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The supplementary material consists of detailed information about the ex-
perimental setup in Sec. 1, a detailed view on local shapes in Sec. 2, additional
metrics for the 3D Warehouse dataset comparison in Sec. 4, and more results,
comparisons and details about experiments in Sec. 5. Additionally, we provide
a video alongside this document, showing reconstructions in motion.

1072

— CD Mode

\_C)Dl\/{ean

50 70 90 110 130
Latent Code Dimension

(a) Latent code size (b) Primitives for training

- =
o 0 N

= =
OIS

Error [Chamfer Distance]

—_

Fig. 1: Fig. (a) shows the effect of changing the latent code dimensions on the
Chamfer distance test error on airplanes class of 3D Warehouse [1]. Fig. (b) shows
an example for a scene containing 200 primitives shapes as used for training the
local shape priors. On the right side, the instantiated local shape blocks are

shown.

1 Experimental Setup

Autodecoder Network The DeepLS autodecoder network is a lighter version
of the network proposed for DeepSDF [8]. It consists of four fully-connected
layers, separated by leaky ReLLUs and a tanh at the end, producing values in
[—1,1] that are then scaled by the chosen SDF truncation value. Each layer has
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Fig. 2: Instantiated local shape blocks in a scene. The blocks are allocated
sparsely, based on available depth data, which makes the approach scale well
to real world inputs.
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Fig. 3: Interpolation in latent space of a local shape code between a flat surface
and a pole.

128 output neurons. Fig. la shows the result of a small study to find the best
latent code size in a trade-off between accuracy and compression. We chose a
latent size of 125, leaving us with 128 input neurons for the first network layer.

Training The output of the network is trained to produce truncated SDF val-
ues. To this end, tanh is also applied on the appropriately scaled ground truth
SDF before computing the loss against the network output. We chose the scale
so that the interval [—0.9,0.9] after tanh covers approximately two blocks. We
optimize codes and network parameters using the Adam optimizer with initial
learning rate of 0.01, which we decrease twice over the course of training.

Training Data The training data to learn local shape priors consists of three
different categories of shapes. The first category contains simple primitive shapes,
as shown in Fig. 1b, with random 6-DOF pose in space. The second category
consists of 3D Warehouse [1] training meshes: We sampled a subset of 200 models
from each training set of the classes airplane, chair, lamp, sofa, and table. Each
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model was split into 32 x 32 x 32 local shape blocks. The last category consists of
models from the Stanford 3D scanning repository [2], namely bunny and dragon.

2 Local Shape Space

In order to give a better intuition about the space of learned local priors, inter-
polation sequences between local surfaces are provided in Fig. 3. It should be
noted that, in general, the space of possible functions in a voxel is much larger.
Therefore, training local priors heavily restricts the space of solutions to those
producing local SDF functions that describe reasonable surfaces. The behavior
of local shapes over the course of optimization is shown in the accompanying
video. Additionally, Fig. 2 show all allocated blocks in a scene, which together
reconstruct the whole surface.

3 Shape border consistency

In order to better understand the border consistency among the borders of lo-
cal shapes we used simple 2D scenes often composed of simple primitive shapes
such as triangles, rectangle and circles. In training and testing session we sam-
ple points around these shapes and extract SDF measurements as described in
DeepSDF [8]. Note, we color code these sample points with red for positive, blue
for negative and green for zero SDF measurements. In all the 2D experiments
we use roughly 1000 samples inside a grid cell (local shape spatial size) in train-
ing session and 100 samples in test session. We report testing error as the SDF
prediction error in 2d (pixels).

In the following experiment, in order to study shape border consistency we in-
creased the receptive field of local shapes as shown in Figure 4a. By receptive
field we mean the physical space of input samples for a particular local shapes.
In general, we observe improvement in SDF prediction on the boundaries of local
shapes with increasing receptive field as shown in Figure 4b. Although, we ob-
serve a critical point in the receptive field after which the performance drops as
shown in Figure 4c. As increasing receptive field makes the local shapes bigger
and more complicated so more parameters in the network Fy are required to
express the space of shapes. Hence, each Fy has a critical point in the receptive
field. We also observe the early convergence in optimization for optimal receptive
field as shown in Figure 4d.

4 3D Warehouse [1] Comparison - Additional Metric

In Tab 1 we extend the comparison on 3D Warehouse [1] objects on other metrics.
In addition to the Chamfer distance we show mesh accuracy, which is defined
as the maximum distance d such that 90% of generated points are within d if
the ground truth mesh. All metrics show the similar trend that DeepLS achieves
way higher accuracy than the related object-level representations.
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(a) This figure demonstrates the receptive field of the reference local shape inside
yellow block with area inside green circle. R represents the radius of receptive field.
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(b) This figure demonstrates the qualitative difference in the SDF prediction with
varying receptive fields.

—— 1.0 Radius of Receptive Field
0.80 1.5 Radius of Receptive Field
35 2.0 Radius of Receptive Field
—— 2.5 Radius of Receptive Field

0.75

°
S
3
Error in px

o
@
&

Error in px

0.60

0 25 50 75 100 125 150 175 200
10 12 14 16 18 20 22 24 Epochs
Radius of Receptive Field

(d) Plot shows the test error with in-
creasing iterations in optimization. Op-
timal receptive field shows early con-
vergence.

