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Abstract

In the light of recent analyses on privacy-concerning
scene revelation from visual descriptors, we develop de-
scriptors that conceal the input image content. In partic-
ular, we propose an adversarial learning framework for
training visual descriptors that prevent image reconstruc-
tion, while maintaining the matching accuracy. We let a fea-
ture encoding network and image reconstruction network
compete with each other, such that the feature encoder tries
to impede the image reconstruction with its generated de-
scriptors, while the reconstructor tries to recover the in-
put image from the descriptors. The experimental results
demonstrate that the visual descriptors obtained with our
method significantly deteriorate the image reconstruction
quality with minimal impact on correspondence matching
and camera localization performance.

1. Introduction
Local visual descriptors [7, 13, 56, 73, 75] are fundamen-

tal to a wide range of computer vision applications such
as SLAM [15, 40, 42, 45], SfM [1, 65, 72], wide-baseline
stereo [30,43], calibration [49], tracking [24,44,51], image
retrieval [3, 4, 32, 46, 47, 67, 78, 79], and camera pose esti-
mation [5,17,54,61,62,76,77]. These descriptors represent
local regions of images and are used to establish local cor-
respondences between and across images and 3D models.

The descriptors take the form of vectors in high-
dimensional space, and thus are not directly interpretable
by humans. However, researchers have shown that it is pos-
sible to reveal the input images from local visual descrip-
tors [10, 16, 81]. With the recent advances in deep learning,
the quality of the reconstructed image content has been sig-
nificantly improved [11, 53]. This pose potential privacy
concerns for visual descriptors if they are used for sensitive
data without proper encryption [11, 70, 81].

To prevent the reconstruction of the image content from
visual descriptors, several methods have been proposed.
These methods include obfuscating keypoint locations by

†Corresponding author.

Figure 1. Our proposed content-concealing visual descriptor. a)
We train NinjaNet, the content-concealing network via adversar-
ial learning to give NinjaDesc. b) On the two examples shown,
we compare inversions on SOSNet [75] descriptors vs. NinjaDesc
(encoding SOSNet with NinjaNet). c) NinjaDesc is able to conceal
facial features and landmark structures, while retaining correspon-
dences. Image credits: laylamoran4battersea & sgerner (Flickr)1.

lifting them to lines that pass through the original points [21,
66,70,71], or to affine subspaces with augmented adversar-
ial feature samples [18] to increase the difficulty of recov-
ering the original images. However, recent work [9] has
demonstrated that the closest points between lines can yield
a good approximation to the original points locations

In this work, we explore whether such local feature in-
version could be mitigated at the descriptor level. Ideally,
we want a descriptor that does not reveal the image con-
tent without a compromise in its performance. This may
seem counter-intuitive due to the trade-off between utility
and privacy discussed in the recent analysis on visual de-
scriptors [11], where the utility is defined as matching ac-
curacy, and the privacy is defined as non-invertibility of the
descriptors. The analysis showed that the more useful the
descriptors are for correspondence matching, the easier it is
to invert them. To minimize this trade-off, we propose an
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adversarial approach to train visual descriptors.
Specifically, we optimize our descriptor encoding net-

work with an adversarial loss for descriptor invertibility,
in addition to the traditional metric learning loss for fea-
ture correspondence matching. For the adversarial loss, we
jointly train an image reconstruction network to compete
with the descriptor network in revealing the original image
content from the descriptors. In this way, the descriptor net-
work learns to hinder the reconstruction network by gen-
erating visual descriptors that conceal the image content,
while being optimized for correspondence matching.

In particular, we introduce an auxiliary encoder net-
work NinjaNet that can be trained with any existing visual
descriptors and transform them to our content-concealing
NinjaDesc, as illustrated in Fig. 1. In the experiments,
we show that visual descriptors trained with our adversarial
learning framework lead to only marginal drop in perfor-
mance for feature matching and visual localization tasks,
while significantly reducing the visual similarity of the re-
construction to the original input image.

One of the main benefits of our method is that we can
control the trade-off between utility and privacy by chang-
ing a single parameter in the loss function. In addition, our
method generalizes to different types of visual descriptors,
and different image reconstruction network architectures.

In summary, our main innovations are as follows: a) We
propose a novel adversarial learning framework for visual
descriptors to prevent reconstructing original input image
content from the descriptors. We experimentally validate
that the obtained descriptors significantly deteriorate the
image quality from descriptor inversion with only marginal
drop in matching accuracy using standard benchmarks for
matching (HPatches [6]) and visual localization (Aachen
Day-Night [63,85]). b) We empirically demonstrate that we
can effectively control the trade-off between utility (match-
ing accuracy) and privacy (non-invertibility) by changing
a single training parameter. c) We provide ablation stud-
ies by using different types of visual descriptors, image re-
construction network architectures and scene categories to
demonstrate the generalizability of our method.

2. Related work
This section discusses prior work on visual descriptor in-

version and the state-of-the-art descriptor designs that at-
tempt to prevent such inversion.

