”. Note that these key-
words were just string replacements, not explicitly added as special

3Test plans that are longer than 1024 tokens are truncated. Note, however, that most
test plans in our dataset fit within this limit.
4https://huggingface.co/transformers/model_doc/roberta.html

https://huggingface.co/transformers/model_doc/roberta.html
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tokens to the vocabulary. The chosen keywords were arbitrary,
and only meant to clean and shorten input data with standardized
representations.

In this supervised learning modeling, we also need labels for
our data. Our labels were GOOD or BAD quality ratings that we
gathered from experienced software developers at Meta. In total, we
collected over 650 data samples of test plans and their corresponding
ratings as labeled by about 500 Meta engineers (see Section 4.1 for
more details).

Our goal with the model is to learn a model representation
of what reviewers at Meta deem to be GOOD quality test plans.
Essentially, this task is similar to a sentiment analysis NLP task
(e.g., [6, 20, 24]), but specifically for Meta ’s code review domain. By
using a pre-trained RoBERTa model, we were able to leverage the
natural language representations learned from general NLP tasks
and apply them to test plans via transfer learning.

In addition, we experimented with replacing the fully-connected
layer in the RoBERTa classifier with a Matching Network wrap-
per [31] to take advantage of “one-shot learning” principles, which
further improved performance. Matching Networks, which are de-
signed to work well with little data, work by utilizing a “support
set”. In a high level description, Matching Networks are a deep
learning “k-nearest neighbors” [21], in which the model learns
to embed inputs with the context of a support set acting as the
“neighbors”. Our approach is to use this contextual embedding tech-
nique on top of the RoBERTa embeddings. We argue that this will
allow us to maintain the RoBERTa classifier’s strength of flexibil-
ity and performance, while addressing its potential weaknesses of
overfitting smaller datasets. Additionally, one potential advantage
that we get from using a Matching Network architecture is that
it provides a lightweight notion of interpretability. The Matching
Network architecture compares the input test plan to a support pair
of GOOD and BAD labeled test plans, and the output of the model
effectively indicates which example test plan in the support pair is
most similar to the input test plan in question. This sort of interface
may be more intuitive to a human user than a simple binary label
output. However, incorporating a more fine-grain notion of model
explanation is left as future work.

For this extension on the RoBERTa model, we simply just re-
implemented the Matching Network architecture as proposed in
the paper [31]. But instead of deriving the input features to the
Matching Network from a convolutional neural network (CNN) [1],
as in the original paper did for image processing, our inputs are the
RoBERTa model embeddings generated from our test plan data. The
whole model is then trained end-to-end. The Matching Network
architecture uses an example “support set” data, allowing it to learn
the similarities between new data samples and the support set data.
Multiple inference passes can be done with the Matching Network
architecture by utilizing different pairs of support data, allowing
this model to effectively behave as an ensemble model as well,
further improving performance.

We do not have any models or heuristics as the status quo that we
can use as our baseline comparison, so we also developed a simple
decision tree model that takes the feature-engineered metrics as
input, as listed in Table 1. This model is not used in practice, but
rather it is a representation of a naive solution which we use to
compare with our new proposed technique. It is an example of

Table 1: List of manually constructed features for the Deci-
sion Tree baseline model.

Feature Name Description
Non-code Length Length of test plan, excluding sections for-

matted as multi-line code markup
Num URL Number of url links included in test plan
Has Codeblock Whether test plan contains sections for-

matted as multi-line code markup
Has Codeline Whether test plan contains single-line

code markup (typically representing run
commands)

Has Test Command Whether test plan contains common test
commands, e.g. hack unit tests, jest, etc.

Has Screenshot Whether test plan contains images, videos,
or other media attachments (which are typ-
ically screenshots or screen recordings)

Has Common Com-
mands

Whether test plan contains common run
commands, such as for linters, formatters,
or static analyzers

how one might come up with manually hand-crafted heuristics or
features to model test plan quality, which we argue is less scalable
and less performant than data-driven approaches that we explore.
As for the features listed in Table 1, not that it is not always the
case that the more, the better. As an example, having many URLs
with no text to explain it may be an indication of a bad test plan.
This list is a good representation of the type of manually defined
metrics the code review team may have used as their main signal
of test plan quality prior to our work. The decision tree, therefore,
represents what a possible simple heuristic unifying the metrics
might look like for a holistic model classifier. The key difference
for this baseline is that it requires manual feature engineering and
heuristic definition, as opposed to our RoBERTa-based models that
require little data preprocessing. This decision tree baseline also
fails to capture syntactic structure or semantic information.

