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Abstract

We consider the privacy-preserving machine learning (ML) setting where the
trained model must satisfy differential privacy (DP) with respect to the labels of the
training examples. We propose two novel approaches based on, respectively, the
Laplace mechanism and the PATE framework, and demonstrate their effectiveness
on standard benchmarks.
While recent work by Ghazi et al. proposed Label DP schemes based on a ran-
domized response mechanism, we argue that additive Laplace noise coupled with
Bayesian inference (ALIBI) is a better fit for typical ML tasks. Moreover, we show
how to achieve very strong privacy levels in some regimes, with our adaptation of
the PATE framework that builds on recent advances in semi-supervised learning.
We complement theoretical analysis of our algorithms’ privacy guarantees with
empirical evaluation of their memorization properties. Our evaluation suggests that
comparing different algorithms according to their provable DP guarantees can be
misleading and favor a less private algorithm with a tighter analysis.
Code for implementation of algorithms and memorization attacks is available from
https://github.com/facebookresearch/label_dp_antipodes.

1 Introduction

Sophisticated machine learning models perform well on their target tasks despite of—or thanks
to—their predilection for data memorization [39, 2, 17]. When such models are trained on non-public
inputs, privacy concerns become paramount [31, 6, 7], which motivates the actively developing area
of privacy-preserving machine learning.

With some notable exceptions, which we discuss in the related works section, existing research has
focused on an “all or nothing” privacy definition, where all of the training data, i.e., both features and
labels, is considered private information. While this goal is appropriate for many applications, there
are several important scenarios where label-only privacy is the right solution concept.

A prominent example of label-only privacy is in online advertising, where the goal is to predict
conversion of an ad impression (the label) given a user’s profile and the spot’s context (the features).
The features are available to the advertising network, which trains the model, while the labels (data on
past conversion events) are visible only to the advertiser. More generally, any two-party setting where
data is vertically split between public inputs and (sensitive) outcomes is a candidate for training with
label-only privacy.

In this work we adopt the definition of differential privacy as our primary notion of privacy. The defi-
nition, introduced in the seminal work by Dwork et al. [13], satisfies several important properties that
make it well-suited for applications: composability, robustness to auxiliary information, preservation
under post-processing, and graceful degradation in the presence of correlated inputs (group privacy).
Following Ghazi et al. [18], we refer to the setting of label-only differential privacy as Label DP.
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Our contributions. We explore two approaches—with very different characteristics—toward
Label DP. These approaches and our methodology for estimating empirical privacy loss via label
memorization are briefly reviewed below:

• PATE: We adapt the PATE framework (Private Aggregation of Teacher Ensembles) of
Papernot et al. [28] to the Label DP setting by observing that PATE’s central assumption—
availability of a public unlabeled dataset—can be satisfied for free. Indeed, a public
unlabeled dataset is simply the private dataset with the labels removed! By instantiating
PATE with a state-of-the-art technique for semi-supervised learning, we demonstrate an
excellent tradeoff between empirical privacy loss and accuracy.

• ALIBI (Additive Laplace with Iterative Bayesian Inference): We propose applying additive
Laplace noise to a one-hot encoding of the label. Since differential privacy is preserved
under post-processing, we can de-noise the mechanism’s output by performing Bayesian
inference using the prior provided by the model itself, doing so continuously during the
training process. ALIBI improves, particularly in a high-privacy regime, Ghazi et al.’s
approach based on randomized response [18].

• Empirical privacy loss. We describe a memorization attack targeted at the Label DP scenario
that efficiently extracts lower bounds for the privacy parameter that, in some cases, come
within a factor of 2.5 from the theoretical, worst-case upper bounds against practically
relevant, large-scale models. For comparison, recent, most advanced black-box attacks on
DP-SGD have approximately a 10× gap between the upper and lower bounds [20, 26].

Both algorithms, PATE and ALIBI, come with rigorous privacy analyses that, for any fixed setting of
parameters, result in an (ε, δ)-DP bound. We emphasize that these bounds are just that—they are
upper limits on an attacker’s ability to breach privacy (in a precise sense) on worst-case inputs. Even
though these bounds can be pessimistic, intuitively, a smaller ε for the same δ corresponds to a more
private instantiation of a mechanism, and indeed this is likely the case within an algorithmic family.

Can the privacy upper bounds be used to compare diverse mechanisms with widely dissimilar analyses,
such as ours? We argue that focusing on the upper bounds alone may be misleading to the point of
favoring a less private algorithm with tighter analysis over a more private one whose privacy analysis
is less developed. For a uniform perspective, we estimate the empirical privacy loss of all trained
models by evaluating the performance of a black-box membership inference attack [31, 20, 26].

Our attack directly measures memorization of deliberately mislabeled examples, or canaries [6].
Following prior work [26, 20], we use the success rate of our attack to compute a lower bound on the
level ε of label-DP achieved by the training algorithm. To avoid the prohibitive cost of retraining a
model for each canary, we propose and analyze a heuristic that consists in inserting multiple canaries
into one model, and measuring an attacker’s success rate in guessing each canary’s label. In some
settings, we find that the empirical privacy of PATE (as measured by our attack) is significantly
stronger than that of ALIBI, even though the provable DP bound for PATE is much weaker.

Finally, to characterize setups where label-only privacy may be applicable, it is helpful to distinguish
between inference tasks, where the label is fully determined by the features, and prediction, where
there is some uncertainty as to the eventual outcome, despite (hopefully) some predictive value of
the feature set. We are mostly concerned with the latter scenario, where the outcome is not evident
from the features, or protecting choices made by individuals may be mandated or desirable (for
connection between privacy and self-determination see Schwartz [30]). While we do use public data
sets (CIFAR-10 and CIFAR-100) in which it is possible to “infer” the label, we do so only to evaluate
our approaches on standard benchmarks. We completely remove the triviality of inference by adding
mislabeled canaries in our attack, thereby introducing a measure of non-determinism.