Inversion of visual descriptors. Early results of recon-
structing images from local descriptors was shown by Wein-
zaepfel et al. [81] by stitching the image patches from
a known database with the closest distance to the input
SIFT [37] descriptors in the feature space. d’Angelo et
al. [10] used a deconvolution approach on local binary de-
scriptors such as BRIEF [8] and FREAK [2]. Vondrick et

al. [80] used paired dictionary learning to invert HoG [86]
features to reveal its limitations for object detection. For
global descriptors, Kato and Harada [31] reconstructed im-
ages from Bag-of-Words descriptors [69]. However, the
quality of reconstructions by these early works were not suf-
ficient to raise concerns about privacy or security.

Subsequent work introduced methods that steadily im-
proved the quality of the reconstructions. Mahendran and
Vedaldi [39] used a back-propagation technique with a nat-
ural image prior to invert CNN features as well as SIFT [36]
and HOG [86]. Dosovitskiy and Brox [16] trained up-
convolutional networks that estimate the input image from
features in a regression fashion, and demonstrated superior
results on both classical [37, 48, 86] and CNN [34] fea-
tures. In the recent work, descriptor inversion methods have
started to leverage larger and more advanced CNN models
as well as employ advanced optimization techniques. Pit-
taluga et al. [53] and Dangwal et al. [11] demonstrated suf-
ficiently high reconstruction qualities, revealing not only se-
mantic information but also details in the original images.
Preventing descriptor inversion for privacy. Descriptor
inversion raises privacy concerns [11,53,70,81]. For exam-
ple, in computer vision systems where the visual descrip-
tors are transferred between the device and the server, an
honest-but-curious server may exploit the descriptors sent
by the client device. In particular, many large-scale local-
ization systems adopt cloud computing and storage, due to
limited compute on mobile devices. Homomorphic encryp-
tion [19, 60, 84] can protect descriptors, but are too compu-
tationally expensive for large-scale applications.

Proposed by Speciale et al. [70], the line-cloud represen-
tation obfuscate 2D / 3D point locations in the map building
process [20, 21, 66] without compromising the accuracy in
localization. However, since the descriptors are unchanged,
Chelani et al. [9] showed that line-clouds are vulnerable to
inversion attacks if the underlying point-cloud is recovered.

Adversarial learning has been applied in image encod-
ing [27, 52, 82] that optimizes privacy-utility trade-off, but
not in the context of local descriptor inversions, which in-
volves reconstruction of images from dense inputs and has
a much broader scope of downstream applications.

Recently, Dusmanu et al. [18] proposed a privacy-
preserving visual descriptor via lifting descriptors to affine
subspaces, which conceals the visual content from inver-
sion attacks. However, this comes with a significant cost
on the descriptor’s utility in downstream tasks. Our work
differs from [18] in that we propose a learned content-
concealing descriptor and explicitly train it for utility re-
tention to achieve a better trade-off between the two.

3. Method
We propose an adversarial learning framework for ob-

taining content-concealing visual descriptors, by introduc-



Figure 2. Top: Architecture of our content-concealing NinjaNet
encoder Θ. Bottom: A base descriptor with dimensionality C is
transformed to NinjaDesc of the same size e.g. C = 128.

ing a descriptor inversion model as an adversary. In this
section, we detail our content-concealing encoder NinjaNet
(Sec. 3.1) and the descriptor inversion model (Sec. 3.2), as
well as the joint adversarial training procedure (Sec. 3.3).

3.1. NinjaNet: the content-concealing encoder

In order to conceal the visual content of a local descriptor
while maintaining its utility, we need a trainable encoder
which transforms the original descriptor space to a different
one, where visual information essential for reconstruction
is reduced. Our NinjaNet encoder Θ is implemented by an
MLP shown in Fig. 2. It takes a base descriptor dbase, and
transforms it into a content-concealing NinjaDesc, dninja:

dninja = Θ(dbase) (1)

The design of NinjaNet is light-weight and plug-and-play,
to make it flexible in accepting different types of existing
local descriptors. The encoded NinjaDesc descriptor main-
tains the matching performance of the original descriptor,
but prevents from high-quality reconstruction of images. In
many of our experiments, we adopt SOSNet [75] as our base
descriptor since it is one of the top-performing descriptors
for correspondence matching and visual localization [30].
Utility initialization. To maintain the utility (i.e. accuracy
for downstream tasks) of our encoded descriptor, we use a
patch-based descriptor training approach [41, 74, 75]. The
initialization step trains NinjaNet via a triplet-based ranking
loss. We use the UBC dataset [22] which contains three
subsets of patches labelled as positive and negative pairs,
allowing for easy implementation of triplet-loss training.
Utility loss. We extract the base descriptors dbase from im-
age patches xpatch and train NinjaNet (Θ) with the descriptor
learning loss from [75] to optimize NinjaDesc (dninja).

Lutil(xpatch; Θ) = Ltriplet(dninja) + Lreg.(dninja), (2)

where Lreg.(·) is the second-order similarity regularization
term [75]. We always freeze the weights of the base descrip-
tor network, including the joint training process in Sec. 3.3.