Figure 3 shows the three approaches considered in our experi-
ments. All in all, our proposed models have the benefit of

• no feature engineering (other than tokenization / simple
regex replacement for media and links);

• capturing natural language data, including both syntactic
and semantic information;

• being more generalizable without relying on rigid rules.

4 EMPIRICAL EVALUATION
This section details the empirical evaluation of our test plan classi-
fication approaches. The industrial context of the empirical evalua-
tion is Meta’s continuous integration system.

4.1 Setup
To obtain test plan labels, we identified a list of 500 developers who
have conducted the most code reviews in the past year. For this
list of top reviewers, we randomly sent them a survey during the
code review process asking them to rate the test plan quality as
either GOOD or BAD. Using this method, we collected over 650
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Figure 3: Approaches considered in our study.

human-rated test plans as this fold our training set. As we wanted
to gauge the opinions of the reviewers in a realistic setting, each
test plan was rated by the reviewer (often only one) of the pull
request using Phabricator.

For training each of our three models, we employed a 65-15-20
data split for training, validation, and testing. Note that the support
set used during the matching network training and validation is
sampled from their respective datasets. During the inference or
testing phase for matching network, we use a separate support set
that we set aside, consisting of 3 support pairs.

Following the questions outlined in the Introduction, concretely,
we look to answer four research questions in our empirical experi-
ments:

(1) Can we use a data-driven approach to model holistic test
plan quality that aligns with developer opinions?

(2) Do state-of-the-art transformer-based models used in NLP
tasks translate to the code review domain, and outperform
more trivial methods that require feature engineering?

(3) Is our data-driven test plan classifier correlatedwith reviewer
engagement?

(4) Do pull requests that get reverted or are associated with
outages have test plans with lower quality?

For the first two research questions, we simply evaluate our
model performance on the test set, using the F1-score as our metric.
The F1-score is a widely used metric for binary classification, which
makes it a suitable and simple way to compare the models with
which we are experimenting. Formally, the F1-score is the harmonic
mean of precision and recall:

F1-score = 2 · 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 · 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

where 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 is the number of true positive results divided by
the number of all positive predictions, including those not identified
correctly, and 𝑅𝑒𝑐𝑎𝑙𝑙 is the number of true positive results divided
by the number of all samples that should have been identified as
positive.

The latter two research questions are concerned with tying our
data-driven quality metric with some related downstream ground-
truth metric. To do so, we will be applying our data-driven model
on unlabeled data to measure their test plan quality, then do sim-
ple metric comparisons to find correlations. The third question is
interested in how test plan quality correlates with review quality
and engagement, as discussed in section 2.2. The final question is
concerned with test plan quality for pull requests that are related
to some form of regression, and thus intuitively of lesser quality.

4.2 Results
We measure the model performance by measuring the F1-Score
of the predictions on our test set (see Table 2). We observed that
the RoBERTa Simple Classifier model and RoBERTa Matching Net-
work model improved the average F1-score by about 4% and 7%,
respectively, compared to the Decision Tree baseline model.

Our observations suggest that our model is able to capture and
model the sentiment of Meta developers towards sample test plans
with about 90% accuracy. This is quite substantial, considering de-
veloper ratings of test plan quality is, to a certain extent, a subjective
measure.

RoBERTa Simple Classifier model and RoBERTa Matching
Network model improved F1-score by about 4% and 7% on
average, respectively, compared to the Decision Tree baseline
model.
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We also observe that our predicted test plan quality is correlated
with a pull request’s review quality (or review engagement), as
shown in Table 3. First, we predicted the quality of unlabeled test
plans using our Matching Network model. When controlled for
lines of code (because pull requests of different sizes may have
different levels of review engagement), pull requests with predicted
GOOD test plans have on average 6.6% higher reviewer engagement.
If we look specifically at the moderately sized pull requests, which
avoids confounding variables of trivial or overly-complex code
changes, we see that pull requests with GOOD predicted test plans
have 10.5% higher reviewer engagement, a statistically significant
increase. This suggests that our test plan classifier does not just
align with our developer sentiment, but can also be tied to concrete
metrics that demonstrate the impact of test plan quality.

