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ABSTRACT
In modern production platforms, large scale online learning models
are applied to data of very high dimension. To save computational
resource, it is important to have an efficient algorithm to select the
most significant features from an enormous feature pool. In this
paper, we propose a novel neural-network-suitable feature selection
algorithm, which selects important features from the input layer
during training. Instead of directly regularizing the training loss, we
inject group-sparsity regularization into the (stochastic) training
algorithm. In particular, we introduce a group sparsity norm into
the proximally regularized stochastical gradient descent algorithm.
To fully evaluate the practical performance, we apply our method
to Facebook News Feed dataset, and achieve favorable performance
compared with state-of-the-arts using traditional regularizers.

CCS CONCEPTS
• Information systems → Content analysis and feature se-
lection.
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1 INTRODUCTION
In recent years, social networks have become important information
resources for users [2, 9]. Everyday, billions of updates, called social
feeds, appear in social networks. To deliver the most relevant feeds
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Figure 1: Feature selection of a 2-layer neural network using
group sparsity. Out of four input features, two have nonzero
weights (black edges) on neural links to the next layer.

to users, one needs an online feed ranking model [1]. To build an
efficient industrial feed ranking system, one major challenge is the
extremely high feature dimension. Social feeds come from many
different sources and can be of arbitrary formats, e.g., texts, images,
and videos. To fully exploit these feeds, tens of thousands of features
are extracted. The features are also very sparse, i.e., contain many
zeros. An effective and efficient feature selection method is needed
to develop a ranking system with desired scalability.

For industrial feed ranking systems, a previous popular feature
selection method is the gradient boosted decision tree (GBDT)
method [4, 14]. In GBDT, the features are transformed depending
on the types of features (categorical or continuous), then trained
with regularization on weight coefficients. The most important fea-
tures are selected for downstream prediction models, e.g., logistic
regression. GBDT was well adopted in multiple industrial ranking
systems due to its flexibility and scalability. However, while fea-
tures selected by GBDT are effective for classic prediction models,
they are not the most important features for a more complex neural
network model. One needs a novel feature selection method that is
more suitable for neural network based prediction models which
have become dominant.

To better select features for a neural network ranking model, we
propose a neural feature selection method, which directly selects
important features through the training of a neural network. Our
method enforces group sparsity on weights of the neural network.
In particular, we consider neuron link weights associated with the
same input feature as a group. During training, a sparse set of groups
are selected, determining the features to use. Fig. 1 illustrates the
idea on a two-layer neural network. A natural idea is to directly
add group sparsity regularizer to the loss function [6, 11]. However,
optimizing a group-sparsity regularized loss function cannot force
the coefficients of insignificant features to be exactly zero. One
needs a postprocessing procedure to aggregate weights for each
feature and to select the important features accordingly [10, 11].
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This postprocessing step becomes a technical barrier between the
neural network for feature selection and the neural network for
final prediction.

Instead of regularizing the loss, we inject the group sparsity
penalty into the optimization algorithm. We use the proximally
regularized online training algorithm, which updates the weights
of a model by minimizing an auxiliary function measuring the simi-
larity between the weight vector and the loss gradients. Meanwhile,
the auxiliary function has an additional quadratic regularizer to
improve stability. Proximally regularized optimization algorithms,
e.g., FOBOS [5], Regularized Dual Averaging (RDA) [13] and Follow
The Regularized Leader (FTRL) [7] have demonstrated their power
in training online models. In particular, FTRL-Proximal has been
applied to Ads-click prediction at Google [8]. Nonetheless, all these
methods assume a non-neural-network model and use L1 penalty
to select features. Thus, they cannot solve our problem.

In this paper, we propose a new algorithm for the neural feature
selection models, called Group Follow The Regularized Leader (G-
FTRL). Our method adds a sparse group lasso regularizer directly
to the FTRL optimizer. By directly regularizing weight-updates, we
are able to set the coefficients of insignificant features to exactly
zero (Eq. 3). With a small number of significant features, we can
train light-weight prediction models and apply them to the ranking
system. For empirical evaluation, we compare our method with
an existing GBDT feature selection method in large scale setting.
Our method successfully improves feed ranking performance. In
summary, we make the following contributions:

• We use group sparsity to select features by directly training
a neural network. The method is compatible with a broad
class of neural network based prediction models and can
select the most important features for the networks.

• We add the group lasso regularizer to the optimizer instead
of the loss. This ensures weights of insignificant features
become exactly zeros, which avoids a postprocessing step to
select features.

• Our method achieves better performance without using very
deep neural networks, which significantly improves training
efficiency, especially for industrial settings.