3.2. Descriptor inversion model

For our proposed adversarial learning framework, we
utilize a descriptor inversion network as the adversary to
reconstruct the input images from our NinjaDesc. We
adopt the UNet-based [58] inversion network from prior
work [11, 53]. Following Dangwal et al. [11], the inver-
sion model Φ takes as input the sparse feature map FΘ ∈
RH×W×C composed from the descriptors and their key-
points, and predicts the RGB image Î ∈ Rh×w×3, i.e.
Î = Φ(FΘ). We denote (H,W ), (h,w) as the resolutions of
the sparse feature image and the reconstructed RGB image,
respectively. C is the dimensionality of the descriptor. The
detailed architecture is provided in the supplementary.
Reconstruction loss. The descriptor inversion model Φ is
optimized under a reconstruction loss which is composed of
two parts. The first loss is the mean absolute error (MAE)
between the predicted Î and input I images,

Lmae =

h∑
i

w∑
j

||̂Ii,j − Ii,j ||1. (3)

The second loss is the perceptual loss, which is the L2 dis-
tance between intermediate features of a VGG16 [68] net-
work pretrained on ImageNet [12],

Lperc =

3∑
k=1

hk∑
i

wk∑
j

||ψV GGk,i,j (Î)− ψV GGk,i,j (I)||22, (4)

where ψV GGk (I) are the feature maps extracted at layers k ∈
{2, 9, 16}, and (hk, wk) is the corresponding resolution.

The reconstruction loss is the sum of the two terms

Lrecon(ximage; Φ) = Lmae + Lperc. (5)

where ximage denote the image data term that includes both
the descriptor feature map FΘ and the RGB image I.
Reconstruction initialization. For the joint adversarial
training described in Sec. 3.3, we initialize the the inversion
model using the initialized NinjaDesc in Sec. 3.1, This part
is done using the MegaDepth [35] dataset, which contains
images of landmarks across the world. For the keypoint de-
tection we use the Harris corners [25] in our experiments.

3.3. Joint adversarial training

The central component of engineering our content-
concealing NinjaDesc is the joint adversarial training step,
which is illustrated in Fig. 3 and elaborated as pseudo-code
in Algorithm 1. We aim to minimize trade-off between util-
ity and privacy, which are the two competing objectives.
Inspired by methods using adversarial learning [23, 59, 83],
we formulate the optimization of utility and privacy trade-
off as an adversarial learning process. The objective of the



Figure 3. The pipeline for training our content-concealing NinjaDesc. Top: The two networks at play and their corresponding objectives
are: 1. NinjaNet Θ, which is for utility retention in A; and 2. the descriptor inversion model, which reconstructs RGB images from input
sparse features in B. Bottom: During joint adversarial training, we alternate between steps 1. and 2., which is presented by Algorithm 1.

Algorithm 1 Pseudo-code for the joint adversarial training
process of NinjaDesc

1: NinjaNet: Θ0← initialize with Eqn. 2
2: Desc. inversion model: Φ0← initialize with Eqn. 5
3: λ← set privacy parameter
4: for i← 1, number of iterations do
5: if i = 0 then
6: Θ← Θ0,Φ← Φ0

7: end if
8: Compute Lutil from xpatch and Θ.
9: Extract sparse features on ximage with Θ,

reconstruct image with Φ
and compute Lrecon (ximage; Θ,Φ).

10: Update weights of Θ:

Θ
′
← ∇Θ (Lutil − λLrecon) .

11: Extract sparse features on ximage with Θ
′
,

reconstruct image with Φ
and compute Lrecon(ximage; Θ

′
,Φ).

12: Update weights of Φ:

Φ
′
← ∇ΦLutil.

13: Θ← Θ
′
,Φ← Φ

′

14: end for

descriptor inversion model Φ is to minimize the reconstruc-
tion error over image data ximage. On the other hand, Nina-
jaNet Θ aims to conceal the visual content by maximizing
this error. Thus, the resulting objective function for content
concealment V (Θ,Φ) is a minimax game between the two:

min
Φ

max
Θ

V (Θ,Φ) = Lrecon (ximage; Θ,Φ) . (6)

At the same time, we wish to maintain the descriptor utility:

min
Θ
Lutil(xpatch; Θ). (7)

This brings us to the two separate optimization objectives
for Θ and Φ that we will describe in the following. For
the inversion model Φ, the objective remains the same as in
Eqn. 6:

LΦ = Lrecon (ximage; Θ,Φ) . (8)

However, for maintaining utility, NinjaNet with weights Θ
is also optimized with the utility loss Lutil(xpatch; Θ) from
Eqn. 2. In conjunction with the maximization by Θ from
Eqn. 6, the loss for NinjaNet becomes

LΘ = Lutil (xpatch; Θ)− λLrecon (ximage; Θ,Φ) , (9)

where λ controls the balance of how much Θ prioritizes
content concealment over utility retention, i.e. the privacy
parameter. In practice, we optimize Θ and Φ in an alternat-
ing manner, such that Θ is not optimized in Eqn. 8 and Φ is
not optimized in Eqn. 9. The overall objective is then

Θ∗,Φ∗ = arg min
Θ,Φ

(LΘ + LΦ). (10)

3.4. Implementation details

The code is implemented using PyTorch [50]. We use
Kornia [57]’s implementation of SIFT for GPU accelera-
tion. For all training, we use the Adam [33] optimizer with
(β1, β2) = (0.9, 0.999) and λ = 0.
Utility initialization. We use the liberty set of the UBC
patches [22] to train NinjaNet for 200 epochs and select the
model with the lowest average FPR@95 in the other two
sets (notredame and yosemite). The number of submodules
in NinjaNet (N in Fig. 2) is N = 1, since we observed no
improvement in FPR@95 by increasing N . Dropout rate is
0.1. We use a batch-size of 1024 and learning rate of 0.01.
Reconstruction initialization. We randomly split
MegaDepth [35] into train / validation / test split of ratio



Figure 4. Qualitative results on landmark images. First column: original images overlaid with the 1000 (red) Harris corners [25]. Second
column: reconstructions by the inversion model from raw SOSNet [75] descriptors extracted on those points. The last five columns show
reconstruction from NinjaDesc with increasing privacy parameter λ. The SSIM and PSNR w.r.t. the original images are shown on top of
each reconstruction. Best viewed digitally. Image credits: first 3 — Holidays dataset [29]; last — laylamoran4battersea (Flickr).

