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1. Introduction

The finite-difference time-domain (FDTD) method has been and continues to be widely used to solve the acoustic wave
equation in various application areas (e.g., underwater acoustics,1 room acoustics2). To ensure that the simulation results
can be trusted, the reliability and the accuracy of the implemented method and computed results should be assessed. Such
an assessment can be done via a verification procedure, which usually comprises a code verification followed by a solution
verification.3 The purpose of the code verification is to assess the correctness of the discrete mathematical model imple-
mentation, while the solution verification aims at quantifying the numerical errors in the computed solution for a given
problem. In practice, the code verification procedure typically consists in estimating convergence rates and requires a
known analytic solution. The solution verification, which is done in the absence of a known analytic solution, usually con-
sists in either estimating the discretization error or predicting asymptotic solutions (i.e., computing asymptotic predictions)
from a series of simulations.

One application for which the use of FDTD simulations is particularly attractive, as an alternative to measurements, is
the prediction of head-related transfer functions (HRTFs). Verification in that context is therefore relevant, especially considering
that the “operational validity”4 of a simulation method is context-dependent. Moreover, studies focused on verification tasks in
the context of HRTF predictions are scarce.5 In Ref. 6, FDTD-simulated HRTFs of a single sphere were only visually compared
to analytic solutions, and no convergence rate was estimated nor asymptotic solution predicted. Reference 7 included a conver-
gence rate assessment for another sphere model but did not perform a solution verification. Reference 5 presented finite-
difference predicted asymptotic solutions for pinna-related transfer functions. However, the code verification in Ref. 5 was done
in the absence of the voxelization error. As such, the case of the single sphere model is relevant since code verification is possible
as there exists an analytic solution for the problem of scattering from such a model. It also provides a case for verification where
the voxelization error is present. Last, such a model, as it represents the simplest approximation of a human head, gives a foun-
dation on what to expect for more complex geometries.

2. Code verification

2.1 Rigid sphere model

This paper considers a sphere of radius 8.25 cm with rigid (specific admittance¼ 0) boundaries. The spherical coordi-
nates (r, h, /) using the convention from Ref. 8 were adopted, where r is the radial distance (or radius), h is the
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colatitude, and / is the azimuthal angle defined counterclockwise (as seen from the top of the sphere) and whose range
is 0� � /< 360�. Seven positions on the sphere surface were selected for investigation. Relative to the center of the
sphere, taken as the center of the coordinate system, these positions were at a colatitude h¼ 90� and azimuthal angles /
ranging from 0� to 180� with 30� increments. The frequency of analysis varied from 250 Hz to 20 kHz with 125Hz
increments. A monopole source was positioned at two radial distances of 82.5 cm and 1.65m from the sphere center at
(h, /)¼ (90�, 0�). The rationale behind the choice of the source distances was that near- (within 1m distance from the
sphere, as in Ref. 9) and far-field differences could be investigated. The positions of investigation on the sphere and
source positions are shown in Fig. 1(a).

2.2 Analytic solution

The problem of acoustic wave scattering from a sphere can be solved using numerical computational methods such as
FDTD. Another set of methods uses analytic expressions whose accuracy is typically controlled by the truncation order of
the (infinite) summations involved. The computational technique identified as the multipole reexpansion technique,10

which is based on the T-matrix method,11 belongs to the second set of methods and is chosen here to provide the analytic
solution of the problem of scattering from the rigid sphere model described in Sec. 2.1. The interested reader is referred to
Refs. 10 and 12 for a thorough description of the method and definitions of the underlying mathematical functions used
in the computations. The multipole reexpansion method was preferred over the method from Ref. 13 as rigorous error
bounds were found in Ref. 12, whereas Ref. 13 did not provide such error bounds.

In the present context of HRTF predictions, the multipole reexpansion technique is used to compute the func-
tion H given in Eq. (1), which defines the HRTFs of the single sphere,

Hðr; h;/; f Þ ¼
���� PSðr; h;/; f ÞPincðr ¼ 0; f Þ

����; (1)

where f denotes the frequency, and PS is the Fourier-transformed pressure on the sphere at the position indicated by (r, h, /).
Pinc denotes the Fourier-transformed pressure of the incident wave measured in the free field at the sphere center.

