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Abstract

We propose the first general-purpose gradient-
based adversarial attack against transformer
models. Instead of searching for a single ad-
versarial example, we search for a distribu-
tion of adversarial examples parameterized by
a continuous-valued matrix, hence enabling
gradient-based optimization. We empirically
demonstrate that our white-box attack attains
state-of-the-art attack performance on a variety
of natural language tasks, outperforming prior
work in terms of adversarial success rate with
matching imperceptibility as per automated
and human evaluation. Furthermore, we show
that a powerful black-box transfer attack, en-
abled by sampling from the adversarial distri-
bution, matches or exceeds existing methods,
while only requiring hard-label outputs.

1 Introduction

Deep neural networks are sensitive to small, often
imperceptible changes in the input, as evidenced
by the existence of so-called adversarial exam-
ples (Biggio et al., 2013; Szegedy et al., 2013).
The dominant method for constructing adversarial
examples defines an adversarial loss, which en-
courages prediction error, and then minimizes the
adversarial loss over the input space with estab-
lished optimization techniques. To ensure that the
perturbation is hard to detect by humans, existing
methods also introduce a perceptibility constraint
into the optimization problem. Variants of this
general strategy have been successfully applied to
image and speech data (Madry et al., 2017; Carlini
and Wagner, 2017, 2018).

However, optimization-based search strategies
for obtaining adversarial examples are much more
challenging with text data. Attacks against contin-
uous data types such as image and speech utilize
gradient descent for superior efficiency, but the dis-
crete nature of natural languages prohibits such
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first-order techniques. In addition, perceptibility
for continuous data can be approximated with L2-
and L∞-norms, but such metrics are not readily ap-
plicable to text data. To circumvent this issue, some
existing attack approaches have opted for heuris-
tic word replacement strategies and optimizing by
greedy or beam search using black-box queries (Jin
et al., 2020; Li et al., 2020a,b; Garg and Ramakr-
ishnan, 2020). Such heuristic strategies typically
introduce unnatural changes that are grammatically
or semantically incorrect (Morris et al., 2020a).

In this paper, we propose a general-purpose
framework for gradient-based adversarial attacks,
and apply it against transformer models on text
data. Our framework, GBDA (Gradient-based Dis-
tributional Attack), consists of two key components
that circumvent the difficulties of gradient descent
for discrete data under perceptibility constraints.
First, instead of constructing a single adversarial
example, we search for an adversarial distribu-
tion. We instantiate examples with the Gumbel-
softmax distribution (Jang et al., 2016), param-
eterized by a continuous-valued matrix of coef-
ficients that we optimize with a vanilla gradient-
based method. Second, we enforce perceptibility
and fluency using BERTScore (Zhang et al., 2019)
and language model perplexity, respectively, both
of which are differentiable and can be added to the
objective function as soft constraints. The combi-
nation of these two components enables powerful,
efficient, gradient-based text adversarial attacks.

We empirically demonstrate the efficacy of
GBDA against several transformer models. In ad-
dition, we also evaluate under the transfer-based
black-box threat model by sampling from the opti-
mized adversarial distribution and querying against
a different, potentially unknown target model. On
a variety of tasks including news/article categoriza-
tion, sentiment analysis, and natural language in-
ference, our method achieves state-of-the-art attack
success rate, while preserving fluency, grammatical
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Figure 1: Overview of our attack framework. The parameter matrix Θ is used to sample a sequence of probability
vectors π̃1, . . . , π̃n, which is forwarded through three (not necessarily distinct) models: (i) the target model for
computing the adversarial loss, (ii) the language model for the fluency constraint, and (iii) the BERTScore model
for the semantic similarity constraint. Due to the differentiable nature of each loss component and of the Gumbel-
softmax distribution, our framework is fully differentiable, hence enabling gradient-based optimization.

correctness, and a high level of semantic similarity
to the original input.

In summary, the main contributions of our paper
are as follows:
1. We define a parameterized adversarial distribu-
tion and optimize it using gradient-based methods.
In contrast, most prior work construct a single ad-
versarial example using black-box search.
2. By incorporating differentiable fluency and se-
mantic similarity constraints into the adversarial
loss, our white-box attack produces more natural
adversarial texts while achieving a new state-of-
the-art success rate.
3. The adversarial distribution can be sampled effi-
ciently to query different target models in a black-
box setting. This enables a powerful transfer attack
that matches or exceeds the performance of exist-
ing attacks. Compared to prior work that operate on
continuous-valued outputs from the target model,
this transfer attack only requires hard labels.

