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Abstract

Empirical risk minimization (ERM) is typically
designed to perform well on the average loss,
which can result in estimators that are sensitive
to outliers, generalize poorly, or treat subgroups
unfairly. While many methods aim to address
these problems individually, in this work, we ex-
plore them through a unified framework—tilted
empirical risk minimization (TERM). In partic-
ular, we show that it is possible to flexibly tune
the impact of individual losses through a straight-
forward extension to ERM using a hyperparame-
ter called the tilt. We provide several interpreta-
tions of the resulting framework: We show that
TERM can increase or decrease the influence of
outliers, respectively, to enable fairness or robust-
ness; has variance-reduction properties that can
benefit generalization; and can be viewed as a
smooth approximation to a superquantile method.
We develop batch and stochastic first-order opti-
mization methods for solving TERM, and show
that the problem can be efficiently solved rela-
tive to common alternatives. Finally, we demon-
strate that TERM can be used for a multitude of
applications, such as enforcing fairness between
subgroups, mitigating the effect of outliers, and
handling class imbalance. TERM is not only com-
petitive with existing solutions tailored to these
individual problems, but can also enable entirely
new applications, such as simultaneously address-
ing outliers and promoting fairness.’?

1. Introduction

Many statistical estimation procedures rely on the concept of
empirical risk minimization (ERM), in which the parameter
of interest, € © < R?, is estimated by minimizing an
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average loss over the data:

RO) = 2 J@iso). (1)
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While ERM is widely used and offers nice statistical prop-
erties, it can also perform poorly in practical situations
where average performance is not an appropriate surrogate
for the objective of interest. Significant research has thus
been devoted to developing alternatives to traditional ERM
for diverse applications, such as learning in the presence
of noisy/corrupted data or outliers (Khetan et al., 2018;
Jiang et al., 2018), performing classification with imbal-
anced data (Lin et al., 2017; Malisiewicz et al., 2011),
ensuring that subgroups within a population are treated
fairly (Samadi et al., 2018; Li et al., 2020b; Mohri et al.,
2019), or developing solutions with favorable out-of-sample
performance (Namkoong and Duchi, 2017).

In this paper, we suggest that deficiencies in ERM can be
flexibly addressed via a unified framework, tilted empirical
risk minimization (TERM). TERM encompasses a family of
objectives, parameterized by a real-valued hyperparameter,
t. For t € R\?, the t-tilted loss (TERM objective) is given
by:*

~ 1 1 .
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TERM generalizes ERM as the 0-tilted loss recovers the
average loss, i.e., R(0,0)=R(6). It also recovers other com-
mon alternatives, e.g., t—+00 recovers the max-loss, and
t——0o0 the min-loss (Lemma 2). For ¢>0, the objective is
a common form of exponential smoothing, used to approxi-
mate the max (Kort and Bertsekas, 1972; Pee and Royset,
2011). A more general notion of “tilting” has also been
studied in statistics, though for very different purposes, such
as importance sampling and large deviations theory (Dembo
and Zeitouni, 2009; Beirami et al., 2018; Wainwright et al.,
2005) (Appendix B in (Li et al., 2020a)).

To highlight how the TERM objective can help with issues
such as outliers or imbalanced classes, we discuss three mo-
tivating examples below, which are illustrated in Figure 1.

(a) Point estimation: As a first example, consider deter-
mining a point estimate from a set of samples that contain

*R(0; 6) is defined via continuous extension of R(t; 6).
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Figure 1: Toy examples illustrating TERM as a function of ¢: (a) finding a point estimate from a set of 2D samples, (b) linear regression
with outliers, and (c) logistic regression with imbalanced classes. While positive values of ¢ magnify outliers, negative values suppress

them. Setting t=0 recovers the original ERM objective (1).

some outliers. We plot an example 2D dataset in Figure 1a,
with data centered at (1,1). Using traditional ERM (i.e.,
TERM with ¢t = 0) recovers the sample mean, which can
be biased towards outlier data. By setting ¢ < 0, TERM
can suppress outliers by reducing the relative impact of the
largest losses (i.e., points that are far from the estimate)
in (2). A specific value of ¢ < 0 can in fact approximately
recover the geometric median, as the objective in (2) can be
viewed as approximately optimizing specific loss quantiles
(a connection which we make explicit in Section 2). In
contrast, if these ‘outlier’ points are important to estimate,
setting ¢ > 0 will push the solution towards a point that
aims to minimize variance, as we prove more rigorously in
Section 2, Theorem 4.