To ensure that the results from the implementation of the multipole reexpansion method by the present paper’s
authors were in line with previously published results from the authors who developed the method, comparisons with Fig. 3
from Ref. 10 were carried out. These comparisons demonstrated good agreement between the two implementation results
(results not shown). Furthermore, the case of the scattering from the rigid sphere described in Sec. 2.1 was compared with
the results from Ref. 13. For this latter comparison, a truncation order of 64 was employed (the rationale behind this choice
is explained in the following paragraph) for the multipole reexpansion technique, while the series from Ref. 13 was
truncated when the ratio of the subsequent terms in the series was smaller than MATLAB’s machine epsilon in double precision
e � 2.2� 10�16. The maximum absolute difference between the two implementation results was around 10�12.

As previously mentioned, the computation of the analytic solution requires the truncation of the summations
involved to a finite order. For the problem of scattering from a sphere, the truncation number required to provide computations
with a prescribed accuracy can be evaluated rigorously.12 Using the error bound Eq. (9.1.42) from Ref. 12, the truncation num-
ber was found to be 64 to attain a prescribed error of (kmax=4pÞ � e in the incident and the scattered fields, separately, across
all frequencies and the two source positions, where kmax represents the maximum wavenumber considered. The final error
bound on 20 log10ðHanalyticÞ was estimated using interval arithmetic, assuming 2(kmax=4pÞ � e absolute error in jPSj and
ðkmax=4pÞ � e in jPincj: the error was evaluated to be below 1.3� 10�11dB across all conditions. The computed analytic solu-
tion with such prescribed accuracy is shown in Fig. 1(b) for the seven HRTF directions and for the near-field source.

Fig. 1. (a) Top view of the rigid sphere model with the positions of investigation (orange dots) located at a colatitude h¼ 90� and azimuthal
angles / ranging from 0� to 180� with 30� increments and the source positions (black dots). The indicated dimensions are not to scale. (b)
The log-magnitude of Hanalytic as a function of frequency for the seven positions of investigation on the sphere surface and for the near-field
source position. Hanalytic denotes the function H from Eq. (1) computed using the multipole reexpansion technique (as implemented by the
present paper’s authors). The computations were done in double precision using a truncation order of 64.
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2.3 Convergence rate estimation

As mentioned in Sec. 1, code verification is concerned with the assessment of convergence rates. Essentially, this implies
analyzing the discretization error behavior by comparing the observed (from FDTD simulations) with the expected (i.e.,
the formal order of the employed scheme) rate at which the discretization error decreases as a function of spatial grid
spacing.5 Note that a first-order convergence rate is expected due to the first-order voxelization error14 at the boundaries
as well as the nearest neighbor error (i.e., the computations are done at voxel centers, and no spatial interpolation is done;
see, e.g., Table 1 from Ref. 5).

The basic equation to evaluate the discretization error15,16 is the asymptotic expansion given in Eq. (2),

Hiðri; h;/; f Þ �Hanalyticðrsphere; h;/; f Þ ¼ cð f ÞXq
i þHOTð f Þ; (2)

where cð f Þ represents the coefficient of the principal error term, which is independent of the spatial grid spacing X, HOT
denotes the higher-order terms, and q is the convergence rate. Hanalytic and Hi are the functions H computed using the
multipole reexpansion technique and simulated on the ith FDTD spatial grid spacing Xi, respectively.

Considering that it is possible to estimate the discretization error in a least squares sense if the number of
FDTD grids is greater than or equal to four,15 a regression model based on Eq. (2) (with the HOT neglected) linearized
using a logarithm function was used for estimating q. More specifically, the slope resulting from the least squares fit of the
regression model gave the q estimates. Additionally, the weights introduced in Appendix B.1 from Ref. 15 were also
applied to the linear regression model.