2 Notation and Definitions

Throughout the paper we consider standard supervised learning problems. The inputs are (x, y) pairs
where x ∈ X are the features and y ∈ Y are the labels. (If some labels are absent, the problem
becomes semi-supervised learning.) The cardinality of the set Y is the number of classes C. The task
is to learn a model M parameterized with weights W that predicts y given x. To this end the training
algorithm has access to a training set of n samples {(xi, yi)}n.
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Differential privacy due to Dwork et al. [13] is a rigorous, quantifiable notion of individual privacy
for statistical algorithms. (See Dwork and Roth [14] and Vadhan [33] for book-length introductions.)
Definition 2.1 (Differential Privacy). We say that a randomized mechanismM : U → R satisfies
(ε, δ)-differential privacy (DP) if for all adjacent inputs D,D′ ∈ U that differ in contributions of a
single sample, the following holds:

∀S ⊂ R Pr[M(D) ∈ S] ≤ eε · Pr[M(D′) ∈ S] + δ.

If δ = 0, we refer to it as ε-DP.

The notion of adjacency between databases D and D′ is domain- and application-dependent. To
instantiate the Label DP setting, we say that D and D′ are adjacent if they consist of the same
number of examples {(xi, yi)}n and are identical except for a difference in a single label at index i∗:
(xi∗ , yi∗) ∈ D and (xi∗ , y

′
i∗) ∈ D′.

3 Background and related work

DP and machine learning. Differential privacy aligns extremely well with the goal of machine
learning, which is to produce valid models or hypotheses on the basis of observed data. In fact,
the relationship can be made precise. An important metric in ML is generalization error, which
measures the model’s performance on previously unseen samples. Differentially private mechanisms
provably generalize [11]. For an introduction to some important early results on connections between
differential privacy and learning theory see Dwork and Roth [14, Chapter 11].

Randomized response (RR). As a disclosure avoidance methodology, randomized response
(RR) [36] precedes the advent of differential privacy. In RR’s basic form, with some probabil-
ity the sensitive input is replaced by a sample drawn uniformly from its entire domain. RR can be
implemented at the source, making it an essential building block in achieving Local DP [16].

More generally, RR is an instance of the input perturbation technique, which leaves the ML training
algorithm intact and achieves differential privacy via input randomization. Input perturbations
methods are particularly friendly to implementers as they require minimal changes to existing
algorithms, treating them as black boxes.

Additive noise mechanisms. Another important class of differentially private mechanisms are
additive noise methods. Two canonical examples are additive Laplace [13] and additive Gaussian [12]
that can be applied to vector-valued functions. Their noise distributions are calibrated to the function’s
sensitivity—the maximal distance between the function’s outputs on adjacent inputs (D and D′ in
Definition 2.1) under the `1 or `2 metrics for the Laplace and Gaussian mechanisms respectively.

PATE. Private Aggregation of Teacher Ensembles (PATE) [28, 29] is a framework based on private
knowledge aggregation of an ensemble model and knowledge transfer. PATE trains an ensemble of
“teachers” on disjoint subsets of the private dataset. The ensemble’s knowledge is then transferred
to a “student” model via differentially private aggregation of the teachers’ votes on samples from
an unlabeled public dataset. Only the student model is released as the output of the training, as it
accesses sensitive data via a privacy-preserving interface.

Since PATE consumes the privacy budget each time the student queries the teachers, the training
algorithm must be optimized to minimize the number of queries. To this end, Papernot et al. explore
the use of semi-supervised learning techniques, most notably GANs. Recent advances in semi-
supervised learning have been shown to boost the performance of PATE on standard benchmarks [5].

FixMatch. FixMatch [32] is a state-of-the-art semi-supervised learning algorithm, which achieves
high accuracy on benchmark image datasets with very few labeled examples. It is based on the
concepts of pseudo-labeling [23] and consistency regularization [3]: FixMatch uses a partially trained
model to generate labels on weakly-augmented unlabeled data, and then, if the prediction is confident
enough, uses the output as a label for the strongly-augmented version of the same data point.

Label-only privacy. The setting of label-only DP was formally introduced by Chaudhuri and
Hsu [8], who proved lower bounds on sample complexity for private PAC-learners. Beimel et al. [4]
demonstrated that the sample complexity of Label DP matches that of non-private PAC learning
(ignoring constants, dependencies on the privacy parameters, and computational efficiency). Wang
and Xu [34] considered the linear regression problem in the local, label-only privacy setting.
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Most recently, Ghazi et al. [18] considered label-only privacy for deep learning. They propose a Label
Privacy Multi-Stage Training (LP-MST) algorithm, which we revisit in Section 5. The algorithm
advances in stages (Ghazi et al. evaluate it up to four), training the model on disjoint partitions of the
dataset. In each stage, the private labels are protected using a randomized response scheme.

The most innovative part of LP-MST happens at the point of transition between stages. Labels of the
training examples of the next partition are perturbed using randomized response. The (soft) output
of the previous stage’s model is interpreted as a prior, which is used to choose parameters for the
randomized response algorithm separately for each example. For instance, if the current model
assigns high probabilities to labels 1–10 and low probabilities to labels 11–100, the randomized
response will be constrained to outputting a label within the set 1–10.