0.6 / 0.1 / 0.3. The process of forming a feature map is the
same as in [11] and we use up to 1000 Harris corners [25]
for all experiments. We train the inversion model with a
batch-size of 64, learning rate of 1e-4 for a maximum of
200 epochs and select the best model with the lowest struc-
tural similarity (SSIM) on the validation split. We also do
not use the discriminator as in [11], since convergence of
the discriminator takes substantially longer, and it improves
the inversion model only very slightly.

Joint adversarial training. The dataset configurations for
Lutil and Lrecon are the same as in the above two steps, ex-
cept the batch size, that is 968 for UBC patches. We use
equal learning rate for Θ and Φ. This is 5e-5 for SOS-
Net [75] and HardNet [41], and 1e-5 for SIFT [37]. Nin-
jaDesc with the best FPR@95 in 20 epochs on the valida-
tion set is selected for testing.

4. Experimental results

In this section, we evaluate NinjaDesc on the two cri-
teria that guide its design — the ability to simultaneously
achieve: (1) content concealment (privacy) and (2) utility

(matching accuracy and camera localization performance).

4.1. Content concealment (Privacy)

We assess the content-concealing ability of NinjaDesc
by measuring the reconstruction quality of descriptor inver-
sion attacks. Here we assume the inversion model has ac-
cess to the NinjaDesc and the input RGB images for train-
ing, i.e. ximage in Sec. 3.2. We train the inversion model
from scratch for NinjaDesc (Eqn. 5) on the train split of
MegaDepth [35], and the best model with the highest SSIM
on the validation split is used for the evaluation.

Recall in Eqn. 9, λ is the privacy parameter controlling
how much NinjaDesc prioritizes privacy over utility. The
intuition is that, the higher λ is, the more aggressive Nin-
jaDesc tries to prevent reconstruction quality by the inver-
sion model. We perform descriptor inversion on NinjaDesc
that are trained with a range of λ values to demonstrate its
effect on reconstruction quality.

Fig. 4 shows qualitative results of descriptor inversion
attacks when changing λ. We observe that λ indeed ful-
fills the role of controlling how much NinjaDesc conceals
the original image content. When λ is small, e.g. 0.01, 0.1,

https://www.flickr.com/photos/laylamoran4battersea/4543311974/
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Figure 5. HPatches evaluation results. We compare the baseline SOSNet [75] vs. NinjaDesc, with 5 different levels of privacy parameter λ
(indicated by the number in parenthesis). All results are from models trained on the liberty subset of the UBC patches [22] dataset.

SOSNet
(Raw)

NinjaDesc (λ)

Metric 0.001 0.01 0.1 0.25 1.0 2.5

MAE (↑) 0.104 0.117 0.125 0.129 0.162 0.183 0.212
SSIM (↓) 0.596 0.566 0.569 0.527 0.484 0.385 0.349
PSNR (↓) 17.904 18.037 16.826 17.821 17.671 13.367 12.010

Table 1. Quantitative results of the descriptor inversion on SOSNet
vs. NinjaDesc, evaluated on the MegaDepth [35] test split2. The
arrows indicate higher / lower value is better for privacy.

the reconstruction is only slightly worse than that from the
baseline SOSNet. As λ increases to 0.25, there is a visi-
ble deterioration in quality. Once equal / stronger weighting
is given to privacy (λ = 1, 2.5), little texture / structure is
revealed, achieving high privacy.

Such observation is also validated quantitatively by Ta-
ble 1, where we see a drop in performance of the inversion
model as λ increases across the three metrics: maximum av-
erage error (MAE), structural similarity (SSIM), and peak
signal-to-noise ratio (PSNR) which are computed from the
reconstructed image and the original input image.

4.2. Utility retention

We measure the utility of NinjaDesc via two tasks: im-
age matching and visual localization.
Image matching. We evaluate NinjaDesc based on SOS-
Net [75] with a set of different privacy parameter on the
HPatches [6] benchmarks, which is shown in Fig. 5. Nin-
jaDesc is comparable with SOSNet in mAP across all three
tasks, especially for the verification and retrieval tasks.
Also, higher privacy parameter λ generally corresponds to
lower mAP, as Lutil becomes less dominant in Eqn. 9.
Visual localization. We evaluate NinjaDesc with three base
descriptors - SOSNet [75], HardNet [41] and SIFT [37] on
the Aachen-Day-Night v1.1 [63, 85] dataset using the Kap-
ture [28] pipeline. We use AP-Gem [55] for retrieval and
localize with the shortlist size of 20 and 50. The keypoint
detector used is DoG [37]. Table 2 shows localization re-
sults. Again, we observe little drop in accuracy for Nin-
jaDesc overall compared to the original base descriptors,
ranging from low (λ = 0.1) to high (λ = 2.5) privacies.