Alternatively, by neglecting the HOT of Eq. (2), the convergence rate q can also be estimated as follows:

q ¼
log10

Hiþ1ðriþ1; h;/; f Þ �Hanalyticðrsphere; h;/; f Þ
Hiðri; h;/; f Þ � Hanalyticðrsphere; h;/; f Þ

 !

log10ðsÞ
; (3)

where s ¼ Xiþ1=Xi is the FDTD spatial grid refinement ratio relating the spacings from two consecutive FDTD spatial
grids. Hi and Hiþ1 are the functions H simulated on the FDTD spatial grid spacings Xi and Xiþ1, respectively, with
Xi < Xiþ1.

The results from these two convergence rate estimation formulas are presented in Sec. 2.5.

2.4 Simulations

An FDTD solver using graphics processing units (GPUs) and a message-passing interface (i.e., using parallel processing)
was utilized to run the simulations. The FDTD solver was previously verified on a free-field computational domain (i.e., no
scattering object, thus without the voxelization error), using the methods described in Ref. 5, as well as for free-field propa-
gating spherical wavefronts emanating from a point source (results not shown). Here, the code verification analysis from
Ref. 5 is extended to when the voxelization error is present. The simulations were run on 10 or 12 nodes containing 8 or
16 GPUs (Tesla V100, Nvidia, Santa Clara, CA) each. The standard rectilinear scheme of the FDTD method was used at
its stability limit (i.e., with a Courant number set to k ¼ 1=

ffiffiffi
3
p

). The simulations were run in single and double precision
(see the results in Secs. 2.5.1 and 2.5.2, respectively). The FDTD code computes the update equations at each air voxel
within a finite-volume interpretation17 on a uniform and structured grid (see, e.g., Ref. 5 for an explicit update).

The voxelization was made using a surface-conservative voxelization algorithm.18 To ensure that no receiver (i.e.,
a grid node at which the pressure is captured) ended up on a solid voxel of the voxelized sphere mesh, a radius larger
than that of the sphere was considered to position the receivers at the center of air voxels of the FDTD spatial grid. The
radius ri for the receiver positions was determined using Eq. (4),

ri ¼ rsphere þ Xi

ffiffiffi
3
p
þ e; (4)

where rsphere¼ 8.25 cm is the sphere radius, Xi is the FDTD spatial grid spacing, and e is machine epsilon in double preci-
sion. Note that ri in Eq. (4) converges to rsphere (within e) as the spatial grid spacing Xi gets smaller.

A soft source with a Gaussian pulse [GðtÞ ¼ eð�ðt�lÞ2=2r2Þ, where r2¼ 0.034� 10�8 and l¼ 1.8� 10�4] as the
driving function was employed to excite the FDTD grids. A 4m� 4m� 4m rigid box was designed around the sphere
model. The simulation time was set to 8ms such that the scattered sound field from the sphere was fully captured by the
receivers without including any reflection from the box. The FDTD spatial grid refinement ratio s ¼ Xiþ1=Xi, where
Xi < Xiþ1, was chosen to be 1.1 (minimum recommended in practice) since including a large number of grids is beneficial
in the context of code verification tasks15 (see also Sec. 2.3).

The speed of sound c for the air voxels was chosen such that the temperature was 20 �C and the atmospheric
pressure was 101.325 kPa in dry air (i.e., with density 1.2041 kg/m) for all simulations and thus approximately equaled
343.4m/s. This allowed the study of 19 spatial grid spacings X ranging from approximately 0.75 to 4.20mm
(corresponding to temporal sampling frequencies fs ranging from 793 125 to 142 750Hz) while keeping the simulation
time constant throughout the series of simulations. Also, by keeping the simulation time constant, the frequency
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resolution defined as the ratio of the temporal sampling frequency of the simulations fs over the number of time steps
N was kept constant between grids and equaled 125Hz. Because the present FDTD solver requires an integer sampling
frequency fs, keeping a constant frequency resolution while using a refinement ratio of s¼ 1.1 was not always possible.
Consequently, fs was readjusted to keep the frequency resolution constant, which led to X values rounded to two deci-
mals. For the same reason, the refinement ratio between two consecutive grids was not exactly 1.1 but varied between
1.16 4.8� 10�4 after re-adjusting fs.