(b) Linear regression: A similar interpretation holds for the
case of linear regression (Figure 2b). As ¢ — —oo0, TERM
is able to find a solution that captures the underlying data
while ignoring outliers. However, this solution may not be
preferred if we have reason to believe that the outlier values
should not be ignored. As ¢ — 400, TERM recovers the
minimax solution, which aims to minimize the worst loss,
thus ensuring the model is a reasonable fit for all samples
(at the expense of possibly being a worse fit for many).
Similar criteria have been used, e.g., in defining notions
of fairness (Samadi et al., 2018; Mohri et al., 2019). We
explore several use-cases involving robust regression and
fairness in more detail in Section 4.

(c) Logistic regression: Finally, we consider a binary classi-
fication problem using logistic regression (Figure 2c). For
t € R, the TERM solution varies from the nearest cluster
center (t— —00), to the logistic regression classifier (t=0),
towards a classifier that magnifies the misclassified data
(t—+00). We note that it is common to modify logistic re-
gression classifiers by adjusting the decision threshold from
0.5, which is equivalent to moving the intercept of the de-
cision boundary. This is fundamentally different than what
is offered by TERM (where the slope is changing). As we

show in Section 4, this added flexibility affords TERM with
competitive performance on a number of classification prob-
lems, such as those involving noisy data, class imbalance,
or a combination of the two.

Contributions. We propose TERM as a simple, unified
framework to flexibly address various challenges with em-
pirical risk minimization. We analyze the objective to un-
derstand its behavior with varying ¢, and develop efficient
methods for solving TERM. We also extend TERM to han-
dle compound issues, such as the simultaneous existence
of noisy samples and imbalanced classes. Empirically, we
show via multiple case studies that TERM is competitive
with existing, problem-specific state-of-the-art solutions.

2. Tilted Empirical Risk Minimization:
Properties & Interpretations

To better understand the performance of the ¢-tilted losses
in (2), we provide several interpretations of the TERM so-
lutions. See (Li et al., 2020a) for the full statements of
theorems and proofs. We make no distributional assump-
tions on the data, and study properties of TERM under the
assumption that the loss function forms a generalized linear
model, e.g., Ly loss and logistic loss (Appendix A in (Li
et al., 2020a)). However, we also obtain favorable empirical
results using TERM with other objectives such as deep neu-
ral networks and PCA in Section 4, motivating the extension
of our theory beyond GLMs in future work.

General properties. We begin by noting several general
properties of the TERM objective (2). Given a smooth
f(x;0), the t-tilted loss is smooth for all finite ¢ (Lemma
4). If f(x;0) is strongly convex, the ¢-tilted loss is strongly
convex for t > 0 (Lemma 3). We visualize the solutions to
TERM for a toy problem in Figure 2, which allows us to
illustrate several special cases of the general framework. As
discussed in Section 1, TERM can recover traditional ERM
(t=0), the max-loss (t—-+0), and the min-loss (t——o0).
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Figure 2: TERM objectives for a squared loss problem with
N = 3. Ast moves from —o0 to 400, t-tilted losses recover
min-loss, avg-loss, and max-loss, and approximate median-loss.
TERM is smooth for all finite ¢ and convex for positive ¢.

As we demonstrate in Section 4, providing a smooth tradeoff
between these specific losses can be beneficial for a num-
ber of practical use-cases—both in terms of the resulting
solution and the difficulty of solving the problem itself. In-
terestingly, we additionally show that the TERM objective
can be viewed as a smooth approximation to a superquantile
method, which aims to minimize quantiles of losses such
as the median loss. In Figure 2, it is clear to see why this
may be beneficial, as the median loss (orange) can be highly
non-smooth in practice.

Interpretations. We make these rough connections more
explicit via four interpretations of the TERM objective. We
defer more detailed interpretations and the corresponding
proofs to the full version of the paper Li et al. (2020a).

1. TERM can be viewed as an implicit re-weighting of
samples (using t) to magnify/suppress outliers (Lemma 1).

2. TERM allows for tradeoffs between average-loss and
min/max-loss (Figure 8 in (Li et al., 2020a)). For positive t’s,
TERM enables a smooth tradeoff between the average-loss
and max-loss, thus promoting uniformity/fairness (Theorem
2). For negative values of ¢, the solution trades average-loss
for min-loss, which has the benefit of mitigating outliers
(Theorem 3).