Pull requests with predictedGOOD test plans have on average
6.6% higher reviewer engagement; this value increases to
10.4% higher reviewer engagement if only considering pull
requests with moderately sized changes.

Finally, we also gathered a dataset of pull requests associated
with known outages at Meta: in particular, we collected an order
of 104 diffs associated with reversions and half as many associated
with outages. These pull requests may not necessarily be the direct
cause of these outages, but are mentioned in outage reports which
strongly suggests they may have caused regressions. Moreover, we
also gather a dataset of reverted pull requests.

When we run the inference on the test plans of these pull re-
quests, we see that their predicted quality is noticeably lower. As
shown in Table 4, for pull requests associated with outages, we see
that the average test plan quality rating is 3.8% lower than the rating
for other pull requests. However, we observed that this difference
is not statistically significant. We argue that a potential reason for
this observation is that we have a very limited amount of sample
outage-related pull requests as there are not that many outages at
Meta.

When we look at reverted pull requests, which is a larger sample
size, we see that the predicted test plan quality is 8.9% lower than
the ratings for other pull requests. With the larger dataset, we see
that this difference is indeed statistically significant. By using our
model, we can quantify that lower test plan quality is correlated
with poorer quality pull requests that cause regressions or are
eventually reverted, matching our intuition that test plan quality
affects the overall pull request and code review quality.

The average test plan quality of pull requests associated with
outages is 3.8% lower than the average test plan quality rat-
ing for other pull requests; The average test plan quality
associated with reverted pull requests is 8.9% lower than the
average test plan quality rating for other pull requests.

4.3 Threats to Validity
This subsection discusses potential external, construct, and internal
threats.

Table 2: Model performances on test set, predicting GOOD
or BAD labels for test plans.

GOOD
Label
F1-Score

BAD
Label
F1-Score

Average
F1-Score

Decision Tree base-
line

0.779 0.877 0.828

RoBERTa + Simple
Classifier

0.841 0.893 0.867

RoBERTa +Matching
Network

0.871 0.921 0.896

Table 3: Review engagement metric comparison for pull re-
quests with GOOD vs. BAD (control) test plans, as predicted
by trained RoBERTa + Matching Network model and con-
trolled by lines of code of pull request.

Lines of Code Avg.
Metric
Change

T-Value P-Value

Bottom Third Quantile
(<18 Lines)

+2.7% 0.984 0.325

Middle Third Quantile
(>18 Lines and <73 Lines)

+10.5% 34.370 1.26 × 10−256

Top Third Quantile (>73
Lines)

+7.4% 25.332 5.35 × 10−141

Table 4: Test plan classification as predicted by trained
Matching Network model, comparing metric change for
outage-related or reverted pull requests with other pull re-
quests.

Avg.
GOOD
Test Plans

% Change T-Value P-Value

Other Pull Re-
quests

0.235 – – –

Pull Requests
Associated
with Outages

0.226 -3.8% -0.936 0.350

Reverted Pull
Requests

0.214 -8.9% -3.647 0.000267

4.3.1 External Validity / Generalizability. Drawing general con-
clusions from empirical studies in software engineering is diffi-
cult, because any process depends, to a degree, on a potentially
large number of relevant context variables. While this analysis was
performed at Meta, it is possible such results might not hold in
other environments/domains/companies. As an example, the re-
sults might not hold for small and/or local teams, where the value
of explicitly written test plans may not bring value over in-person
communications. For this reason, we cannot assume a priori that
the results of a study generalize beyond the specific environment
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in which it was conducted. Researchers become more confident
in a theory when similar findings emerge in different contexts [2].
Therefore, we urge other researchers to replicate a similar study in
other environments.

4.3.2 Construct Validity. Construct validity is used to determine
whether the dependent and independent variables accurately repre-
sent the concepts they are supposed to measure. A particular threat
to construct validity of our work is that we leverage an in-house
metric to review quality (review engagement) that has otherwise
not been validated by the scientific community. To mitigate this
threat, we have conducted an extensive study with the metric at
Meta; hence, the metric is validated by developers in a real context.