The discrete Fourier transform of each of the 19 FDTD-simulated Gaussian pulse responses was computed using
a fast Fourier transform (FFT) algorithm with an FFT size equal to N. The FFT was computed separately for the responses
generated in the presence of the sphere model to obtain PS and for those generated in the free field to obtain Pinc. Finally,
PS was divided by Pinc as in Eq. (1) to obtain H.

2.5 Results

2.5.1 Single precision

The two convergence rate estimation formulas presented in Sec. 2.3 were utilized with the 19 FDTD simulations run in
single precision described in Sec. 2.4. The 95% confidence intervals (CIs) on the q estimates from the linear regression
model based on Eq. (2) with the HOT neglected were also computed using the bias-corrected and accelerated (BCa) boot-
strap method (with 5000 replicates) introduced in Ref. 19. The results for two positions on the sphere and the near-field
source position are shown in Figs. 2(a)–2(d). The results for the second source position were similar (not shown).

As can be seen in Figs. 2(a) and 2(b), the q estimates from Eq. (3) are highly scattered, which suggests either
that the asymptotic range was not attained or that Eq. (3) is not a reliable indicator of asymptotic range for the used mod-
els (i.e., the used FDTD scheme including the voxelization error for solving the wave equation). The extent of the scatter
seen in Figs. 2(a) and 2(b) was similar for the rest of the HRTF directions. The scatter in the q estimates was, however,
considerably reduced at lower frequencies when the linear regression model was applied. As can also be seen in Figs. 2(c)
and 2(d), applying the weights from Ref. 15 to the linear regression model did not further improve the q estimates. When
also comparing Fig. 2(c) with Fig. 2(d), the extent of the scatter seems to vary depending on the HRTF direction consid-
ered when the linear regression model is applied. Another observation concerns the 95% CIs on the q estimates, which
increase as a function of scatter in the data. Despite the scattered estimates seen at higher frequencies, the expected first-
order accuracy is nonetheless attained at least up to 1125Hz for most of the HRTF directions (slightly worse q estimates
were found in that lower frequency range for the far-field source for /¼ 60�), which implies that the used FDTD solver
behaves as expected in that lower frequency range. Also, note that the extent of this lower frequency range slightly varied
across HRTF directions (e.g., it was up to 2 kHz for the near-field source for /¼ 30�).

2.5.2 Double precision

To verify if using double rather than single precision improved the q estimates, the 19 FDTD simulations run in double
precision described in Sec. 2.4 were first compared with the 19 FDTD simulations run in single precision. The maximum
of the absolute error between the 19 H functions (converted to the dB scale) run in single and double precision across all
conditions (the two source positions and the seven positions of investigation) was less than 6.9� 10�5dB up to 10 kHz
and less than 1.9� 10�3dB for higher frequencies.

Similarly to Sec. 2.5.1, the q estimates from the linear regression model based on Eq. (2) (with the HOT
neglected) were recomputed using the simulations run using double precision. Visual inspection of the results (not shown)
revealed the q estimated from the simulations run in single and double precision were almost identical across the entire
250Hz–20 kHz frequency range for the HRTF directions and two source positions considered.

2.5.3 Spatial interpolation

To verify if avoiding location-related inconsistencies improved the convergence rate estimates, second-order accurate trilin-
ear spatial interpolation was applied to both the source and receiver positions for each of the 19 FDTD grids run in single
precision. The interpolation was done for the near-field source position only. Unlike the previous simulation series where
the receivers were positioned using Eq. (4) (see Sec. 2.4), here the interpolated receiver positions followed Eq. (4) solely
calculated with the coarsest spatial grid spacing of the simulation series, that is, Xi � 4.20mm (corresponding to a sam-
pling frequency of fs¼ 142 750Hz). Similarly, the analytic solution was recomputed for the same receiver positions located
outside of the sphere surface.

