Vergence-Accommodation Conflicts in Augmented Reality -Impacts on Perceived Image Quality-

Ian Erkelens & Kevin MacKenzie

@facebook AR/VR Applied Perception Science

July 15, 2020

Paper Session19, Paper 2, Section 469

Summary

Study Goal

 Understand the impact that vergence-accommodation conflicts (VAC) have on image quality in the context of an augmented reality environment

Outline • Determine detection thresholds for focal rivalry for spatially congruent content

- Review vergence-accommodation conflicts (VR vs AR)
- Study Apparatus, Design & Analysis
- Results
- Conclusions & Next Steps

Vergence & Accommodation

Vergence Accommodation Conflicts (VAC)

facebook

VAC Tolerance in VR

VAC Tolerance in VR

The VR-VAC 'Zone of Comfort'

VR vs AR VAC

AR Environments

Negative (AR) VAC

AR VAC

Positive (AR) VAC

Study Goals

- Evaluate the impact of VAC in AR on perceived image quality
 - Detection thresholds of focal rivalry induced blur between spatially congruent content & real-world objects
 - Quantify content limitations that the HVS imposes in AR
 - Under specific, worst case, circumstances

Experiment Platform

- High Resolution Additive Display System -

- 3 displays per eye (6 total)
 - Variable focus for each display
 - Telecentric
 - 2arcm resolution
 - Luminance & white point balanced

Experiment Design & Stimlus

- 2AFC Task, n = 11
 - Blur discrimination threshold for simultaneous viewing of content with and without VAC
 - 'Which text is clearer when you focus naturally?'
- 3 VIDs (0.5D, 1D, 1.67D)
 - VAC varied by ~0.25D steps up to 2D maximum VAC
 - 12 trials @ each VAC condition per VID
 - 1 control condition per focal plane
 - Both sets of text have no VAC
 - 468 trials per participant (excluding practice trials)

facebook

facebook

Experiment Design

Results - Raw Data

Normalized Preference =
$$\frac{|Preference\ Score|}{0.5}$$

Threshold Determination – Individual Data

- Quality of fit for the psychometric function on the normalized data varied significantly between participants
 - Larger VAC magnitudes influenced responses for only some individuals
- Threshold = first VAC magnitude where normalized preference score > binomial sig test @ p < 0.05

Individual Preference for Content Type

- Preference for which content type was clearest was idiosyncratic between participants
 - Influenced by VAC direction in some observers
 - 8 of 11 had the same preference pattern regardless of VID (as shown)
 - 3/8 preferred VAC content when VAC was negative & non-VAC content when VAC was positive (red)
 - 2/8 preferred VAC content when VAC was positive & VAC content when VAC was negative (blue)
 - 1/8 always preferred VAC content
 - 2/8 always preferred non-VAC content (this was the expected pattern but only occurred in 2/12 observers)
 - 3 of 11 had a change in content preference for a VAC direction based on VID

Heterophoria & Preference for Content Type

- We investigated the role that the observers heterophoria played in these idiosyncratic differences in preference of content.
- Wilcoxon SRT for each VID condition
 - Heterophoria type vs Content Preference
 - No effect at any VID (p > 0.05)
- Did not measure <u>dark focus (tonic accommodation)</u>; however we hypothesize this may play a role.
 - May act as an 'anchor' for accommodation when presented with significant defocus gradient between 2 spatially congruent targets.

Group Normalized Preference-Probability

The (AR) Zone of Clear Vision - 'ZoCV'

Conclusions & Next Steps

- 1. Some participants preferred VAC Content
 - AR may impact visibility/visual quality of the real world
- **2.** Large VAC magnitudes in AR can impact user performance on this task
 - Need to understand oculomotor responses to these types of stimuli (accommodation)
- **3**. The ZoCV is in magnitude (width) as the ZoC for VR
 - Suggests that image quality may provide an indirect measure of visual discomfort
 - Individual physiology (pupil size, optics) may account for interobserver variability

APPLIED PERCEPTION SCIENCE