2Note that in [11], only SSIM is reported, and we do not share the
same train / validation / test split. Also, [11] uses the discriminator loss for
training which we omit, and it leads to slight difference in SSIM.

Method
Accuracy @ Thresholds (%)

Query NNs 0.25m, 2◦ 0.5m, 5◦ 5.0m, 10◦

Base Desc SOS / Hard / SIFT SOS / Hard / SIFT SOS / Hard / SIFT

Day
(824)

20

Raw 85.1 / 85.4 / 84.3 92.7 / 93.1 / 92.7 97.3 / 98.2 / 97.6
λ = 0.1 85.4 / 84.7 / 82.0 92.5 / 91.9 / 91.1 97.5 / 96.8 / 96.4
λ = 1.0 84.7 / 84.3 / 82.9 92.4 / 91.9 / 91.0 97.2 / 96.7 / 96.1
λ = 2.5 84.6 / 83.7 / 82.5 92.4 / 92.0 / 91.0 97.1 / 96.8 / 96.0

50

Raw 85.9 / 86.8 / 86.0 92.5 / 93.7 / 94.1 97.3 / 98.1 / 98.2
λ = 0.1 85.2 / 85.2 / 84.2 92.2 / 92.4 / 91.4 97.1 / 97.1 / 96.6
λ = 1.0 84.7 / 85.7 / 83.4 92.2 / 92.6 / 91.6 97.2 / 96.7 / 96.7
λ = 2.5 85.6 / 85.3 / 83.6 92.7 / 91.7 / 91.1 97.3 / 96.8 / 96.2

Night
(191)

20

Raw 49.2 / 52.4 / 50.8 60.2 / 62.3 / 62.3 68.1 / 72.3 / 72.8
λ = 0.1 47.6 / 43.5 / 44.0 57.1 / 54.5 / 51.3 63.4 / 61.8 / 61.3
λ = 1.0 45.5 / 44.5 / 41.4 56.0 / 51.8 / 52.9 61.8 / 60.2 / 62.3
λ = 2.5 45.0 / 44.5 / 43.5 55.0 / 54.5 / 49.7 61.8 / 61.3 / 61.3

50

Raw 44.5 / 47.6 / 51.3 52.4 / 59.7 / 62.3 60.2 / 64.9 / 74.3
λ = 0.1 39.8 / 39.8 / 41.9 47.6 / 48.7 / 50.3 57.6 / 56.0 / 59.7
λ = 1.0 42.9 / 39.8 / 39.8 52.4 / 49.2 / 48.2 57.1 / 54.5 / 56.5
λ = 2.5 41.9 / 38.2 / 40.3 49.2 / 47.1 / 49.2 56.6 / 55.0 / 57.1

Table 2. Visual localization results on Aachen-Day-Night
v1.1 [85]. ‘Raw’ corresponds to the base descriptor in each col-
umn, followed by three λ vales (0.1, 1.0, 2.5) for NinjaDesc.

Comparing our results on HardNet and SIFT with Table 3
in Dusmanu et al. [18], NinjaDesc is noticeably better in re-
taining the visual localization accuracy of the base descrip-
tors than the subspace descriptors in [18]3, e.g. drop in night
is up to 30% for HardNet in [18] but ≈ 10% for NinjaDesc.

Hence, the results on both image matching and visual lo-
calization tasks demonstrate that NinjaDesc is able to retain
the majority of its utility w.r.t. to the base descriptors.

5. Ablation studies
Table 2 already hints that our proposed adversarial de-

scriptor learning framework generalizes to several base de-
scriptors in terms of retaining utility. In this section, we fur-
ther investigate the generalizability of our method through
additional experiments on different types of descriptors, in-
version network architectures, and scene categories.

5.1. Generalization to different descriptors

We extend the same experiments from SOSNet [75] in
Table 1 to include HardNet [41] and SIFT [37] as well. We

3 [18] is evaluated on Aachen-Day-Night v1.0, resulting in higher accu-
racy in Night due to poor ground-truths, and the code of [18] is not released
yet. We also report our results on v1.0 in the supplementary.



Figure 6. Illustration of our proposed adversarial descriptor learning framework’s generalization across three different base descriptors.
Top. We show two matching images. Two rows of small images to the right of each of them are the reconstructions. The top & bottom
rows are, respectively, the reconstructions from the raw descriptor and from NinjaDesc (λ = 2.5) associated with the base descriptor
above. Bottom. We visualize the matches between the two images on raw descriptors vs. NinjaDesc (λ = 2.5) for each of the three base
descriptors. Image credits: left — Tatyana Gladskih / stock.adobe.com; right — Urse Ovidiu (Wikimedia Commons, Public Domain).