2 Background

Adversarial examples constitute a class of robust-
ness attacks against neural networks. Let h : X →
Y be a classifier where X ,Y are the input and out-
put domains, respectively. Suppose that x ∈ X is
a test input that the model correctly predicts as the
label y = h(x) ∈ Y . An (untargeted) adversarial
example is a sample x′ ∈ X such that h(x′) 6= y
but x′ and x are imperceptibly close.

The notion of perceptibility is introduced so that
x′ preserves the semantic meaning of x for a hu-
man observer. At a high level, x′ constitutes an
attack on the model’s robustness if a typical hu-
man would not misclassify x′ but the model h does.

For image data, since the input domain X is a sub-
set of the Euclidean space Rd, a common surro-
gate for perceptibility is a distance metric such as
the Euclidean distance or the Chebyshev distance.
In general, one can define a perceptibility metric
ρ : X × X → R≥0 and a threshold ε > 0 so that
x′ is considered imperceptible to x if ρ(x,x′) ≤ ε.

Search problem formulation. The process of
finding an adversarial example is typically mod-
eled as an optimization problem. For classification,
the model h outputs a logit vector φh(x) ∈ RK

such that y = arg maxk φh(x)k. To encourage the
model to misclassify an input, one can define an
adversarial loss such as the margin loss:

`margin(x, y;h) =

max

(
φh(x)y −max

k 6=y
φh(x)k + κ, 0

)
, (1)

so that the model misclassifies x by a margin of
κ > 0 when the loss is 0. The margin loss has
been widely used in attack algorithms for image
data (Carlini and Wagner, 2017).

Given an adversarial loss `, the process of con-
structing an adversarial example can be cast as a
constrained optimization problem:

min
x′∈X

`(x′, y;h) subject to ρ(x,x′) ≤ ε. (2)

An alternative formulation is to relax the constraint
into a soft constraint with λ > 0:

min
x′∈X

`(x′, y;h) + λ · ρ(x,x′), (3)

which can then be solved using gradient-based opti-
mizers if the constraint function ρ is differentiable.



2.1 Text Adversarial Examples

Although the search problem formulation in Equa-
tion 2 has been widely applied to continuous data
such as image and speech, it does not directly apply
to text data because (1) the data space X is discrete,
hence not permitting gradient-based optimization;
and (2) the constraint function ρ is difficult to de-
fine for text data. In fact, both issues arise when
considering attacks against any discrete input do-
main, but the latter is especially relevant for text
data due to the sensitivity of natural language. For
instance, inserting the word not into a sentence can
negate the meaning of the whole sentence despite
having a token-level edit distance of 1.

Prior work. Several attack algorithms have been
proposed to circumvent these two issues, using
a multitude of approaches. For attacks that op-
erate on the character level, perceptibility can
be approximated by the number of character ed-
its, i.e., replacements, swaps, insertions and dele-
tions (Ebrahimi et al., 2017; Li et al., 2018; Gao
et al., 2018). Attacks that operate on the word
level adopt heuristics such as synonym substitu-
tion (Samanta and Mehta, 2017; Zang et al., 2020;
Maheshwary et al., 2020) or replacing words by
ones with similar word embeddings (Alzantot et al.,
2018; Ren et al., 2019; Jin et al., 2020). More re-
cent attacks have also leveraged masked language
models such as BERT (Devlin et al., 2019) to
generate word substitutions by replacing masked
tokens (Garg and Ramakrishnan, 2020; Li et al.,
2020a,b). Most of the aforementioned attacks fol-
low the common recipe of proposing character-
level or word-level perturbations to generate a con-
strained candidate set and optimizing the adversar-
ial loss greedily or using beam search.

Shortcomings in prior work. Despite the
plethora of attacks against natural language mod-
els, their efficacy remains subpar compared to at-
tacks against other data modalities. Both character-
level and word-level changes are still relatively
detectable, especially as such changes often intro-
duce misspellings, grammatical errors, and other
artifacts of unnaturalness in the perturbed text (Mor-
ris et al., 2020a). Moreover, prior attacks mostly
query the target model h as a black-box and rely on
zeroth-order strategies for minimizing the adversar-
ial loss, resulting in sub-optimal performance.