We build on the insights of Ghazi et al. by making two observations. First, training algorithms used
for deep learning (such as SGD and its variants) can naturally handle soft labels (i.e., probability
distributions over the label space); there is thus no need to force hard labels by sampling from the
posterior. Second, by applying additive noise, we can repeatedly recompute the posterior distribution
as better priors become available without consuming privacy budget. By following the “once and
done” approach to label perturbation, we forgo the need to split training into disjoint stages.

To summarize, Ghazi et al. fix the prior at the beginning of the stage, choose parameters of the
randomized response algorithm on the basis of this prior, and update the model by feeding it the
perturbed label. We flip the order of these operations by applying a DP mechanism (additive Laplace)
first, and then repeatedly use Bayesian inference by combining the prior that changes with each model
update and the observables that do not.

To our knowledge, we are the first to explore connections between PATE and Label DP.

4 PATE with Semi-Supervised Learning

The PATE framework [28] splits the learning procedure into two stages. First, T teachers are trained
on disjoint partitions of the private dataset. Second, a student acquires labels for training its own
model by querying the teacher ensemble on samples drawn from a public (non-sensitive) unlabeled
dataset. Differential privacy is enforced at the interface between the student and the teachers, by
means of a private aggregation of the teachers’ votes.

The critical observation underlying the PATE privacy analysis is that a private sample taints at most
one teacher due to disjointedness of the teachers’ training sets. The voting mechanism bounds the
maximal impact of a single teacher’s votes across all student queries by injecting noise in each voting
instance. (We use the Confident Gaussian aggregation mechanism and its analysis from [29].)

The Label DP setting allows for unrestricted use of the features. We leverage this capability for
training both teachers and the student:

• The unlabeled examples on which the student queries the teacher ensemble are random
samples from the dataset without labels.

• All models—the teachers and the student—are trained with the FixMatch algorithm that
uses (few) labeled examples and has access to the entirety of the original dataset as the
supplementary unlabeled data.

Algorithms 1 and 2 adapt PATE to the Label DP setting. To draw a distinction between the PATE
framework, which is generic and black-box, and its instantiation with the FixMatch algorithm for
semi-supervised learning, we refer to the latter as PATE-FM.

The PATE framework does not require the student and the teacher models to have identical architecture,
or share hyperparameters. In our experience, however, the optimal privacy/accuracy trade-offs force
very similar choices on these models.

The selection of the number of teachers, T , balances two competing objectives. On the one hand,
each teacher has access to n/T labeled and n unlabeled examples, which means that a smaller T
corresponds to higher accuracy teacher models (due to more labeled examples per teacher). On the
other hand, a larger T allows for a higher level of noise and lower privacy budget per query.

A similar dynamic controls K, the number of labels requested by the student. A higher number
allows for more accurate training but inflates the privacy budget.
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Algorithm 1: PATE-FM.TrainTeacherEnsemble
Input: Dataset D ← {(x1, y1), . . . , (xn, yn)}, number of teachers T , training procedure
FixMatch(labeled_data, unlabeled_data)

Define the unlabeled part of D: D− ← {x1, . . . , xn}
Partition D into T equal-sized disjoint subsets D(1), . . . , D(T )

for i← 1 to T do
teacher i ← FixMatch(D(i), D−)

end
Output: Model ensemble {teacher1, . . . , teacherT }

Algorithm 2: PATE-FM.TrainStudent
Input: Dataset D = {(x1, y1), . . . , (xn, yn)}, number of label classes C, number of teachers T ,

training procedure FixMatch(labeled_data, unlabeled_data), number of student samples K,
noise parameters σ1, σ2, voting threshold τ

Define the unlabeled part of D: D− ← {x1, . . . , xn}
Initialize student dataset DS ← ∅
{teacher1, . . . , teacherT } ← TrainTeacherEnsemble(D,T )
while |DS | < K do

x← random sample from D−

for i← 1 to C do // tallying up the votes
vi ← |{j : teacherj (x) = i}|

end
if maxi{vi +N (0, σ2

1)} ≥ τ then
y ← argmaxi{vi +N (0, σ2

2)}
DS ← DS ∪ {(x, y)}

end
end
student ← FixMatch(DS , D

−)
Output: Model student

Boosting teachers’ accuracy for a given number of labels and minimizing the number of student
queries and their privacy costs are key to producing high utility models with strong privacy guarantees.
To this end, we use the state-of-the-art algorithm for semi-supervised learning FixMatch [32].

The FixMatch algorithm’s primary domain is image classification: in addition to labelled and
unlabelled examples, it assumes access to a pair of weak and strong data augmentation algorithms.
The loss function of FixMatch is a weighted sum of two losses that enforce consistency of the model’s
prediction (i) between labeled examples and their weakly augmented versions, and (ii) between
weakly and strongly augmented unlabeled images (restricted to high-confidence instances).

5 ALIBI: Additive Laplace with Iterative Bayesian Inference

We describe the general approach of Soft Randomized Response with post-processing and its concrete
instantiation, ALIBI.

5.1 Soft Randomized Response

Consider the application of Randomized Response (RR) to the setting of Label DP. In its standard form,
the random perturbation maps labels to labels, i.e., the label either retains its value with probability p
or assumes a random value with probability 1− p.