The q estimates from Eq. (3) and from the linear regression model based on Eq. (2) (with the HOT neglected)
were recomputed. The q estimated using Eq. (3) for the non-interpolated and the interpolated data were similar (results
not shown). However, the q estimated using the linear regression model based on Eq. (2) (with the HOT neglected) were
generally improved for the interpolated data, in comparison to the non-interpolated data. This can be seen for two HRTF
directions by comparing Figs. 2(c) and 2(d) with Figs. 2(e) and 2(f). From Figs. 2(e) and 2(f), it can be seen that not only
are the q estimates brought closer to the first-order accuracy, but the 95% CIs are also smaller across a wider frequency
range in comparison to Figs. 2(c) and 2(d). The frequency range in which the q estimates attained the first-order accuracy
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was widened due to interpolation for all the HRTF directions except for /¼ 150� and 180�, by 6375Hz at most (for
/¼ 60�). For all the HRTF directions except for /¼ 120�, the 95% CIs were smaller due to interpolation for at most and
at least 98% and 58% of the entire 250Hz–20 kHz frequency range, respectively. It is recalled that the convergence of the
voxelized geometry is of first order.5 As such, the first-order accuracy observed for the interpolated data implies that the
voxelization error is dominant.

3. Solution verification

As stated in Sec. 1, solution verification, which is preceded by code verification, is concerned with the quantification of the
numerical errors in the computed solution. Common techniques focus on the quantification of the discretization error,
which is usually assumed dominant (Ref. 3, p. 286), by employing a series of simulations run with different spatial grid
spacings related to each other by a grid refinement ratio. Alternatively and as in the present work, asymptotic predictions
can be computed using the same kind of simulation series. Here, although an accurate analytic solution is available, the
solution verification procedure is only applied to the FDTD-simulated results, which implies assuming that the analytic
solution is unknown. The outputs of the solution verification procedure can then be compared with the analytic solution,
effectively assessing the accuracy of the employed solution verification procedure.

Fig. 2. Convergence rates q estimated using Eq. (3) for positions (a) /¼ 0� and (b) /¼ 180� for the non-interpolated data. Convergence rates
q were estimated using the non-weighted (N-W) and weighted (W) linear regression model based on Eq. (2) with the HOT neglected and the
95% CIs from the BCa bootstrap method from Ref. 19 for the non-interpolated data and for positions (c) /¼ 0� and (d) /¼ 180�. (e) and (f)
exhibit the same q estimates as (c) and (d), respectively, but for the interpolated data (see Sec. 2.5.3). In (a)–(f), the expected first-order rate
together with the typical tolerance of610% for convergence rates (Ref. 3, p. 326) are also indicated. The source was located at a radial distance
of 82.5 cm from the sphere center.
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The solution verification was performed using the 19 FDTD simulations run in single precision described in Sec.
2.4. The asymptotic prediction was computed from the intercept resulting from the least squares fit of the first-order
asymptotic model expressed in Eq. (5),5

Hiðri; h;/; f Þ ¼ Hasymptoticðr; h;/; f Þ þ bð f ÞXi; (5)

where Hasymptoticðr; h;/; f Þ denotes the sought asymptotic prediction and bð f Þ represents the coefficient of the principal
error term. Hi denotes the function H simulated on the FDTD spatial grid spacing Xi.

It is worth mentioning that the first-order asymptotic model was assumed to fail when the magnitude of the
asymptotic prediction was below machine epsilon in single precision (�1.2� 10�7). The 95% CIs on the asymptotic pre-
dictions were estimated using the BCa bootstrap method19 with 5000 replicates. Both non-weighted and weighted asymp-
totic predictions from the FDTD-simulated grids as well as the 95% CIs are shown (in dB scale) in Figs. 3(a)–3(c) for the
near-field source position and three HRTF directions. Results (not shown) were similar for the far-field source position
and the other HRTF directions. Figure 3 shows that the 95% CIs increase as a function of frequency independently of the
HRTF direction, which is in line with the results reported in Ref. 5. For all the conditions considered (source distance,
HRTF direction), the weighted asymptotic prediction had slightly smaller 95% CIs (averaged across the entire
250Hz–20 kHz frequency range) than the non-weighted asymptotic prediction. From Fig. 3, it can also be seen that the
asymptotic predictions successfully recover the analytic solution for the employed grids up to about 10 kHz, for which the
CIs are within 3.0 dB, after which prediction bias is observed together with increased CIs. As such, larger CIs suggest a
mediocre least squares fit of the first-order asymptotic model and can be useful to indicate low accuracy of the asymptotic
prediction and large deviations from the asymptotic range. Although it is difficult to extrapolate to more complex acousti-
cal scenarios since the results depend on the formal solution and the set of employed grids fXig, a>3.0 dB threshold for
the CIs could provide a conservative baseline indicator for asymptotic prediction bias.