For instance, BERT-Attack (Li et al., 2020b)—
arguably the state-of-the-art attack against BERT—

only reduces the test accuracy of the target model
on the AG News dataset (Zhang et al., 2015) from
95.1 to 10.6. In comparison, attacks against im-
age models can consistently reduce the model’s
accuracy to 0 on almost all computer vision
tasks (Akhtar and Mian, 2018). This gap in per-
formance raises the question of whether gradient-
based search can produce more fluent and optimal
adversarial examples on text data. In this work, we
show that our gradient-based attack can reduce the
same model’s accuracy from 95.1 to 3.5 while be-
ing more semantically-faithful to the original text.
Our result shows that using gradient-based search
for text adversarial examples can indeed close the
performance gap between vision and text attacks.

2.2 Other Attacks

While most works on adversarial attack on text fall
within the formulation defined at the beginning of
section 2, other notions of adversarial perturbation
exist as well. One class of such attacks is known
as universal adversarial triggers—a short snippet
of text that when appended to any input, causes the
model to misclassify (Wallace et al., 2019; Song
et al., 2020). However, such triggers often contain
unnatural combinations of words or tokens, and
hence are very perceptible to a human observer.

Our work falls within the general area of adver-
sarial learning, and many prior works in this area
have explored the notion of adversarial example
on different data modalities. Although the most
prominent data modality by far is image, adversar-
ial examples can be constructed for speech (Carlini
and Wagner, 2018) and graphs (Dai et al., 2018;
Zügner et al., 2018) as well.

3 GBDA: Gradient-based Distributional
Attack

In this section, we detail GBDA—our general-
purpose framework for gradient-based text attacks
against transformers. Our framework leverages
two important insights: (1) we define a parameter-
ized adversarial distribution that enables gradient-
based search using the Gumbel-softmax (Jang et al.,
2016); and (2) we promote fluency and semantic
faithfulness of the perturbed text using soft con-
straints on both perplexity and semantic similarity.

3.1 Adversarial Distribution

Let z = z1z2 · · · zn be a sequence of tokens where
each zi ∈ V is a token from a fixed vocabulary



V = {1, . . . , V }. Consider a distribution PΘ pa-
rameterized by Θ ∈ Rn×V , which yields samples
z ∼ PΘ by independently sampling each token
zi ∼ Categorical(πi), where πi = Softmax(Θi) is
a vector of token probabilities for the i-th token.

We aim to optimize the parameter matrix Θ so
that samples z ∼ PΘ are adversarial examples for
the model h. To do so, we define the objective
function for this goal as:

min
Θ∈Rn×V

Ez∼PΘ
`(z, y;h), (4)

where ` is a chosen adversarial loss.

Extension to probability vector inputs. The ob-
jective function in Equation 4 is non-differentiable
due to the discrete nature of the categorical distribu-
tion. Instead, we propose a relaxation of Equation 4
by first extending the model h to take probability
vectors as input, and then use the Gumbel-softmax
approximation (Jang et al., 2016) of the categorical
distribution to derive the gradient.

Transformer models take as input a sequence
of tokens that are converted to embedding vectors
using a lookup table. Let e(·) be the embedding
function so that the input embedding for the token
zi is e(zi) ∈ Rd for some embedding dimension
d. Given a probability vector πi that specifies the
sampling probability of the token zi, we define

e(πi) =

V∑
j=1

(πi)je(j) (5)

as the embedding vector corresponding to the prob-
ability vector πi. Note that if πi is a one-hot vec-
tor corresponding to the token zi then e(πi) =
e(zi). We extend the notation for an input se-
quence of probability vectors π = π1 · · ·πn as
e(π) = e(π1) · · · e(πn) by concatenating the in-
put embeddings.

Computing gradients using Gumbel-softmax.
Extending the model h to take probability vec-
tors as input allows us to leverage the Gumbel-
softmax approximation to derive smooth estimates
of the gradient of Equation 4. Samples π̃ =
π̃1 · · · π̃n from the Gumbel-softmax distribution
P̃Θ are drawn according to the process:

(π̃i)j :=
exp((Θi,j + gi,j)/T )∑V
v=1 exp((Θi,v + gi,v)/T )

, (6)

where gi,j ∼ Gumbel(0, 1) and T > 0 is a tem-
perature parameter that controls the smoothness

of the Gumbel-softmax distribution. As T → 0,
this distribution converges towards the distribution
Categorical(Softmax(Θi)).

We can now optimize Θ using gradient descent
by defining a smooth approximation of the objec-
tive function in Equation 4:

min
Θ∈Rn×V

Eπ̃∼P̃Θ
`(e(π̃), y;h), (7)

The expectation can be estimated using stochastic
samples of π̃ ∼ P̃Θ.