We deviate from RR by replacing label randomization with a differentially private mechanism applied
to a one-hot encoding of the training sample label; we refer to this mechanism as Soft Randomized
Response (Soft-RR). By retaining more information (without significantly impacting privacy analysis),
we support several possible post-processing algorithms (Section 5.2). Additionally, we argue that
Soft-RR performs better than RR in practice since it does not force wrong hard labels.
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Algorithm 3: Additive Laplace with Iterative Bayesian Inference, ALIBI
Input: Dataset D = {(x1, y1), . . . , (xn, yn)}, noise parameter λ, Bayesian post-processing

mechanism BPP(o, λ, prior) defined in Eq. (3), optimizer Update(model , input , soft_labels)

Initialize noised dataset D∗ ← ∅
for i← 1 to n do // noising labels

oi ← OneHot(yi) + Laplace(λ)
D∗ ← D∗ ∪ {(xi,oi)}

end
Randomly initialize model M
repeat

for (x,o) in D∗ do
pred←M(x)
post← BPP(o, λ,pred)
M ← Update(M,x,post)

end
until convergence;

Output: Model M

Following standard analysis (Dwork and Roth [14, Chapter 3.3]), ε-DP can be achieved with additive
Laplace noise with per-coordinate standard deviation 2

√
2/ε. Analogously, Gaussian noise sampled

from N (0, σ2 · IC) results in (ε, δ)-DP if σ =
√
2 ln(1.25/δ)/ε and ε, δ < 1 ([14, Appendix A]).

5.2 Post-processing of Soft Randomized Response

The output of Soft-RR is no longer a valid soft label vector—values are not necessarily constrained to
the [0,1] interval and do not sum up to 1. Thankfully, the fundamental property of DP allows privacy
preservation under post-processing, which we use to obtain a probability mass function on perturbed
labels to de-noise the mechanism’s output. Treating the noisy labels o as the observables, and λ as
the noise parameter, we can calculate the posterior p(y = c | o, λ) by Bayes’ rule as:

p(y = c | o, λ) = p(o | y = c, λ) · p(y = c)∑
k p(o | y = k, λ) · p(y = k)

. (1)

In the context of SGD, the current model’s output can be interpreted as a prior probability distribution
over the classes (p(y)).

ALIBI, or Additive Laplace with Iterative Bayesian Inference, is an algorithm that applies Bayesian
post-processing to the output of the Laplace mechanism (Algorithm 3). With Laplace noise, the
output of the mechanism for a specific label k is distributed as:

p(o | y = k, λ) ∝ e−|ok−1|/λ
∏
j 6=k

e−|oj |/λ. (2)

Plugging (2) into (1) we derive:

p(y = c | o, λ) = SoftMax(f(oc)/λ+ log p(y = c)), (3)

where f(oc) = −
∑
k |ok − [c = k]| and [·] is the Iverson bracket.

At a given privacy level, ALIBI empirically outperforms iterative Bayesian inference on additive
Gaussian noise and naïve “uninformed” post-processing strategies, the details of which are deferred
to Section D (Supplemental materials).

6 Evaluation

The algorithms are evaluated by training the Wide-ResNet architecture [38] on the CIFAR-10 and
CIFAR-100 datasets [22]. The widening factor is set to 4 and 8 for CIFAR-10 and CIFAR-100
respectively. To facilitate comparison of privacy assured by the two approaches, we train our models
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to achieve similar accuracy levels and provide the computed theoretical (ε, δ) upper bound. (Ignoring
the privacy costs of hyperparameter tuning and of reporting the test set performance. The former
can be minimized, with a modest loss in accuracy, by applying the selection procedure of Liu and
Talwar [24].) We also provide the empirical privacy loss lower bound, εm, as estimated by the
black-box attacks (Section 7).

PyTorch-based implementations of ALIBI, PATE-FM, and memorization attacks, including configu-
ration options and hyperparameters, are publicly available [1].

6.1 PATE-FM

PATE-FM parameters are given in Table 3 (Supplemental materials). The student and the teacher
models share the same architecture and are trained using FixMatch [32, 21] with hyperparameters
from Sohn et al. [32] (we use the RandAugment variant [9]). The number of epochs is set so that the
test accuracy reaches a plateau: for CIFAR-10, we train teachers for 40 epochs and the student for
200 epochs; for CIFAR-100, we train both the teachers and the student for 125 epochs. To report
privacy, we set δ = 10−5. The student’s accuracy is reported as the average of three runs (for a fixed
teacher ensemble).

There are several hyperparameters affecting privacy/utility trade-off in PATE: number of teachers,
level of noise, voting threshold, and number of labeled samples in the student dataset. Apart from
the expected dependencies (increasing noise and the number of teachers benefits privacy at some
accuracy cost), we observe the following:

• The number of labeled student samples beyond a certain level (10–25 samples per class) has
little effect on the eventual model accuracy. This is in contrast with the standard (non-private)
FixMatch where increasing the number of labeled samples usually improves accuracy.

• The voting threshold τ needs to be kept between 10% and 75% of the overall number of
teachers. As pointed out in Papernot et al. [29], a lack of consensus between teachers hurts
both privacy and utility, as the teacher ensemble errs more often on such inputs and a single
vote can have more impact on the outcome. Setting the threshold too high leads to a selection
bias in training samples, forcing the student model to train only on the most trivial samples.
Even in the zero-noise regime, the threshold above 75% considerably hurts the accuracy.

6.2 ALIBI

We use mini-batch SGD with a batch size of 128 and a momentum of 0.9. We train all models for 200
epochs and pick the best checkpoint. We tune the learning rate, weight decay and noise multiplier
to obtain the desired accuracy while minimizing privacy ε (see Table 4 in Supplemental materials).
Since ALIBI is based on the Laplace mechanism, it achieves pure DP corresponding to δ = 0.

6.3 Results

Table 1 presents the privacy budget and the memorization metric at three levels of accuracy across
our two approaches for the both datasets. Additionally, for ALIBI, we provide the results of a higher
accuracy model on the CIFAR-100 task; this higher accuracy was not attainable with PATE-FM.