2 METHOD
We first briefly introduce the News Feed ranking system and es-
tablish the mathematical notations. Next, we discuss the FTRL
algorithm and our proposed group lasso optimizer.
News feed ranking system. The ranking process of news feed
posts can be divided into four stages: inventory, signals, prediction,
and relevancy scores. The inventory collects the stories posted by
users. Meanwhiles, the system collects signals that can be used for
the ranking, e.g., the average time spent on a post and who posted
the story. Each post is described by a high dimensional feature
vector based on the signals. We train a model using the feature
vectors to predict the likelihood of different actions a user may take
on a post, e.g., commenting, liking or sharing. As a final step, we
translate the likelihood of different actions into relevancy scores
for feed ranking. The overall process can be found in Fig. 2.

As we havementioned, the feature vectors tend to have very high
dimension and be very sparse. Conventional practice further divides

Algorithm 1 G-FTRL updating algorithm
Parameters: λ, α , β , γд
1: Let zj = 0, and nj = 0, j ∈ {1, . . . , D }

2: for t = 1 to T do
3: calculate the gradient ht = ∆ℓt (wt )
4: for each group д ∈ {1, . . . , G } do
5: zд = 0
6: for each coordinate i ∈ {1, . . . , dд } in group д do
7: nt,i = nt−1,i + (ht−1,i )2

8: σt,i = 1
α (

√nt,i −
√nt−1,i )

9: zt,i = zt−1,i + ht,i − σt,i ∗wt,i
10: zд = zд + (zt,i )2
11: update wt+1,i based on Eq. 3

ηt =
( β+√ni

α + λγд
)−1

12: end for
13: end for
14: end for

the prediction step into two sub-steps: 1) select significant features
(signals) from the feature pool using a feature selection algorithm;
2) feed the selected features to the feed ranking prediction models
(Fig. 1). In this paper, we focus on the feature selection step.

Figure 2: The ranking system at Facebook [3].

Training a neural network feature selection model. We train
a neural network model to select significant features. The model is
either a multi-label classifier or a regression model depending on
the nature of the events. For a large scale time-varying real-world
system, we need an online training setting [8] and optimize the ex-
pected empirical risk over time: LT (wT ) := 1

T
∑T
t=1(ℓt (wT , xt ) +

Ωλ(wT )) where T is the current time, xt is the input feature at a
previous time t ,wT is the weight vector and Ωλ(·) is a regulariza-
tion term (L1 and/or group sparsity). However, simplying adding
regularization to the loss function could not force the coefficients
(or weights) of insignificant features to exactly zero [7].

The (Proximally) Regularized Leader algorithm, or FTRL-Proximal
is proposed to train the online model to produce sparse models.
Denote by ht the gradient of the loss at time t , and h1:t =

∑t
s=1 hs

the aggregation of gradients till t . FTRL updates the weights as:

wt+1 = argmin
w

(
h1:tw +

t∑
s=1

1
2ηs

∥w −ws ∥
2
2 + λ∥w1∥1), (1)

where ηs is the learning rate at time s and ∥ · ∥p denotes Lp norm.
This method has been used in Google’s Ad click prediction [8]
to select significant features. However, the L1 regularizer selects
features only when each feature is associated with a single weight.
For neural network models, each input feature is associated with
multiple weights, corresponding to multiple links to the next layer.
We need group-wise sparsity for feature selection.
G-FTRL: group FTRL algorithm.We proposed a new algorithm
called Group Lasso Follow The Regularized Leader (G-FTRL) by



introducing sparse group lasso regularizer to the FTRL weight
updating auxiliary function (Eq. (1)). Previous group-sparsity-based
feature selection methods for online learning [10, 12, 15] directly
enforce group sparsity on the loss. These methods tend to generate
nonzero weights for all features. Instead, our method adds the
group-sparsity regularizer to the optimizer and tends to set the
weights of insignificant features to exactly zero. In particular, by
adding the group sparsity norm into the auxiliary function in Eq. (1),
with some derivation, we have

wt+1 = argmin
w

(
h1:t −

t∑
s=1

σsws
)
w +

1
2ηt

∥w∥22+

λ
G∑
д=1

(

√
dд ∥wд ∥2) + λγд ∥wд ∥1 + const

(2)

Here we assumeG groups of weights. Weights of groupд is denoted
by wд . dд is the size of group д. λ is a positive tuning parameter
that encourages sparsity. γд balances between the group sparsity
and entry-wise sparsity. ηt is the learning rate, set to γд/

√
t . σs is

the learning rate schedule satisfying σ1:t = 1/ηt .
Let zt = h1:t −

∑t
s=1 σsws . Denote by zдt its coordinates within

group д. The coordinates of wt+1 in group д can be updated in
closed form as follows:

wд
t+1 =


0, if ∥ zдt ∥2≤ λ

√
dд

− 1
ηt

[
1 − λ

√
dд

∥zдt ∥2

]
zдt , otherwise.