The solution verification procedure was re-applied to the 19 FDTD simulations run in double precision. Both
non-weighted and weighted asymptotic predictions as well as their 95% CIs (not shown) were almost identical to these
computed using the FDTD simulations run in single precision. This implies that in the present modeling and simulation
context, the solution verification procedure is largely unaffected by round-off errors.

The asymptotic predictions were also computed for the interpolated data. While failure of the first-order asymp-
totic model was observed for the positions /¼ 0� around the notch at 13 kHz [shown in Fig. 3(d)] and /¼ 30�, the

Fig. 3. Individual FDTD responses with respective spatial grid spacing X, non-weighted (N-W) and weighted (W) asymptotic predictions
computed from the first-order asymptotic model from Eq. (5), and the 95% CIs for the non-interpolated data and for positions (a) /¼ 0�, (b)
/¼ 120�, (c) /¼ 180�. Figure 3(d) exhibits the same asymptotic predictions as in Fig. 3(a) but for the interpolated data (notice the failure of
the first-order asymptotic model between 11 250 and 17 250Hz). In (a)–(d), the source was located at a radial distance of 82.5 cm from the
sphere center. The analytic solution is solely used here for visual reference, and the uncertainty through the logarithm function was not
propagated.
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results for the other HRTF directions (not shown) were similar to those of the non-interpolated data. Figure 3(d) suggests
that such a failure is due to the inclusion of computations far from the asymptotic range in the asymptotic model: notice
the computations in light gray that cause prediction bias. This indicates that the solution verification procedure is mostly
insensitive to interpolation errors in the present context.

Based on the results from the solution verification, it is recommended that using a series of grids, providing that
the grids Xi are sufficiently small relative to the curvature and size of the input geometry (i.e., grids are in the asymptotic
range), to compute asymptotic predictions be preferred over the simulation of individual FDTD responses.

4. Conclusion

This paper presented a verification procedure for FDTD-simulated HRTFs from a rigid sphere model. The results from
the code verification showed scattered convergence rate estimates that were improved when a linear regression model was
used as the estimation procedure. Spatial interpolation further improved the convergence rate estimates by bringing them
closer to the expected first-order accuracy. Using double instead of single precision to run the FDTD simulations did not
seem to improve the convergence rate estimates. The extent of the scatter in the convergence rates estimated using the lin-
ear regression model was found to vary with the HRTF direction considered. The results from the solution verification
showed that the 95% CIs on the asymptotic predictions increased as a function of frequency regardless of the condition
considered (source distance, HRTF direction). This also indicates that the bias in the asymptotic predictions increased as
the confidence in the predictions decreased with frequency. For all the conditions, the weighted asymptotic prediction had
slightly smaller 95% CIs (averaged across the entire frequency range considered) than the non-weighted asymptotic predic-
tion. For the numerical modeling method employed and the present problem at hand, interpolation and double precision
did not seem to improve the accuracy of the asymptotic predictions and, as such, did not seem to be required for the
assessed solution verification procedure. It was also shown that the solution verification procedure is able to recover the
analytic solution when the CIs are reasonably small and the computed solutions are not largely far from the asymptotic
range. In the present work, this was observed for frequencies up to 10 kHz for all the HRTF directions considered. The
results of the verification procedure were similar for the near- and far-field source distances.
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