For correct comparison with LP-2ST on CIFAR-100, we factor out modelling differences by applying
both mechanisms to training the same architecture—ResNet18 [19, 25] with appropriate modifications
to suit the task. Results are presented in Table 2. For reference, non-private baselines with this model
achieve ≈ 95.5% on CIFAR-10 and ≈ 79% on CIFAR-100.

We note that there is a significant difference in computational resources required to train with
PATE-FM and ALIBI. The reasons are twofold. First, in our experiments, models trained in a
semi-supervised regime with few labeled examples take longer to converge. Second, PATE requires
training the teacher ensemble, in which computational costs scale linearly with the size of the
ensemble. Overall, this accounts for PATE-FM consuming 1,000–1,500× more computational
resources (GPU·hr) compared to ALIBI.
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Table 1: Privacy of PATE-FM [28, 32] and ALIBI, on CIFAR-10 and CIFAR-100 using Wide-
ResNet18, matched by test accuracy levels. ε for PATE is at δ = 10−5. Empirical privacy loss εm is
reported as a 95% confidence interval (CI).

Dataset Accuracy level Algorithm Accuracy ε 95%-CI εm

CIFAR-10

High PATE-FM 93.7% 1.6 0.0–0.9
ALIBI 94.0% 8.0 2.9–4.0

Medium PATE-FM 86.9% 0.29 0.0–0.6
ALIBI 84.2% 2.1 1.0–2.2

Low PATE-FM 73.4% 0.18 0.0–0.4
ALIBI 71.0% 1.0 0.0–2.2

CIFAR-100

Very High PATE-FM – – –
ALIBI 75.3% 8.1 3.5–4.5

High PATE-FM 69.9% 715 0.4–1.0
ALIBI 71.4% 6.3 2.8–3.5

Medium PATE-FM 50.0% 16 0.2–0.7
ALIBI 51.6% 3.0 1.4–2.4

Low PATE-FM 30.5% 7.9 0.2–0.6
ALIBI 31.4% 2.0 0.6–1.0

Table 2: Test accuracy of ALIBI and LP-2ST [18, Table 4], on CIFAR-100 applied to ResNet18,
matched by ε.

Algorithm ε = 3 ε = 4 ε = 5 ε = 6 ε = 8

ALIBI 55.0 65.0 69.0 71.5 74.4
LP-2ST 28.7 50.2 63.5 70.6 74.1

7 Measuring Memorization

We complement our evaluation with an empirical study of the (label) memorization abilities of
classifiers trained with PATE-FM and ALIBI. While we can derive provable upper-bounds on the
level of ε-Label DP provided by both algorithms, a direct comparison between the (actual) privacy of
both algorithms is challenging as they rely on very different privacy analyses. As we will see, for
CIFAR-100, PATE-FM empirically appears to provide much stronger privacy guarantees than ALIBI,
even though the privacy analysis suggests the opposite.

To empirically measure privacy loss, we effectively instantiate the implicit adversary in the DP
definition [26, 20]. We construct two datasets D,D′ that differ only in the label of one example, and
train a model on one of these two datasets. We then build an attack that “guesses” which of the two
datasets was used. The attacker’s advantage over a random guess can be used to derive an empirical
lower bound on the mechanism’s differential privacy. A formal treatment of memorization attacks
using the framework of security games appears in Section B (Supplemental materials).

We point out the following differences between our approach and prior work. When providing lower
bounds on privacy leakage, it is appropriate to consider the most powerful attacker pursuing the least
challenging goal. In the context of standard DP (privacy for labels and features), it means an attacker
that can add or remove a sample and seeks to determine whether the sample was part of the training
dataset (i.e., membership inference [31]). In contrast, we operate within the constraints of Label DP,
where the attacker’s power is limited to manipulating a single label and the goal is to infer which
label was used during training. (The closest analogue is attribute inference [37].)

Prior work replicates a memorization experiment many times (e.g., 1,000 times [26]) to lower bound ε
with standard statistical tools [26, 20]. As this approach is prohibitively expensive in our setting (prior
work computed DP lower bounds for simpler datasets such as MNIST), we introduce the following
heuristic: we train a single model on a training set with 1,000 labels randomly flipped to a different
class. For each of these “canaries” [6] with (flipped) label y′, the attacker has to guess whether
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Figure 1: Comparison of the adversary’s success rates in guessing the label of inserted canaries with
ALIBI and PATE-FM (for CIFAR-100, with High accuracy level). We sort canaries by the model’s
maximal confidence on the two labels y′, y′′ that the adversary has to guess from. The violin plots
show the proportion of correct guesses (the model is more confident in the canary label) and incorrect
guesses. To maximize the adversary’s distinguishing power, we limit the adversary to only issuing
guesses for canaries where the model’s confidence in either y′ or y′′ is above 99% (zoomed-in box).
ALIBI is clearly more vulnerable to the attack (i.e., it is easier for the adversary to guess a canary’s
label), even though its theoretical privacy analysis yields a much lower bound on ε than for PATE-FM.

the canary’s assigned label is y′ or y′′, where y′′ 6= y′ is a different random incorrect label. If the
adversary has accuracy α in this guessing game, we can lower bound ε by 1− log( α

1−α ). As in prior
work [26, 20], we compute a 95% confidence interval on the adversary’s guessing accuracy α and
thus on the level of privacy ε against our attack. We formally define our attacking game and analyze
the relationship between the attacker’s success and the privacy budget ε in Section B (Supplemental
materials).