(¢) Error in SDF prediction with in-
creasing receptive field. Critical point
in receptive field is observed.

Fig. 4: This figure demonstrates the effect of receptive field on the quality of
reconstruction of SDF.
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CD, mean ‘ chair ‘ plane table lamp ‘ sofa
AtlasNet-Sph. 0.752 0.188| 0.725 2.381 0.445
AtlasNet-25 0.368 0.216 0.328 1.182 0.411
DeepSDF 0.204 0.143 0.553 0.832 0.132
DeepLS 0.030 0.018, 0.032 0.078 0.044
CD, median

AtlasNet-Sph. 0.511 0.079|  0.389 2.180 0.330
AtlasNet-25 0.276 0.065| 0.195 0.993 0.311
DeepSDF 0.072 0.036 0.068 0.219 0.088
DeepLS 0.023 0.011, 0.026 0.019 0.039
Mesh acc., mean

AtlasNet-Sph. 0.0330| 0.0130{ 0.0320| 0.0540{ 0.0170
AtlasNet-25 0.0180| 0.0130{ 0.0140f 0.0420{ 0.0170
DeepSDF 0.0090| 0.0040| 0.0120{ 0.0130f 0.0040
DeepLS 0.0009| 0.0008 0.001| 0.0012| 0.0011

Table 1: Representing unknown shapes from the 3D Warehouse [1] test set. In addition
to the Chamfer distance, we provide mesh accuracy [9]. Lower is better for all metrics.
It can be seen that all metrics show a similar trend.

5 Scene Experiments

Here, we explain the process from depth maps to SDF samples for real scenes
in more detail and provide qualitative results. See also the provided video for
further results.

5.1 Sample Generation

Sample generation from depth scans consists of the following steps: (1) For a
given scene, we generate a collection of 3D points from depth maps. (2) For
each depth point, we create one sample with zero SDF, and several positive and
negative SDF samples by moving the sample along the pre-computed surface
normal by 1.5 cm and —1.5 cm, respectively. The accompanying SDF value is
chosen as the moved distance.

(3) We generate additional free space samples along the observation rays.
Further, we weight each set of points inversely based on the depth of the ini-
tial scan point, to ensure that accurate points closer to the scanning device are
weighted higher. This procedure is described in detail in TSDF Fuison [7]. Simi-
lar to traditional SDF fusion approaches [7], DeepLS exposes a parameter which
controls the size of the region around actual depth samples in which march-
ing cubes is performed. Varying this parameter leads to the mesh accuracy vs.
completion trade-off, discussed in the main paper.
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(a) TSDF Fusion (b) DeepLS

Fig. 5: The figure shows a part of the ICL-NUIM kt0O scene [5], reconstructed from
samples with artitificial noise of ¢ = 0.015. DeepLS shows better denoising properties
than TSDF Fusion. For the whole ICL-NUIM benchmark scene, DeepLS achieves a
surface error of 6.41 mm with 71.04 % completion while TSDF Fusion has an error
of 7.29 mm and 68.53 % completion.

5.2 Comparisons for Synthetic Noise

Fig. 5 shows results of DeepLLS and TSDF Fusion on an ICL-NUIM benchmark
scene with artificial noise of ¢ = 0.015. The learned local shape priors of DeepLS
effectively are able to find plausible surfaces given the noisy observations, which
results in smoother surfaces in comparison to TSDF Fusion.

5.3 Qualitative Results

We show additional qualitative results on real scanned data in Fig. 6, Fig. 7 and
in the supplemented video. Both scenes showed in the figures were captured using
a handheld structured light sensor system as was used for capturing the Replica
dataset [10] and in related work [11,3]. An in-house SLAM system, similar to
state-of-the-art systems [4, 6], was used to provide 6 degree of freedom (DoF)
poses for individual depth frames from the sensor. It can be seen that DeepLS
succeeds in representing small details like the bars of chairs while TSDF Fusion
tends to loose these details. Also, we observe sharper corners (c.f. 6b) and more
complete surfaces (c.f. 7b) with DeepLsS.
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(a) DeepLS (right) captures thin chair legs better than TSDF Fusion (left) which tends
to loose those details.

(b) Zoomed view of region marked with black box in (a). DeepLS (right) represents
sharper corners and smoother planes than TSDF Fusion (left).

Fig. 6: Qualitative comparison of TSDF Fusion (left) with DeepLS (right) on real
scanned data prepared using a structured light sensor system [10]. The figure
(b) is the magnified region marked with black box in figure (a).
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(a) TSDF Fusion [7] (b) DeepLsS

Fig. 7: We show the scene reconstruction quality of DeepLS vs TSDF Fusion [7] on a
partially scanned real scene dataset using a structured light sensor system [10]. This
figure shows that DeepLS provides better local shape completion than TSDF Fusion.
The bottom row represents the zoomed in view marked with black box in the top row.
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