Other threats to construct validity are related to the suitability
of our evaluation metrics and the quality of the labeled datasets
that we use. F1-score is widely used to evaluate solutions, such
as our approach. As for labeling the datasets, there is a possible
confounding variable that teams who spend more time writing
good test plans have a culture that also separately results in them
writing better pull requests / reviews.

Moreover, the quality labels of test plans that indeed have an ele-
ment of subjectivity. However, given that the proposed approach is
to be used by humans, we argue that this subjectivity is acceptable.
In particular, we wanted to see if a model could capture the general
trend or opinions of human opinions, even if subjective. We then
found that our model was decent at modeling human subjective
opinions, and even more interestingly, they have significant corre-
lations with objective metrics, like review engagement, reversions,
and outages.

Yet another potential threat to the validity regarding the labels
of the test plans is that one might question whether a binary clas-
sification is a good representation of test plans. One might argue
that there may be more levels to the quality of the plan other than
simply GOOD or BAD.

4.3.3 Internal Validity. One potential threat to internal validity
relates to errors that we may have made in our experimental set-
up/pipeline. This threat has been mitigated by careful peer-review
of the pipeline by the authors.

Moreover, as mentioned before, we gathered a dataset of pull re-
quests associated with known outages at Meta. However, these pull
requests may not necessarily be the direct cause of outages; they
are mentioned merely in outage reports. Although strongly sug-
gesting that they may have caused regressions, outage-associated
pull requests are not necessarily guaranteed to be the root causes
of outages. Additionally, note that the size of the dataset is limited.

We did not perform any hyperparameter tuning for our models,
which leaves open the possibility that these models can be further
improved through a rigorous hyperparameter optimization. Our
decision tree baseline was trained with a depth threshold of 4, the
criterion set to “entropy”, min_samples_leaf set to 4, and all other
hyperparameters set to default in the sklearn API5 [29]. For our
gradient-based models, we trained both for 50 epochs with batch
sizes of 16. We set the weight decay to 0 and the learning rate to
1 × 10−5. These hyperparameter decisions were largely driven by
the motivation to keep resource usage manageable and reasonable.

5https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html

By using non-optimized defaults, the hyperparameters were fixed
before looking at the test set to ensure no contamination.

5 DISCUSSION: DOWNSTREAM USAGES
One strong implication of our findings is that higher quality test
plans will lead to better review engagement. That is, a bad test plan
will make it difficult for reviewers to properly review or test the
code, whereas a good test plan means reviewers can more efficiently
catch issues or provide reviewers more context and confidence,
prompting actual productive conversations or reviews to happen.

We explain below usage scenarios for external researchers and
engineers to leverage such a system motivated by usage at Meta.

(i) Use it to surface high-quality test plans as recommendations
to developers. At Meta, we have internal tools that help developers
find test plans from related code changes and files. We can use the
proposed model to filter or rank higher quality test plans when
developers request test plan examples. This can encourage higher
quality test plans at Meta, and also improve the developer and code
review experience. Moreover, surfacing high-quality test plans may
serve well as an educational tool for novice developers.

(ii) The second is to use it as a distinctive feature in other predic-
tion modeling approaches. As an example, Phabricator offers a
functionality to predict the time it will take to review a pull request.
One can imagine building a model that considers the test plan clas-
sifier as one of its input features. We argue that better test plans
will help with the accuracy of such predictions.

(iii) To use it as a downstream metric in our experiments. Return-
ing back to our original motivation, we would like to make sure
that new features or code review efforts do not hurt the quality
of our pull requests. In our experiments, we can use our classifier
to make sure that the quality of test plans does not deteriorate or
maybe we can even find ways to improve it.

A example case study is using Test Plan Linters. At Meta, we
developed some “linters” for test plans, hoping to nudge reviewers
to create higher quality test plans. For example, to ensure that the
test plans provide as much context as possible, we developed an
“Attach Screenshot” linter and “Missing Link” linter.