3.2 Soft Constraints
Black-box attacks based on heuristic replacements
can only constrain the perturbation by proposing
changes that fall within the constraint set, e.g., lim-
iting edit distance, replacing words by ones with
high word embedding similarity, etc. In contrast,
our adversarial distribution formulation can readily
incorporate any differentiable constraint function
as a part of the objective. We leverage this advan-
tage to include both fluency and semantic similar-
ity constraints in order to produce more fluent and
semantically-faithful adversarial texts.

Fluency constraint with a language model.
Causal language models (CLMs) are trained with
the objective of next token prediction by maximiz-
ing the likelihood given previous tokens. This al-
lows the computation of likelihoods for any se-
quence of tokens. More specifically, given a CLM
g with log-probability outputs, the negative log-
likelihood (NLL) of a sequence z = z1 · · · zn is
given autoregressively by:

NLLg(z) = −
n∑

i=1

log pg(zi | z1 · · · zi−1),

where log pg(zi | z1 · · · zi−1) = g(z1 · · · zi−1)zi
is the cross-entropy between the delta distribution
on token zi and the predicted token distribution
g(z1 · · · zi−1) for i = 1, . . . , n.

We extend the definition of NLL to the setting
where inputs are vectors of token probabilities by:

NLLg(π) := −
n∑

i=1

log pg(πi | π1 · · ·πi−1)

= −
n∑

i=1

V∑
j=1

(πi)jg(e(π1) · · · e(πi−1))j ,

with log pg(πi | π1 · · ·πi−1) being the cross-
entropy between the next token distribution



πi and the predicted next token distribution
g(e(π1) · · · e(πi−1)). This extension coincides
with the NLL for a token sequence x when each πi
is a delta distribution for the token xi.

Similarity constraint with BERTScore. Prior
work on word-level attacks often used context-
free embeddings such as word2vec (Mikolov et al.,
2013) and GloVe (Pennington et al., 2014) or syn-
onym substitution to constrain semantic similarity
between the original and perturbed text (Alzantot
et al., 2018; Ren et al., 2019; Jin et al., 2020). These
constraints tend to produce out-of-context and un-
natural changes that alter the semantic meaning of
the perturbed text (Garg and Ramakrishnan, 2020).
Instead, we propose to use BERTScore (Zhang
et al., 2019), a similarity score for evaluating text
generation that captures the semantic similarity be-
tween pairwise tokens in contextualized embed-
dings of a transformer model.

Let x = x1 · · ·xn and z = z1 · · · zm be two
token sequences and let g be a language model
that produces contextualized embeddings φ(x) =
(u1, . . . ,un) and φ(z) = (v1, . . . ,vm). The (re-
call) BERTScore between x and z is defined as:

RBERT(x, z) =
n∑

i=1

wi max
j=1,...,m

u>i vj , (8)

where wi := idf(xi)/
∑n

i=1 idf(xi) is the normal-
ized inverse document frequency of the token xi
computed across a corpus of data. We can readily
substitute z with a sequence of probability vectors
π = π1 · · ·πm as described in Equation 5 and use
ρg(x,π) = 1 − RBERT(x,π) as a differentiable
soft constraint.

Objective function. We combine all the compo-
nents in the previous sections into a final objec-
tive for gradient-based optimization. Our objective
function uses the margin loss (cf. Equation 1) as
the adversarial loss, and integrates the fluency con-
straint with a causal language model g and the
BERTScore similarity constraint using contextual-
ized embeddings of g:

L(Θ) =Eπ̃∼P̃Θ
`(e(π̃), y;h)

+ λlm NLLg(π̃) + λsim ρg(x, π̃), (9)

where λlm, λsim > 0 are hyperparameters that con-
trol the strength of the soft constraints. We min-
imize L(Θ) stochastically using Adam (Kingma
and Ba, 2014) by sampling a batch of inputs from
P̃Θ at every iteration.

3.3 Sampling Adversarial Texts

Once Θ has been optimized, we can sample from
the adversarial distribution PΘ to construct adver-
sarial examples. Since the loss function L(Θ) that
we optimize is an approximation of the objective
in Equation 4, it is possible that some samples are
not adversarial even when L(Θ) is successfully
minimized. Hence, in practice, we draw multiple
samples z ∼ PΘ and stop sampling either when the
model misclassifies the sample or when we reach a
maximum number of samples.

Note that this stage could technically allow us to
add hard constraints to the examples we generate,
e.g., manually filter out adversarial examples that
do not seem natural. In our case, we do not add
any extra hard constraint and only verify that the
generated example is misclassified by the model.