To isolate the impact that can be attributed to the difference between privacy-preserving training
procedures, we apply ALIBI and PATE-FM to the same target model architecture and tune their
privacy parameters to achieve similar accuracy levels. (For discussion of confounders, see Erlingsson
et al. [15].) Furthermore, we deliberately limit memorization attacks to be trainer-agnostic, to avoid
privileging, for instance, a more complex training procedure over a simpler one.

Our empirical estimates of the privacy loss εm are given in Table 1. The estimates for ALIBI are
approximately within a factor of 2 of the theoretical upper bound on ε. This suggests that the
theoretical privacy analysis of ALIBI is close to tight. On the other hand, for PATE-FM our empirical
estimates of the privacy loss are up to three orders of magnitude smaller than the theoretical upper
bound. While we have no guarantee that our attack is the strongest possible (and it likely is not), our
experiment does suggest that for a fixed accuracy level, PATE-FM is much less likely to memorize
labels compared to ALIBI (see Figure 1). Empirically, it thus appears that PATE-FM provides a much
better privacy-utility tradeoff than ALIBI, even though the theoretical analysis suggests the opposite.

This being said, we encourage critical interpretation of privacy claims backed by memorization esti-
mates. Attacks, and the corresponding lower bounds on privacy loss, are provisional and conditional;
they can be shattered with better algorithms or additional resources. The empirical lower bounds
should be contrasted with provable upper bounds that provide the most conservative guidance in
selecting privacy-preserving algorithms and setting their parameters.

8 Conclusion

We have proposed and evaluated two approaches toward achieving Label DP in ML: ALIBI and
PATE-FM (the PATE framework instantiated with FixMatch). We have demonstrated that both
approaches can achieve state-of-the-art results on standard datasets. As the two approaches have
different theoretical foundations and exhibit very different performance characteristics, they also
present an interesting combination of trade-offs.

PATE-FM offers impressive empirical privacy despite a very conservative theoretical privacy analysis.
On the other hand, its training setup is fairly complicated. The dependency on semi-supervised
learning techniques further restricts the tasks this method can be used for at present.

In contrast, ALIBI’s implementation and interpretation are quite simple. (1) It is a generic algorithm
that is compatible with any iterative procedure for ML training, such as SGD or its variants. It is not a

9



black-box however, and requires the ability to update training data labels as they are processed by the
training algorithm. (2) It enjoys a tighter privacy analysis resulting in a more realistic upper bound on
the privacy budget, but appears to offer less privacy than PATE-FM empirically. (3) It can be used to
train models to accuracy levels which PATE cannot achieve without significantly more data.

In addition to privacy and performance trade-offs, our two algorithms also differ significantly in their
time and computational resource requirements (as discussed in the Section 6.3).

Beyond the concrete improvements offered by our new techniques, our work emphasizes the need for
more research across multiple avenues: (1) bridging the gap between privacy lower bounds, backed
by attacks, and upper bounds, based on privacy analyses (in particular for PATE); (2) making the
privacy analysis of different approaches comparable; (3) designing stronger attack models to better
capture empirical privacy guarantees.
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A Hyperparameters

Tables 3 and 4 summarize hyperparameters for PATE-FM and ALIBI respectively.

Table 3: PATE-FM (Algorithms 1 and 2) hyperparameters for select accuracy levels.

Queries Accuracy
Dataset Teachers σ1 σ2 τ answered Ensemble Student

200 160 20 100 500 90.8% 93.7%
CIFAR-10 800 800 300 400 250 60.8% 86.9%

800 800 500 400 250 36.4% 73.4%

20 7 2 2 9,400 74.0% 69.9%
CIFAR-100 100 45 15 10 1,000 55.0% 50.0%

100 90 30 10 1,000 28.8% 30.5%

Table 4: Hyperparameters of ALIBI (Algorithm 3) for select accuracy levels.

Learning Weight decay
Dataset rate (×10−4) Accuracy

CIFAR-10
0.308 0.568 94.0%
0.960 0.00796 84.2%
0.315 1.50 71.0%

CIFAR-100

0.0037 33.5 75.3%
0.0057 17.5 71.4%
0.100 2.33 51.6%

0.1 1.00 31.4%

B Memorization: Formal treatment

To empirically bound the level ε of DP, prior work instantiates a general membership inference game,
defined in Figure 2 for two arbitrary neighboring datasets D0 and D1.

By repeating this game multiple times, we can estimate the adversary’s success rate and convert this
into a lower bound on ε.
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Attacker(D0, D1) Challenger

D0, D1

b←$ {0, 1}
M ←M(Db)

M

b′ ← A(D0, D1,M)

b′

output b = b′

Figure 2: Basic membership inference game, Game 1.

This would be prohibitively expensive in our setting (each iteration of the game requires training
a model on CIFAR-10 or CIFAR-100, and the game has to be repeated about 1,000 times to get
non-trivial bounds). We thus propose a heuristic approach for running multiple iterations of this game
while training a single model.

First, we will change the game slightly so as to allow the adversary to abstain from issuing a guess
on some instances. That is, the output range of A is {0, 1,⊥}. We then define the adversary’s correct
guess rate (CGR) as:

CGRD0,D1
:= Pr[b = b′ | b′ = A(D0, D1,M(Db)) ∧ b′ 6= ⊥] .

The probability is taken over the bit b, the randomness of the mechanismM and the algorithm A.
Theorem B.1. IfM satisfies ε-DP and D0, D1 are two adjacent databases, then

ε ≥ log

(
CGRD0,D1

1− CGRD0,D1

)
.