SSIM (↓)

Base Descriptor Raw
(w/o NinjaDesc)

NinjaDesc (λ)
0.01 0.1 0.25 1.0 2.5

SOSNet 0.596 0.569 0.527 0.484 0.385 0.349
HardNet 0.582 0.545 0.516 0.399 0.349 0.312

SIFT 0.553 0.490 0.459 0.395 0.362 0.296

Table 3. Qualitative performance of the descriptor inversion model
on the MegaDepth [35] test split with three base descriptors and
the corresponding NinjaDescs, varying in privacy parameter.

report SSIM in Table 3. Similar to the observation for SOS-
Net, increasing privacy parameter λ reduces reconstruction
quality for both HardNet and SIFT as well. In Fig. 6, we
qualitatively show the descriptor inversion and correspon-
dence matching result across all three base descriptors. We
observe that NinjaDesc derived from all three base descrip-
tors are effective in concealing important contents such as
person or landmark compared with the raw base descriptors.
The visualization of keypoint correspondences between the
images also demonstrates the utility retention of our pro-
posed learning framework across different base descriptors.

5.2. Generalization to different architectures

So far, all experiments are evaluated with the same archi-
tecture for the inversion model - the UNet [58]-based net-
work [11, 53]. To verify that NinjaDesc does not overfit to

Arch. UNet UResNet
SOSNet λ = 1.0 λ = 2.5 SOSNet λ = 1.0 λ = 2.5

MAE (↑) 0.104 0.183 0.212 0.121 0.190 0.202
SSIM (↓) 0.596 0.385 0.349 0.595 0.427 0.380
PSNR (↓) 17.904 13.367 12.010 16.533 12.753 12.299

Table 4. Reconstruction results on MegaDepth [35]. We compare
the UNet used in this work vs. a different architecture — UResNet.

this specific architecture, we conduct a descriptor inversion
attack using an inversion model with drastically different
architecture, called UResNet, which has a ResNet50 [26]
as the encoder backbone and residual decoder blocks. (See
the supplementary material.) The results are shown in Ta-
ble 4, which depicts only SSIM is slightly improved com-
pared to UNet whereas MAE and PSNR remain relatively
unaffected. This result illustrate that our proposed method
is not limited by the architectures of the inversion model.

5.3. Content concealment on faces

We further show qualitative results on human faces us-
ing the Deepfake Detection Challenge (DFDC) [14] dataset.
Fig. 7 presents the descriptor inversion result using the base
descriptors (SOSNet [75]) as well as our NinjaDesc vary-
ing in privacy parameter λ. Similar to what we observed in
Fig. 4, we see progressing concealment of facial features as
we increase λ compared to the reconstruction on SOSNet.

https://stock.adobe.com/images/woman-on-the-background-of-the-colosseum/200999902?prev_url=detail
https://commons.wikimedia.org/wiki/File:Colosseum_Roma_2009.jpg


Figure 7. Qualitative reconstruction results on faces. Images are
cropped frames sampled from videos in the DFDC [14] dataset.

6. Utility and privacy trade-off

We now describe two experiments we perform to further
investigate the utility and privacy trade-off of NinjaDesc.

First, in Fig. 8a we evaluate the mean matching accuracy
(MMA) of NinjaDesc at the highest privacy parameter λ =
2.5, for both HardNet [41] and SIFT [37], on the HPatches
sequences [6] and compare that with the sub-hybrid lifting
method by Dusmanu et al. [18] with low privacy level (dim.
2). Even at a higher privacy level, NinjaDesc significantly
outperforms sub-hybrid lifting for both types of descriptors.
For NinjaDesc, the drop in MMA w.r.t. to HardNet is also
minimal, and even increases w.r.t. SIFT.

Second, in Fig. 8b we perform a detailed utility vs. pri-
vacy trade-off analysis on NinjaDesc for all three base de-
scriptors. The y-axis is the average difference in Nin-
jaDesc’s mAP across the three tasks in HPatches in Fig. 5,
and the x-axis is the privacy measured by 1 - SSIM [11]. We
plot the results varying the privacy parameter. For SOSNet
and HardNet, the drop in utility (< 4%) is a magnitude less
than the gain in privacy (30%), indicating an optimal trade-
off. Interestingly, for SIFT we see a net gain in utility for all
λ (positive values in the y-axis). This is due to the SOSNet-
like utility training, improving the verification and retrieval
of NinjaDesc beyond the handcrafted SIFT. Full HPatches
results for HardNet and SIFT are in the supplementary.

7. Limitations

NinjaDesc only affects the descriptors, and not the key-
point locations. Therefore, it does not prevent inferring
scene structures from the patterns of keypoint locations
themselves [38, 70]. Also, some level of structure can still
be revealed where keypoints are very dense, e.g. the vene-
tian blinds in the second example of Fig. 7.

(a) Mean matching accuracy on HPatches [6] sequences. We compare Nin-
jaDesc (λ = 2.5) to sub-hybrid lifting (dim. 2) in Dusmanu et al. [18].

(b) For each descriptor we select NinjaDesc with varying privacy parame-
ter values (annotated next to data points), and compare their utility relative
to the raw descriptor vs. content concealment.

Figure 8. Utility vs. privacy trade-off analyses.