The “Attach Screenshot” linter predicts when a test plan should
contain a screenshot based on historical data, and recommends de-
velopers attach an image if they are missing one. The “Missing Link”
linter asks the developer to also provide an URL link to document
the source of the attached media if it is not included.

In our experiment, we want to test if these linters would indeed
improve test plan quality and thus reduce other downstreammetrics
we care about, or perhaps these linters were ignored, or, even worse,
resulted in developers doing the bare minimum instead.

What we found was that pull request staleness had decreased
and test plan quality, as measured by our model, had increased.
This is a great empirical anecdote of how test plan quality is tied
closely with other important code review metrics, and can help us
understand the impacts of new features in our experiments.

6 RELATEDWORK
There are numerous studies in academia investigating how de-
velopers perceive review quality. In “Code Review Quality: How
Developers See It” [12], the authors surveyed developers at Mozilla
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and found that key aspects of a well-done code review include thor-
ough feedback, advice around correctness issues, and the quality
of the code changes themselves. In “Characteristics of Useful Code
Reviews: An Empirical Study at Microsoft” [3], the authors sur-
veyed developers to build a set of criteria with which to label code
review comments as “useful” or “not useful”. They then employ this
criterium to manually label a training set with which they train a
classifier that detects the usefulness of a comment.

It should be noted that the above studies look at human-based,
subjective measures of quality. The former study directly surveys
developers, whereas the latter builds a classifier around criteria
formed from human sentiment. The next series of studiesmentioned
will look at code review quality from the perspective of objective
measures of quality, such as the incident of post-release defects or
occurrence of anti-patterns.

McIntosh et al. [18] studied whether various code review par-
ticipation metrics have an effect on post-release defects, in the
context of modern, asynchronous code reviews. Rather than at-
tributing defects to pull requests directly, the authors attribute
defects to “components”, which are folder-level aggregations of
files. Post-release defects are identified by searching for version
control commit messages that contain keywords like “bug”, “fix”,
“detect”, or “patch”. Metrics on review characteristics and human
factors (such as the number of authors that touch a component) are
calculated for the six-month period prior to a product release, rather
than individual pull requests. They find that component reviews
without discussions and reviews with lower reviewer participation
rates (i.e., self-approved reviews) tend to have higher post-release
defect counts.

A replication of the the aboveMcIntosh et al. study on the Google
Chrome project is discussed in another work [14]. This study again
associates post-release defects with files at the directory level, rather
than individual patches themselves. Post-release defects are iden-
tified by scraping the Chrome issue tracker, searching for issues
submitted in the time period after the current release. They find
that review participation measures have an inconsistent explana-
tory power across projects and releases, leading them to model
the problem with a Bayesian Network-based approach [8, 35]. The
Bayesian Network methodology showed that review participation
measures have an indirect effect on post-release defects, with prior
defects, component size, and the number of inexperienced authors
contributing the most to the incident of post-release defects.

Mäntylä and Lassenius studied whether code review finds issues
related to the functional correctness of code or “evolvability issues”,
such as the structure or documentation of source code [16]. They
give a taxonomy of software defects, and find that 71.1% of the
findings in industrial code reviews are related to evolvability defects,
with 21.4% of the findings corresponding to functional defects and
7.5% being false positives. It should be noted that the code review
methodology used in this study was a synchronous, in-person, and
recorded meeting, in which multiple reviewers commented on code
changes in real time. In the industrial setting, nine review sessions
were observed in total. The author of the study observed code
review sessions and manually identified defects as being related
to either functional or evolvability issues. Thus, defects in this
study are attributed to what reviewers identify before the changes
are shipped. It should also be noted that this review methodology

is starkly different from the Meta ’s asynchronous code review
practices.

McIntosh et al. have further expanded on their previous study
on the relationship between code review and software quality, this
time specifically trying to determine whether code reviews inhibit
the occurrence of “anti-patterns” in code [19]. As in the previous
McIntosh et al. study, anti-pattern defects are attributed to com-
ponents, or directory-level file sets. Seven anti-pattern types are
detected using automated tooling. They find that code review cov-
erage and participation reduce this incident of anti-patterns in
software components.