Transfer to other models. Since drawing from
the distribution PΘ could potentially generate an
infinite stream of adversarial examples, we can
leverage these generated samples to query a target
model that is different from h. This constitutes a
black-box transfer attack from the source model h.
Moreover, our transfer attack does not require the
target model to output continuous-valued scores,
which most existing black-box attacks against trans-
formers rely on (Jin et al., 2020; Garg and Ramakr-
ishnan, 2020; Li et al., 2020a,b). We demonstrate
in subsection 4.2 that this transfer attack enabled
by the adversarial distribution PΘ is very effective
at attacking a variety of target models.

4 Experiments

In this section, we empirically validate our attack
framework on a benchmark suite of natural lan-
guage tasks. Code to reproduce our results is open
sourced on GitHub1.

4.1 Setup

Tasks. We evaluate on several benchmark text
classification datasets, including DBPedia (Zhang
et al., 2015) and AG News (Zhang et al., 2015) for
article/news categorization, Yelp Reviews (Zhang
et al., 2015) and IMDB (Maas et al., 2011) for bi-
nary sentiment classification, and MNLI (Williams
et al., 2017) for natural language inference.
The MNLI dataset contains two evaluation sets:

1https://github.com/facebookresearch/
text-adversarial-attack

https://github.com/facebookresearch/text-adversarial-attack
https://github.com/facebookresearch/text-adversarial-attack


GPT-2 XLM (en-de) BERT
Task Clean Acc. Adv. Acc. Cosine Sim. Clean Acc. Adv. Acc. Cosine Sim. Clean Acc. Adv. Acc. Cosine Sim.

DBPedia 99.2 5.2 0.91 99.1 7.6 0.80 99.2 7.1 0.80
AG News 94.8 6.6 0.90 94.4 5.4 0.87 95.1 3.5 0.80
Yelp 97.8 2.9 0.94 96.3 3.4 0.93 97.3 4.4 0.94
IMDB 93.8 7.6 0.98 87.6 0.1 0.97 93.0 1.8 0.96
MNLI (m.) 81.7 2.8/11.0 0.82/0.88 76.9 5.4/13.1 0.84/0.86 84.6 5.5/11.3 0.82/0.86
MNLI (mm.) 82.5 4.2/13.5 0.85/0.88 76.3 4.1/10.6 0.85/0.86 84.5 4.7/11.8 0.80/0.87

Table 1: Result of white-box attack against three transformer models: GPT-2, XLM (en-de), and BERT. For MNLI,
the pair of numbers correspond to result for attacking the hypothesis/premise portions of the text. Our attack is
able to reduce the target model’s accuracy to below 10% in almost all cases, while maintaining a high level of
semantic similarity (cosine similarity of higher than 0.8 using USE embeddings).

Task Clean Acc. Attack Alg. Adv. Acc. # Queries Cosine Sim.

AG News 95.1

GBDA (ours) 8.8 107 0.69
BERT-Attack 10.6 213 0.63

BAE 13.0 419 0.75
TextFooler 12.6 357 0.57

Yelp 97.3

GBDA (ours) 2.6 43 0.83
BERT-Attack 5.1 273 0.77

BAE 12.0 434 0.90
TextFooler 6.6 743 0.74

IMDB 93.0

GBDA (ours) 8.5 116 0.92
BERT-Attack 11.4 454 0.86

BAE 24.0 592 0.95
TextFooler 13.6 1134 0.86

MNLI (m.) 84.6

GBDA (ours) 2.3/10.8 37/133 0.75/0.79
BERT-Attack 7.9/11.9 19/44 0.55/0.68

BAE 25.4/36.2 68/120 0.88/0.88
TextFooler 9.6/25.3 78/152 0.57/0.65

MNLI (mm.) 84.5

GBDA (ours) 1.8/13.4 30/159 0.76/0.80
BERT-Attack 7/13.7 24/43 0.53/0.69

BAE 19.2/30.3 75/110 0.88/0.88
TextFooler 8.3/22.9 86/162 0.58/0.65

Table 2: Evaluation of black-box model transfer attack
from GPT-2 to finetuned BERT classifiers. Unlike the
baseline methods, our transfer attack does not require
continuous-valued model outputs. See text for details.

matched (m.) and mismatched (mm.), correspond-
ing to whether the test domain is matched or mis-
matched with the training distribution.

Models. We attack three transformer architec-
tures with our gradient-based white-box attack:
GPT-2 (Radford et al., 2019), XLM (Lample and
Conneau, 2019) (using the en-de cross-lingual
model), and BERT (Devlin et al., 2019). For BERT,
we use finetuned models from TextAttack (Mor-
ris et al., 2020b) for all tasks except for DBPedia,
where finetuned models are unavailable. For BERT
on DBPedia and GPT-2/XLM on all tasks, we fine-
tune a pretrained model to serve as the target model.