Proof. For notational convenience, define Ax as a random variable distributed according to
A(D0, D1,M(Dx)) for x ∈ {0, 1, b}. Then

CGRD0,D1

1− CGRD0,D1

=
Pr[b′ = b | b′ = Ab ∧ b′ 6= ⊥]

Pr[b′ = 1− b | b′ = Ab ∧ b′ 6= ⊥]

=
Pr[Ab = b]

Pr[Ab = 1− b]

=
Pr[A0 = 0] + Pr[A1 = 1]

Pr[A0 = 1] + Pr[A1 = 0]

≤ max

{
Pr[A0 = 0]

Pr[A1 = 0]
,
Pr[A0 = 1]

Pr[A1 = 1]

}
(by the mediant inequality)

≤ eε ,
where the last inequality follows from the assumption thatM is ε-DP.

It now remains to be seen how we can bound the adversary’s correct guessing rate CGR. We define
Game 2 (Figure 3) by making a small change to Game 1 above, so that the neighboring datasets D0

and D1 are chosen at random in each iteration of the game, by flipping the label of one example of a
common dataset D.

Similar to Game 1, we define the adversary’s probability of winning in Game 2 conditional on A’s
output not being ⊥. Let the average CGR in Game 2 (ACGR) be:

ACGRD := E
D0,D1

[Pr[b = b′ | b′ = A(D0, D1,M(Db)) ∧ b′ 6= ⊥]]

= E
D0,D1

[CGRD0,D1
] .
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Attacker Challenger(D)

D0, D1 ← D

i←$ [1 : |D|]

y′, y′′ ←$ {
[1 : C] \ {yi}

}
, s.t. y′ 6= y′′

(D0)i ← (xi, y
′)

(D1)i ← (xi, y
′′)

b←$ {0, 1}
M ←M(Db)

D0, D1,M

b′ ← A(D0, D1,M)

b′

output b = b′

Figure 3: D0 and D1 are defined randomly (Game 2).

If we can lower-bound ACGR by some value α, then there exists at least one pair of neighboring
datasets D0, D1 such that CGRD0,D1 ≥ α. As the DP guarantee has to hold for all neighboring
datasets, we can use a bound on ACGR to bound ε.

Finally, instead of repeating Game 2 many times to get a bound on ACGR, we instead simulate
multiple iterations of Game 2 at once, which becomes Game 3 (formally defined in Figure 4). The
heuristic step here is that we assume that each of theN guesses made by the adversary are independent
from each other and reflect the adversary’s guesses in N independent iterations of Game 2.

Given one iteration of Game 3 with N “canaries”, we can compute a lower bound on the adversary’s
average CGR using standard confidence intervals for a Binomial random variable. That is, we count
the number of correct guesses among the M ≤ N instances where the adversary made a guess
b′i 6= ⊥, and apply a Clopper-Pearson bound.

We can improve the tightness of this bound further. In Game 3, for each canary (xi, y
′
i) that the

model is trained on (assuming bi = 0), we record the adversary’s guess with respect to only one other
random label y′′. Yet, we could record the adversary’s guess with respect to all C − 2 choices of
y′′i 6= yi, y

′
i to get a tighter estimate of the adversary’s average success rate. However, we definitely

cannot treat these guesses as independent. Instead, we first estimate the adversary’s (empirical)
average correct guessing rate ACGRi for each canary (where the average is taken over all possible
choices for y′′i ):

b′i,j := A(D(i,j)
bi,j

, D
(i,j)
1−bi,j ,M) for j = 1, . . . , C − 2,

mi :=

C−2∑
j=1

[b′i,j 6= ⊥],

ACGRi :=
1

mi

C−2∑
j=1

[b′i,j = bi,j ],

where bi,j are iid uniform bits, D(i,j)
0 are D for all i and j, D(i,j)

1 , . . . , D
(i,j)
1 are copies of D with

the C − 2 possible choices for the label y′′i , and [·] is the Iverson bracket. (By convention, 0/0 = 0.)
We then compute a confidence interval for the empirical mean of all the ACGRi. As the adversary
may abstain from making a guess with a different probability for each canary (i.e., the mi’s may not
all be equal) we have to weigh the ACGRi values accordingly. That is, we compute the weighted
average and standard deviation of the ACGRi with the Mi as reliability weights. Finally, we obtain
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Attacker Challenger(D)

I ←$ {I ⊆ [1 : |D|] | |I| = N}

b1, . . . , bN ←$ {0, 1}N

D∗ ← D

for i ∈ I do

y′i, y
′′
i ←$ {

[1 : C] \ {yi}
}

, s.t. y′ 6= y′′

if bi = 0 then

D∗i ← (xi, y
′
i)

else

D∗i ← (xi, y
′′
i )

M ←M(D∗)

M,D,D∗, I, {(y′i, y′′i )}Ni=1

for i ∈ I do

D0, D1 ← D

(D0)i ← (xi, y
′
i)

(D1)i ← (xi, y
′′
i )

b′i ← A(D0, D1,M)

b′1, . . . , b
′
N

output {b1 = b′1, . . . , bN = b′N}

Figure 4: Game 3.

a confidence interval for the adversary’s ACGR using a standard 95% confidence interval for the
normal distribution.

Finally, it remains to define our adversary A(D0, D1,M) where (xi, y
′) ∈ D0 and (xi, y

′′) ∈ D1.
The adversary simply looks at the model’s confidence on xi for both possible labels and guesses that
the more confident of the two is the label that the model was trained on. However, if both labels have
confidence below some fixed threshold τ , the adversary abstains. Formally:

A(D0, D1,M) =

{⊥ if max(M(xi)y′ ,M(xi)y′′) < τ

[M(xi)y′ > M(xi)y′′ ] otherwise
.