8. Conclusions

We introduced a novel adversarial learning framework
for visual descriptors to prevent reconstructing original in-
put image content from the descriptors. We experimentally
validated that the obtained descriptors deteriorate the de-
scriptor inversion quality with only marginal drop in util-
ity. We also empirically demonstrated that we can control
the trade-offs between utility and non-invertibility using our
framework, by changing a single parameter that weighs the
adversarial loss. The ablation study using different types
of visual descriptors and image reconstruction network ar-
chitecture demonstrates the generalizability of our method.
Our proposed pipeline can enhance the security of computer
vision systems that use visual descriptors, and has great
potential to be extended for other applications beyond lo-
cal descriptor encoding. Our observation suggests that the
visual descriptors contain more information than what is
needed for matching, which is removed by the adversarial
learning process. It opens up a new opportunity in general
representation learning for obtaining representations with
only necessary information to preserve privacy.
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Morat, Jérôme Revaud, Philippe Rerole, Noé Pion, Cesar de
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Supplementary material

We first provide a comparison of our NinjaDesc and the
base descriptor on the 3D reconstruction task using SfM
(Sec. A). Next, we report the full HPatches results using
HardNet [41] and SIFT [37] as the base descriptors (Sec. B).
In addition to our results on Aachen-Day-Night v1.1 in the
main paper, we also provide our results on Aachen-Day-
Night v1.0 (Sec. C). Finally, we illustrate the detailed archi-
tecture for the inverse models (Sec. E).

A. 3D Reconstruction

Table 5 shows a quantitative comparison of our content-
concealing NinjaDesc and the base descriptor SOSNet [75]
on the SfM reconstruction task using the landmarks dataset
for local feature benchmarking [64]. As can be seen, de-
crease in the performance for our content-concealing Nin-
jaDesc is only marginal for all metrics.

Dataset Method Reg.
images

Sparse
points

Obser-
vations

Track
length

Reproj.
error

South-
Building

128 images

SOSNet 128 101,568 638,731 6.29 0.56

NinjaDesc (1.0) 128 105,780 652,869 6.17 0.56

NinjaDesc (2.5) 128 105,961 653,449 6.17 0.56

Madrid
Metropolis

1344 images

SOSNet 572 95,733 672,836 7.03 0.62

NinjaDesc (1.0) 566 94,374 668,148 7.08 0.64

NinjaDesc (2.5) 564 94,104 667,387 7.09 0.63

Gendarmen-
markt

1463 images

SOSNet 1076 246,503 1,660,694 6.74 0.74

NinjaDesc (1.0) 1087 312,469 1,901,060 6.08 0.75

NinjaDesc (2.5) 1030 340,144 1,871,726 5.50 0.77

Tower of
London

1463 images

SOSNet 825 200,447 1,733,994 8.65 0.62

NinjaDesc (1.0) 797 198,767 1,727,785 8.69 0.62

NinjaDesc (2.5) 837 218,888 1,792,908 8.19 0.64

Table 5. 3D reconstruction statistics on the local feature evaluation
benchmark [64]. Number in parenthesis is the privacy parameter
λ.

B. Full HPatches results for HardNet and SIFT

Figure 9 illustrates our full evaluation results on
HPatches using HardNet [41] and SIFT [37] as the base
descriptors for NinjaDesc, in addition to the results using
SOSNet [75] provided in the main paper. Similar to the
results for SOSNet [75], we observe little drop in accuracy
for NinjaDesc overall compared to the original base descrip-
tors, ranging from low (λ = 0.1) to high (λ = 2.5) privacy
parameters.

C. Evaluation on Aachen-Day-Night v1.0
In Table 2 of the main paper, we report the result of

NinjaDesc on Aachen-Day-Night v1.1 dataset. The v1.1 is
updated with more accurate ground-truths compared to the
older v1.0. Because Dusmanu et al. [18] performed eval-
uation on the v1.0, we also provide our results on v1.0 in
Table 6 for better comparison.

Method
Accuracy @ Thresholds (%)

Query NNs
0.25m, 2◦ 0.5m, 5◦ 5.0m, 10◦

Base Desc SOS / Hard / SIFT SOS / Hard / SIFT SOS / Hard / SIFT

Day
(824)

20

Raw 85.1 / 85.4 / 84.3 92.7 / 93.1 / 92.7 97.3 / 98.2 / 97.6
λ = 0.1 85.4 / 84.7 / 82.0 92.5 / 91.9 / 91.1 97.5 / 96.8 / 96.4
λ = 1.0 84.7 / 84.3 / 82.9 92.4 / 91.9 / 91.0 97.2 / 96.7 / 96.1
λ = 2.5 84.6 / 83.7 / 82.5 92.4 / 92.0 / 91.0 97.1 / 96.8 / 96.0

50

Raw 85.9 / 86.8 / 86.0 92.5 / 93.7 / 94.1 97.3 / 98.1 / 98.2
λ = 0.1 85.2 / 85.2 / 84.2 92.2 / 92.4 / 91.4 97.1 / 97.1 / 96.6
λ = 1.0 84.7 / 85.7 / 83.4 92.2 / 92.6 / 91.6 97.2 / 96.7 / 96.7
λ = 2.5 85.6 / 85.3 / 83.6 92.7 / 91.7 / 91.1 97.3 / 96.8 / 96.2

Night
(98)

20

Raw 51.0 / 57.2 / 55.1 65.3 / 68.4 / 67.3 70.4 / 76.5 / 74.5
λ = 0.1 51.0 / 45.9 / 45.9 62.2 / 56.1 / 54.1 68.4 / 62.2 / 63.3
λ = 1.0 50.0 / 43.9 / 44.9 62.2 / 54.1 / 56.1 66.3 / 62.2 / 64.3
λ = 2.5 48.0 / 44.9 / 44.9 58.2 / 59.2 / 52.0 65.3 / 65.3 / 62.2