The soft constraints described in subsection 3.2
utilizes a CLM g with the same tokenizer as the
target model. For GPT-2 we use the pre-trained
GPT-2 model without finetuning as g, and for XLM
we use the checkpoint obtained after finetuning
using the CLM objective. For masked language

models such as BERT (Devlin et al., 2019), we
train a causal language model g on WikiText-103
using the same tokenizer as the target model.

Baselines. We compare against several recent at-
tacks on text transformers: TextFooler (Jin et al.,
2020), BAE (Garg and Ramakrishnan, 2020), and
BERT-Attack (Li et al., 2020b). All baseline at-
tacks are evaluated on finetuned BERT models
from the TextAttack library (Morris et al., 2020b).
See subsection 4.2 for details of attack settings.

Hyperparameters. Our adversarial distribution
parameter Θ is optimized using Adam (Kingma
and Ba, 2014) with a learning rate of 0.3 and a
batch size of 10 for 100 iterations. The distribution
parameters Θ are initialized to zero except Θi,j =
C where xi = j is the i-th token of the clean
input. In practice we take C ∈ 12, 15. We use
λperp = 1 and cross-validate λsim ∈ [20, 200] and
κ ∈ {3, 5, 10} using held-out data.

4.2 Quantitative Evaluation

White-box attacks. We first evaluate the attack
performance under the white-box setting. Table 1
shows the result of our attacks against GPT-2, XLM
(en-de), and BERT on different benchmark datasets.
Following prior work (Jin et al., 2020), for each
task, we randomly select 1000 inputs from the
task’s test set as attack targets. After optimizing Θ,
we draw up to 100 samples z ∼ PΘ until the model
misclassifies z. The model’s accuracy after attack
(under the column “Adv. Acc.”) is the accuracy
evaluated on the last of the drawn samples.

Overall, our attack is able to successfully gener-
ate adversarial examples against all three models
across the five benchmark datasets. The test accu-
racy can be reduced to below 10% for almost all
models and tasks. Following prior work, we also
evaluate the semantic similarity between the adver-
sarial example and the original input using the co-



Target Model Task Clean Acc. Adv. Acc. # Queries Cosine Sim.

ALBERT
AG News 94.7 7.5 84 0.68

Yelp 97.5 5.9 76 0.79
IMDB 93.8 13.1 157 0.87

RoBERTA

AG News 94.7 10.7 130 0.67
IMDB 95.2 17.4 205 0.87

MNLI (m.) 88.1 4.1/15.1 63/179 0.69/0.76
MNLI (mm.) 87.8 3.2/15.9 51/189 0.69/0.78

XLNet
IMDB 93.8 12.1 149 0.87

MNLI (m.) 87.2 3.9/13.7 56/162 0.70/0.77
MNLI (mm.) 86.8 1.7/14.4 32/171 0.70/0.78

Table 3: Result of black-box model transfer attack from GPT-2 to
other transformer models. Our attack is achieved by sampling from
the same adversarial distribution PΘ and is able to generalize to the
three target transformer models considered in this study.
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Figure 2: Effect of the parameter λsim on
transfer attack success rate. Lower λsim pro-
duces more aggressive changes, but also gen-
eralizes better to different target models.

Task Architecture Clean Acc. Adv. Acc. # Queries Cosine Sim.

IMDB→ Yelp

GPT-2 97.8 22.1 280 0.83
XLM (en-de) 96.3 7.0 94 0.81

BERT 97.3 19.3 235 0.79
GPT-2→ BERT 97.3 26.1 319 0.83

Yelp→ IMDB

GPT-2 93.8 3.2 52 0.89
XLM (en-de) 87.6 14.4 163 0.88

BERT 93.0 15.4 192 0.88
GPT-2→ BERT 93.0 11.1 138 0.89

Table 4: Evaluation of black-box
dataset transfer attack on Yelp/IMDB.
Even without access to the target
model’s data distribution, it is still
possible to execute the attack by us-
ing GBDA on a model trained for the
same task but a different training dis-
tribution. See text for details.

sine similarity of Universal Sentence Encoders (Cer
et al., 2018) (USE). Our attack is able to consis-
tently maintain a high cosine similarity to the origi-
nal input (higher than 0.8) in most cases.