3. The variance of the loss across samples will decrease
as ¢ increases (Theorem 4), allowing to achieve potentially
better bias-variance tradeoff for better generalization.

4. TERM approximates Value-at-Risk (VaR) or the su-
perquantile method, which aims to minimize the the specific
quantiles of the individual losses (Rockafellar et al., 2000).

3. Solving TERM

While the main focus of this work is in understanding prop-
erties of the TERM objective and its minimizers, we also
develop first-order batch and stochastic methods for solv-
ing TERM, and explore the effect of ¢ on the convergence
(Section 4 in Li et al. (2020a)). We find that these methods

perform well empirically on a variety of tasks (Section 5
in Li et al. (2020a)).

4. Case Studies

We showcase the flexibility, wide applicability, and com-
petitive performance of TERM through empirical results
on a variety of real-world problems such as handling out-
liers, ensuring fairness, and improving generalization, and
addressing compound issues. Despite the relatively straight-
forward modification TERM makes to traditional ERM,
we show that ¢-tilted losses not only outperform ERM, but
either outperform or are competitive with state-of-the-art,
problem-specific baselines on a wide range of applications.
Due to space constraints, we show only two examples below
(one with positive ¢, one negative t). See complete use-cases
in Section 5 of the full version. °

Robust classification (¢ < 0). It is well-known that deep
neural networks can easily overfit to corrupted labels (e.g.,
Zhang et al., 2017). While the theoretical properties we
study for TERM (Section 2) do not directly cover objectives
with neural network function approximations, we show that
TERM can be applied empirically to DNNs to achieve ro-
bustness to noisy training labels. MentorNet (Jiang et al.,
2018) is a popular method in this setting, which learns to
assign weights to samples based on feedback from a stu-
dent net. It has two variants: MentorNet-PD which does
not require clean validation data and MentorNet-DD which
does. Following the setup in (Jiang et al., 2018), we explore
classification on CIFAR-10 (Krizhevsky et al., 2009) when
a fraction of the training labels are corrupted with uniform
noise—comparing TERM with ERM and several state-of-
the-art approaches (Kumar et al., 2010; Ren et al., 2018;
Zhang and Sabuncu, 2018; Krizhevsky et al., 2009). As
shown in Table 1, TERM performs competitively with 20%
noise, and outperforms all baselines without additional clean
data in the high noise regimes. In particular, in contrast to
the other methods, MentorNet-DD uses 5,000 clean valida-
tion images. TERM is competitive with can even exceed
the performance of MentorNet-DD, even though it does not
have access to this clean data.

Table 1: TERM is competitive with robust classification baselines,
and is superior in high noise regimes.

test accuracy (CIFAR-10, Inception)
20% noise 40% noise 80% noise

ERM 0.775 coosy  0.719 coosy 0.284 (004)
RandomRect (Ren et al., 2018) 0.744 coos)  0.699 (o0s)  0.384 (00s)
SelfPaced (Kumar et al., 2010) 0.784 009  0.733 coosy 0.272 (004
MentorNet-PD (Jiang et al., 2018)  0.798 coo4y  0.731 o004y 0.312 (o0s)
GCE (Zhang and Sabuncu, 2018)  0.805 (004 0.750 oosy 0.433 (00s)
MentorNet-DD (Jiang et al., 2018) 0.800 (o04y 0.763 (004  0.461 (005
TERM 0.795 004y  0.768 004y 0.455 (005)
Genie ERM 0.828 009y  0.820 004y 0.792 (004

objectives

3Code available at: github.com/litian96/TERM
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Figure 3: TERM (¢t = 50) is competitive with state-of-the-art
methods for classification with imbalanced classes.

Handling class imbalance (¢ > 0). Next, we show that
TERM can reduce the performance variance across classes
with extremely imbalanced data when training deep neu-
ral networks. We compare TERM with several baselines
which re-weight samples during training, including focal
loss (Lin et al., 2017), HardMine (Malisiewicz et al., 2011),
and LearnReweight (Ren et al., 2018). Following Ren et al.
(2018), the datasets are composed of imbalanced 4 and 9
digits from MNIST (LeCun et al., 1998). From Figure 3, we
see that TERM obtains similar (or higher) final accuracy on
the clean test data as the state-of-the-art methods. We also
note that compared with LearnReweight, which optimizes
the model over an additional balanced validation set and
requires three gradient calculations for each update, TERM
neither requires such balanced validation data nor does it
increase the per-iteration complexity.