50

Raw 48.0 / 51.0 / 54.1 59.2 / 64.3 / 65.3 65.3 / 68.4 / 74.5
λ = 0.1 41.8 / 39.8 / 41.8 52.0 / 51.0 / 52.0 60.2 / 56.1 / 60.2
λ = 1.0 43.9 / 39.8 / 43.9 54.1 / 50.0 / 54.1 63.3 / 58.2 / 63.3
λ = 2.5 42.9 / 40.8 / 42.9 52.0 / 50.0 / 52.0 61.2 / 56.1 / 58.2

Table 6. Visual localization results on Aachen-Day-Night
v1.0 [63]. ‘Raw’ corresponds to the base descriptor in each col-
umn, followed by three λ vales (0.1, 1.0, 2.5) for NinjaDesc.

D. Additional content-concealment experi-
ments

1. Nearest-neighbour attack. Two examples of nearest-
neighbour (NN) attack similar to that in [16] using a
database of 128,000 existing descriptors are shown in
Fig. 10. In both NN attack scenarios, the reconstruction
is significantly deteriorated, as it is non-trivial to compute
distances between the two spaces, cf . oracle attack analysis
below. Note we use λ = 2.5 for all our experiments.

2. Oracle attack distance analysis. The distances to the
original descriptor using the oracle attack following [16] is
plotted in black in Fig. 11. We also show another oracle(red
dotted), which differs from [16] in that the K neighbours are
first matched using the NinjaDesc database, then their cor-
responding SOSNet descriptor pairings are retrieved. For
completeness, we also plot the results of only using Nin-
jaDesc descriptors as the database (blue dashed).

We observe that the distance decreases as K increases
for SOSNet database like Fig. 6 in [16]. However, we argue
that this alone does not validate manifold folding. Rather, as
K increases we approach the limit of the distance to the real
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Figure 9. HPatches evaluation results. For each base descriptor (HardNet [41] and SIFT [37]), we compare with NinjaDesc, with 5 different
levels of privacy parameter λ (indicated by the number in parenthesis). All results are from models trained on the liberty subset of the
UBC patches [22] dataset, apart from SIFT which is handcrafted, and we use the Kornia [57] GPU implementation evaluated on 32 × 32
patches.
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Figure 10. Examples of NN attack. For NN attack, we show results
using SOSNet and our NinjaDesc descriptors to form the database.
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Figure 11. Distances to the original descriptor (SOSNet) of the
nearest-neighbour retrieved by three variants of the oracle attack.

NN of the original (SOSNet) descriptor, regardless of the
private (NinjaDesc) representation. This limit is achieved
by the new oracle(red dotted), where the closest NinjaDesc
(i.e. the corresponding SOSNet) database descriptor is al-

ways retrieved, for most K values. If the oracle in [16] uses
the NinjaDesc database (blue dashed), the distance remains
large. This is because unlike [16], NinjaNet maps the origi-
nal feature space to a completely new one via learned non-
linear transformations, and is thus robust to distance calcu-
lation across the two descriptor spaces.

Fig. 12 shows how our reconstruction improves as K in-
creases in oracle attack [16]. Still, even with very large K, it
is visibly worse than that from direct inversion or the orig-
inal image. For the oracle with NinjaDesc database (last
column), the reconstruction is highly privacy-preserving.

raw SOSNet

NinjaDesc (λ = 2.5)

direct inversion 
attack  oracle attack (SOSNet database)  oracle attack 

(NinjaDesc database)

K = 5 K = 100 K = 1,000 K = 10,000 K = 100,000 K = 128,000

Figure 12. Examples of oracle attack w.r.t. num. of neighbours K.

As noted in [16], an oracle attack is impractical as the at-
tacker does not have access to the original descriptors.



E. Detailed architectures of the descriptor in-
version models

UNet. The architecture of the UNet-based descriptor in-
version model, which is also used in [11, 53], is shown in
Figure 13.
UResNet. Figure 14 illustrates the architecture of the de-
scriptor inversion model based on UResNet used for the ab-
lation study in the Section 5.2 of the main paper. The overall
“U” shape of UResNet is similar to UNet, but each convo-
lution block is drastically different. We use the 5 stages
of ResNet50 [26] (pretrained on ImageNet [12]) {conv1,
conv2 x, conv3 x, conv4 x, conv4 x} as the 5 en-
coding / down-sampling blocks, except for conv2 x we re-
move the MaxPool2d so that each encoding block cor-
responds to a 1/2 down-sampling in resolution. Since
ResNet50 takes in RGB image as input (which has shape
of 3 × h × w, whereas the sparse feature maps are of
shape 128 × h × w), we pre-process the input with 4 addi-
tional basic redisual blocks denoted by res conv block
in Figure 14. The up-sampling decoder blocks (denoted
by up conv) are also residual blocks with an addition in-
put up-sampling layer using bilinear interpolation. In con-
trast to UNet, the skip connections in our UResNet are per-
formed by additions, rather than concatenations.



Figure 13. UNet Architecture.

Figure 14. UResNet Architecture.
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