Model transfer attacks. We also evaluate our at-
tack against prior work under the black-box setting
by transferring across models. More specifically,
for each model and task, we randomly select 1000
test samples and optimize the adversarial distribu-
tion PΘ on GPT-2. After optimizing Θ, we draw
up to 1000 samples z ∼ PΘ and evaluate them
on the target BERT model from the TextAttack
library (Morris et al., 2020b) until the model mis-
classifies z. This attack setting is strictly more
restrictive than prior work because our query pro-
cedure only requires the target model to output
a discrete label in order to decide when to stop
sampling from PΘ, whereas prior work relied on a
continuous-valued output score such as class prob-
abilities.

Table 2 shows the performance of our attack
when transferred to finetuned BERT text classifiers.
In all settings, GBDA is able to reduce the target
model’s accuracy to below that of BERT-Attack
and BAE within similar or fewer number of queries.
Moreover, the cosine similarity between the origi-
nal input and the adversarial example is higher than

that of BERT-Attack.
We further evaluate our model transfer attack

against three other finetuned transformer mod-
els from the TextAttack library: ALBERT (Lan
et al., 2019), RoBERTa (Liu et al., 2019), and XL-
Net (Yang et al., 2019). For this experiment, we
use the same Θ optimized on GPT-2 for each of
the target models. Table 3 reports the performance
of our attack after randomly sampling up to 1000
times from PΘ. The attack performance is compa-
rable to that of the transfer attack against BERT in
Table 2, which means our adversarial distribution
PΘ is able to capture the common failure modes of
a wide variety of transformer models.

Dataset transfer attacks. The model transfer at-
tack relies on the assumption that the adversary has
access to the target model’s training data. We relax
this assumption in the form of a dataset transfer
attack where only the target model’s task is known.
Concretely, we attack sentiment classifiers trained
on Yelp/IMDB by using a model trained on one
dataset for optimizing Θ and drawing up to 1000
samples from PΘ to attack the target model trained
on the other dataset.

Table 4 shows the result of the dataset transfer at-
tack for different target model architectures. In all
except for the case of GPT-2→BERT, the model



Attack Prediction Text

Original Entailment (83%) He found himself thinking in circles of worry and pulled himself back to his problem.
He got lost in loops of worry, but snapped himself back to his problem.

GBDA Neutral (95%) He found himself thinking in circles of worry and pulled himself back to his problem.
He got lost in loops of hell, but snapped himself back to his problem.

Original Contradiction (78%) Steps are initiated to allow program board membership to reflect the clienteligible community and include
representatives from the funding community, corporations and other partners.
There isn’t a fair representation of board members on the program.

GBDA Neutral (98%) Steps are initiated to allow program board membership to reflect the clienteligible community and include
representatives from the funding community, corporations and other partners.
There isn also a fair representation of board members on the program..

Original Contradiction (98%) Pesticide concentrations should not exceed USEPA’s Ambient Water Quality chronic criteria values where available.
There is no assigned value for maximum pesticide concentration in water.

GBDA Entailment (86%) Pesticide concentrations should not exceed USEPA’s Ambient Water Quality chronic criteria values where available.
There is varying assigned value for maximum pesticide concentration in water.

Table 5: Examples of successful adversarial texts on the MNLI dataset.

Attack Prediction Text

Original World (99%) Turkey a step closer to Brussels The European Commission is set to give the green light later today
to accession talks with Turkey. EU leaders will take a final decision in December.

GBDA w/ fluency Business (100%) Turkey a step closer to Brussels The eurozone Union is set to give the green light later today to
accession talks with Barcelona. EU leaders will take a final decision in December.

GBDA w/o fluency Business (77%) Turkey a step closer to Uber Thecom Commission is set to give the green light later today to
accessrage negotiations with Turkey. EU leaders will take a final decision in December.

Table 6: Examples of adversarial text on AG News generated with and without the fluency constraint. Without the
fluency constraint, the constructed adversarial text tends to contain more nonsensical token combinations.

used when optimizing PΘ has the same architec-
ture as the target model. In the last setting, we
simultaneously transfer between the model and the
dataset. It is evident that the transfer attack remains
successful despite not having access to the target
model’s training data. This result opens a practi-
cal avenue of attack against real world systems as
the attacker requires very limited knowledge of the
target model in order to succeed.

4.3 Analysis

Sample adversarial texts. Table 5 shows exam-
ples of our adversarial attack on text. Our method
introduces minimal changes to the text, preserving
most of the original sentence’s meaning. Despite
not explicitly constraining replaced words to have
the same Part-Of-Speech tag, we observe that our
soft penalties make the adversarial examples obey
this constraint. For instance, in the first and third ex-
amples of Table 5, "worry" is replaced with "hell"
and "no" with "varying".