There is a work [5] that makes the strongest claims as to the
value of code review in relation to finding software defects. The
authors state that only 15% of the code reviewer comments indicate
a possible defect. The usefulness of the review comment, as judged
by the author, is correlated with the experience of the reviewer, with
more experienced reviewers giving more useful feedback. They find
that review usefulness decreases with the size of the changed file
set, with a noticeable drop-off occurring around 20 changed files.

“Review Participation in Modern Code Review” [26] examines
what factors lead to faster reviewer engagement, rather than what
aspects of reviewer engagement impact software quality. It is worth
mentioning because its results align with those of the above studies
around the relationship between reviewer characteristics and code
reviews. In this study, not all pull requests that are shipped receive
code review, and thus there is a question as to why some pull
requests receive review and others do not. This study finds that the
greater the number of prior pull requests reviewed by an assigned
reviewer, the more likely the pull request will actually receive
review. This aligns with previous studies, which find that reviewer
characteristics, such as the amount of previous contributions to the
code components, the amount of code reviews performed in the
past, and social factors, such as a reviewer’s personality or standing
in the team, impact the quality of code review and the resulting
software.

To summarize, the prior literature in this space indicates that it
is an unanswered question whether review characteristics impact
software quality. Existing studies find that other characteristics,
such as those relating to the reviewer or the code quality itself, can
have more explanatory power on whether post-release software de-
fects occur (so much so that these other characteristics are directly
controlled for in many of these studies). To put it plainly, it is still
unproven that code review reliably catches bugs. If the vast major-
ity of code review is truly concerned with evolvability and stylistic
issues, as suggested by the above studies, an argument could be
constructed that it would be wiser to invest more in automated
code quality enforcement tooling, rather than better code review
practices. Before we get too carried away with this, it is important
to make some very clear distinctions between the code review prac-
tices examined in this prior literature and those employed at Meta,
as well as the underlying questions being investigated.

We do argue — and our study suggests —- that including a high-
quality test plan to a pull request will lead to better code quality
overall. In this study, we are concerned with the quality of the test
plan in a pull request. Our question is, what characteristics of a
given pull request, if any, reliably predict whether it is likely to be
a “blame pull request”. To refresh the reader’s mind, a blame pull
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request is one that is implicated in an outage or otherwise reverted
for any other reason.

7 CONCLUSIONS AND FUTUREWORK
As part of the effort to measure and improve pull request quality,
in this industrial experience paper, we describe our efforts in de-
vising a classifier for test plans. We started from the hypothesis
that increased test plan quality could help improve review quality
and engagement. Our goal is to demonstrate that data-driven ap-
proaches could be leveraged as a meaningful heuristic. Note that
we are not attempting to set a new benchmark with high evaluation
accuracy; instead, we are showing that out-of-the-box language
models make for good heuristics that align with both human sub-
jective opinions and objective metrics.

We frame the problem of quantifying quality of a test plan as a
binary classification model. Leveraging the success of NLP-based
techniques in other domains, we propose an approach based on
a pre-trained RoBERTa language model which takes in the test
plan as a natural language input. The model was fine-tuned using
opinions of about 500 developers on over 650 test plans. Our em-
pirical evaluation suggests that the proposed approach is able to
capture developer sentiment and reflect a correlation of test plan
quality with review quality/engagement, outages, and reversions.
Compared to a decision tree model —the baseline model—, our
proposed transformer-based model achieves a 7% higher F1-score,
i.e., the proposed approach is more accurate than the baseline and
produced statistically significant correlations with the objective
metrics. We have also presented a case study of how such a metric
may be useful in experiments to inform improvements in developer
tools and experiences.

We have discussed potential downstream applications in a previ-
ous section, paving the way to several interesting ideas for future
work. Yet, another potential area of exploration — from the point of
view of model development — is to inform the model with source
code-related features, because test plan quality may sometimes be
dependent on the code changes that are being tested. Due to the
limited dataset and the sparse nature of source code data, we leave
this as future work.

Moreover, we have shown that RoBERTa-based approaches have
the advantage of beingmore flexible and generalizable, while achiev-
ing better performance than a rule-based decision tree. However,
despite the fact that the Matching Network architecture provides a
lightweight notion of interpretability to some extent through the
support set examples, the challenge of incorporating a fine-grain
notion of model explanation remains as future work.
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