We consider different thresholds τ ∈ [0.5, 0.99] and report the best resulting attack (i.e., the setting
with the highest lower-bound on ACGR). For simplicity, we omit corrections for multiple hypothesis
testing.

C Memorization: Validating the Heuristic

The previous section introduces a sequence of security games (Figures 2–4) that relate the success
probability of a membership inference adversary (Game 1) to an efficient computational procedure
(Game 3). It starts by randomizing a single instance of Game 1 into Game 2. In order to compute
the adversary’s probability of winning Game 2 with sufficient accuracy, the experiment needs to be
repeated hundreds of times. Doing so would be prohibitively expensive as each run requires training
a new model from scratch.

We use a heuristic whereby the independent runs of Game 2 are replaced with correlated instances of
the membership inference game that share the same trained model (Game 3). Concretely, it means
that instead of introducing a single canary (a mislabeled input) into a training dataset, Game 3 injects
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multiple canaries all at once. While doing so does change the input distribution of the training
procedure, we argue that the overall effects are minimal and do not qualitatively affect our findings.

We test the heuristic’s validity by comparing the adversary’s advantage against ALIBI in Game 3,
where the number of simultaneously inserted canaries is N = 1,000 as in Table 1, with ten repetitions
of Game 3 with N = 100. The results are presented in Table 5. Notably, the 95% confidence intervals
for εm are in very close agreement, thus supporting the heuristic.

Table 5: Comparison of 95% confidence intervals (CI) for the membership inference adversary
against ALIBI given a single run of Game 3 with N = 1000 and 10 runs of Game 3 with N = 100.

95%-CI εm
Dataset Accuracy level 1,000 labels 10×100 labels

CIFAR-10
High 2.9–4.0 2.7–3.6
Medium 1.0–2.2 0.2–2.5
Low 0.0–2.2 0.0–1.6

CIFAR-100
High 2.8–3.5 2.7–3.4
Medium 1.4–2.4 1.3–2.0
Low 0.6–1.0 0.6–1.1

D Post-processing for Soft Randomized Response

For completeness, we describe Soft RR variants instantiated with uninformed post-processing and
the Gaussian mechanism. We found that ALIBI dominates alternatives by achieving better accuracy
with stronger privacy. In particular, ALIBI’s upper bounds are stronger than those of the Gaussian
mechanisms for the same levels of accuracy, while their empirical privacy losses are statistically
indistinguishable.

D.1 Uninformed post-processing

Given Soft-RR’s output vector o, we may reduce error by mapping it to the closest point on the
probability simplex (compare with Nikolov et al. [27]). In other words, we are solving the following
constrained optimization problem:

min ‖o∗ − o‖2 subject to
{∀i 0 ≤ o∗i ≤ 1,∑

i o
∗
i = 1

The problem is (strictly) convex, and thus admits a unique, efficiently computable solution. Moreover,
a particularly simple and efficient method (Algorithm 4) exists due to Duchi et al. [10] (see also Wang
and Carreira-Perpiñán for other approaches [35]).

Algorithm 4: Post-processing using Min Projection (Duchi et al. [10]).

Input: o = (o1, . . . , oC) ∈ RC
Output: Projection of o onto the probability simplex
Sort o as s1 ≥ s2 ≥ · · · ≥ sC
Find k ← maxj

{
j ∈ [1 : C] : sj >

1
j (
∑j
i=1 si − 1)

}
u← 1

k (
∑k
i=1 si − 1)

for i← 1 to C do
o′i ← max(oi − u, 0)

end
Output o′

D.2 Bayesian post-processing on Additive Gaussian Mechanism

This follows the same post-processing algorithm as ALIBI as described in Section 5.2, except for
Gaussian noise instead of Laplace. Eq. (2) changes to the following (note the switch of the noise
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parameter from λ to σ):

p(o | y = k, σ) ∝ e−
(ok−1)2

2σ2

∏
j 6=k

e−
o2
j

2σ2 . (4)

Plugging (4) in (1) we have:

p(y = c | o, σ) = eoc/σ
2 · p(y = c)∑

k e
ok/σ2 · p(y = k)

= SoftMax(oc/σ
2 + log p(y = c)). (5)

The training algorithm as described in Algorithm 3 can be modified by setting BPP to (5) to work in
this setting.

The results of applying the Gaussian mechanism (“AGIBI”) are reported in Table 6 together with
ALIBI performance from Table 1 for ease of comparison. The claimed privacy losses (the ε column)
strongly favor ALIBI over the Gaussian mechanism; the empirically computed privacy loss lower
bounds do not separate the two mechanisms.

Table 6: ALIBI and AGIBI on CIFAR-10 and CIFAR-100 using Wide-ResNet18, matched by test
accuracy levels. Empirical privacy loss εm is reported as a 95% confidence interval (CI).

Dataset Accuracy level Algorithm Accuracy ε 95%-CI εm

CIFAR-10

High ALIBI 94.0% 8.0 2.9–4.0
AGIBI 93.5% 19 2.1–3.2

Medium ALIBI 84.2% 2.1 1.0–2.2
AGIBI 84.3% 7.7 0.7–1.4

Low ALIBI 71.0% 1.0 0.0–2.2
AGIBI 71.3% 3.7 0.0–2.0

CIFAR-100

High ALIBI 71.4% 6.3 2.8–3.5
AGIBI 69.9% 17 2.7–3.4

Medium ALIBI 51.6% 3.0 1.4–2.4
AGIBI 50.8% 8.4 1.3–2.0

Low ALIBI 31.4% 2.0 0.6–1.0
AGIBI 28.7% 5.4 0.6–1.1
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