5. Related Work

Alternate aggregation schemes: exponential smooth-
ing/superquantile methods. A common alternative to the
standard average loss in empirical risk minimization is to
consider a minimax objective, which aims to minimize the
max-loss. Minimax objectives are commonplace in machine
learning, and have been used for a wide range of applica-
tions, such as ensuring fairness across subgroups (Mohri
et al., 2019; Stelmakh et al., 2019; Samadi et al., 2018; Tan-
tipongpipat et al., 2019; Hashimoto et al., 2018), enabling
robustness under small perturbations (Sinha et al., 2018),
or generalizing to unseen domains (Volpi et al., 2018). As
discussed in Section 2, the TERM objective can be viewed
as a minimax smoothing (Kort and Bertsekas, 1972; Pee
and Royset, 2011) with the added flexibility of a tunable ¢
to allow the user to optimize utility for different quantiles of
loss similar to superquantile approaches (Rockafellar et al.,
2000; Laguel et al., 2020), directly trading off between ro-
bustness/fairness and utility for positive and negative values
of ¢t (see Appendix B in (Li et al., 2020a) for these con-
nections). However, the TERM objective remains smooth
(and efficiently solvable) for moderate values of ¢, result-

ing in faster convergence even when the resulting solutions
are effectively the same as the min-max solution or other
desired quantiles of the loss (as we demonstrate in the ex-
periments of Section 4). Interestingly, Cohen et al. (Cohen
and Shashua, 2014; Cohen et al., 2016) introduce Simnets,
with a similar exponential smoothing operator, though for
a differing purpose of flexibly achieving layer operations
between sum and max in deep neural networks.

Alternate loss functions. Rather than modifying the way
the losses are aggregated, as in (smoothed) minimax or
superquantile methods, it is also quite common to modify
the losses themselves. For example, in robust regression,
it is common to consider losses such as the L; loss, Huber
loss, or general M -estimators as a way to mitigate the effect
of outliers (Bhatia et al., 2015). Losses can also be modified
to address outliers by favoring small losses (Yu et al., 2012;
Zhang and Sabuncu, 2018) or gradient clipping (Menon
et al., 2020). On the other extreme, the largest losses can be
magnified in order to encourage focus on hard samples (Lin
et al., 2017; Wang et al., 2016; Li et al., 2020b), which is
a popular approach for curriculum learning. Ignoring the
log portion of the objective in (2), TERM can in fact be
viewed as an alternate loss function exponentially shaping
the loss to achieve both of these goals with a single objective,
i.e., magnifying hard examples with ¢ > 0 and suppressing
outliers with ¢ < 0. In addition, we show that TERM can
even achieve both goals simultaneously with hierarchical
multi-objective optimization (Section 5.3).

Sample re-weighting schemes. Finally, there exist ap-
proaches that implicitly modify the underlying ERM ob-
jective by re-weighting the influence of the samples them-
selves. These re-weighting schemes can be enforced in
many ways. A simple and widely used example is to sub-
sample training points in different classes. Alternatively
one can re-weight examples according to their loss function
when using a stochastic optimizer, which can be used to put
more emphasis on “hard” examples (Shrivastava et al., 2016;
Jiang et al., 2019; Katharopoulos and Fleuret, 2017). Re-
weighting can also be implicitly enforced via the inclusion
of a regularization parameter (Abdelkarim et al., 2020), loss
clipping (Yang et al., 2010), or modelling of crowd-worker
qualities (Khetan et al., 2018), which can make the objective
more robust to rare instances. Such an explicit re-weighting
has also been explored for other applications (e.g., Lin et al.,
2017; Jiang et al., 2018; Shu et al., 2019; Chang et al., 2017;
Gao et al., 2015; Ren et al., 2018), though in contrast to
these methods, TERM is applicable to a general class of
loss functions, with theoretical guarantees. TERM is equiv-
alent to a dynamic re-weighting of the samples based on the
values of the objectives (Lemma 1), which could be viewed
as a convexified version of loss clipping. We compare to
several sample re-weighting schemes empirically in Section
5in Li et al. (2020a).
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