Effect of λsim. Figure 2 shows the impact of the
similarity constraint on transfer attack adversar-
ial accuracy for GPT-2 on AG News. Each color
corresponds to a different target model, whereas
the color shade (from light to dark) indicates the
value of the constraint hyperparameter: λsim =
50, 20, 10. A higher value of λsim reduces the ag-
gressiveness of the perturbation, but also increases

the number of queries required to achieve a given
target adversarial accuracy.

Impact of the fluency constraint. Table 6
shows adversarial examples for GPT-2 on AG
News, generated with and without the fluency con-
straint. We fix all hyperparameters except for the
fluency regularization constant λlm, and sample
successful adversarial texts from PΘ after Θ has
been optimized. It is evident that the fluency con-
straint promotes token combinations to form valid
words and ensure grammatical correctness of the
adversarial text. Without the fluency constraint, the
adversarial text tends to contain nonsensical words.

Tokenization artifacts. Our attack operates en-
tirely on tokenized inputs. However, the input to
the classification system is often in raw text form,
which is then tokenized before being fed to the
model. Thus it is possible that we generate an ad-
versarial example that, when converted to raw text,
is not re-tokenized to the same set of tokens.

Consider this example: our adversarial exam-
ple contains the tokens "jui-" and "cy", which de-
codes into "juicy", and is then re-encoded to "juic-
" and "y". In practice, we observe that these re-
tokenization artifacts are rare: the "token error rate"
is around 2%. Furthermore, they do not impact
adversarial accuracy by much: the re-tokenized
example is in fact still adversarial. One potential



Figure 3: Web interface for the human evaluation experiment using Amazon Mechanical Turk.

mitigation strategy is to re-sample from PΘ until
the sampled text is stable under re-tokenization.
Note that all our adversarial accuracy results are
computed after re-tokenization.

Runtime. Our method relies on white-box opti-
mization and thus necessitates forward and back-
ward passes through the attacked model, the lan-
guage model and the similarity model, which in-
creases the per-query time compared to black-box
attacks that only compute forward passes. How-
ever, this is compensated by a much more efficient
optimization which brings the total runtime to 20s
per generated example, on par with black-box at-
tacks such as BERT-Attack (Li et al., 2020b).

Human evaluation. We further conduct a human
evaluation study of our attacks to examine to what
extent are adversarial texts generated by GBDA
truly imperceptible. Our interface is shown in Fig-
ure 3: We show annotators on Amazon Mechanical
Turk two snippets of text—one is not modified,
and the other one is adversarially corrupted—and
the annotator has to select which one is corrupted
in less than 10 seconds. The clean text is sam-
pled from Yelp and the adversarial text is generated
against BERT using either our method or BAE, our
strongest baseline. To ensure high quality of the
annotations, we select annotators with more than
1000 hits approved and with an approval rate higher
than 98%. The annotation itself is preceded by an
onboarding with three simple examples that have
to be correctly classified in order for the annotator
to qualify for the task.

Averaging across more than 3000 samples, anno-
tators are able to detect BAE examples in 78.04%

of the cases, while detecting our examples in
76.06% of the cases. This result shows that al-
though both GBDA and BAE produce detectable
changes, our method is slightly less perceptible
than BAE but the model accuracy after attack is
significantly lower for our attack: 4.7% for GBDA
compared to 12.0% for BAE (cf. Tables 1 and 2).

5 Conclusion and Future Work

We presented GBDA, a framework for gradient-
based white-box attack against text transformers.
Our approach overcomes many ad-hoc constraints
and limitations from the existing text attack litera-
ture by leveraging a novel adversarial distribution
formulation, allowing end-to-end optimization of
the adversarial loss and fluency constraints with
gradient descent. This makes our method generic
and potentially applicable to any model for token
sequence prediction.

Limitations. One clear limitation of GBDA is
its restriction to only token replacements. Indeed,
our adversarial distribution formulation using the
Gumbel-softmax does not trivially extend to to-
ken insertions and deletions. This limitation may
adversely affect the naturalness of the generated ad-
versarial examples. We hope to extend our frame-
work to incorporate a broader set of token-level
changes in the future.

In addition, the adversarial distribution PΘ is
highly over-parameterized. Despite most adversar-
ial examples requiring only a few token changes,
the distribution parameter Θ is of size n×V , which
is especially excessive for longer sentences. Future
work may be able to reduce the number of parame-
ters without affecting attack performance.
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