(3)

We adopt the traditional per-coordinate learning rate schedule for
online algorithm [7]. We update the weights at the group level. That
is, we update a group of features at the same time with the same
criteria. Notice that zt can be updated incrementally to save time
and space, namely, zt = zt−1 + ht + ( 1

ηt − 1
ηt−1 )wt . The algorithm

is provided in Algorithm 1.

3 EXPERIMENTS
In this section, we empirically evaluate our new feature selection
method. All the experiments are conducted on a Facebook News
Feed dataset which contains hundreds of millions of feeds with
thousands of features extracted for each feed.

We compare our method with the FTRL algorithm, and adding
group regularization to loss (GL) method. We conduct a series of
experiments to prove the stability of our method in feature selection.
The model that we used for the comparisons is the “like” model,
which predicts p(like |w, x), the probability of a feed being liked
by the users. Then, we apply our method to all real feed ranking
models to compare against the currently used GBDT method. We
use 4-layer networks in the feature selection network. We use AUC-
ROC and Normalized Cross-Entropy (NE) as quality metrics. In
particular, for a given training data set of N examples with labels
yi ∈ {−1,+1}, i ∈ {1, . . . ,N }, and estimated probability of an event
pi , the average default mode probability is p. NE is calculated as:

− 1
N

∑N
i=1(

1+yi
2 log(pi ) + 1−yi

2 log(1 − pi ))

−p log (p) + (1 − p)loд(1 − p)
.

G-FTRL and FTRL. To compare the performance of FTRL opti-
mizer and our G-FTRL in producing sparsity, we train two 4-layer

fully connected neural network models, and calculate neuron rate
(ratio of non-zero neurons among all neurons in the feature se-
lection layer) and feature rate (ratio of non-zero features among
the entire feature set) respectively over the input layer. We use
fully connected networks in this work, so each feature in the input
layer is connected to all the neurons in the hidden layer followed.
A feature is counted as non-zero feature when at least one of the
connections to the next layer is not zero.

As shown in Fig. 3, the neuron rate of FTRL reduces with higher
regularization. However, the feature rate does not reduce. It is
because FTRL treats each coefficient individually, and we consider a
feature as non-zero onlywhen all the coefficients connected are zero.
For G-FTRL the feature rate and neuron rate reduce simultaneously.

(a) (b)

Figure 3: The neuron rate (blue bars) and feature rate (yellow
bars) of FTRL (Fig. (a)) and G-FTRL (Fig. (b)).

G-FTRL and Group Lasso on Loss. As in Section 2, G-FTRL in-
troduces sparsity by adding group lasso regularizer to the optimizer.
One of the straightforward method to enforce sparsity is to add the
group lasso regularizer to the loss function (GL), which means the
loss function becomes: ℓ′(w, x) = l(w, x) + λ

∑G
д=1(

√
dд ∥wд ∥2).

We compare the two methods by checking the distributions of
the feature importance (Fig. 4). We use L2 norm on all the weights
of a feature to represent its importance. We find that the feature
rate of GL is 100%, i.e., all candidate features have non-zero weights.
While the feature rate of G-FTRL is only 5.12%. This observation
is consistent with the theoretical fundamentals of both methods,
i.e., GL enforces the weights of unimportant features to arbitrarily
small numbers, while G-FTRL directly enforces them to be zero.

(a) (b)

Figure 4: The comparison of GL (Fig. (a)) and G-FTRL (Fig.
(b)) in fearture importance distributions. X-axis is the fea-
ture weights grouped into 100 bins, and y-axis is the number
of features in the corresponding bin.

We also verify the quality of the selected features by selecting a
range of top features using both methods and feeding them to the
ranking models respectively. Fig. 5 shows the two methods have
very close performance in term of AUC and NE.



(a) (b)

Figure 5: The AUC and NE across different regularization
weights for GL and G-FTRL. The x-axis is the number of fea-
tures used. The y-axis is AUC in (a), and NE in (b).

We further compare the feature sets selected by both methods
by calculating the number of features overlapping with the GBDT
baseline (Fig. 6). We can see that the features selected by both
methods have very close overlapping rates.

Figure 6: The number of overlapping features of GL (blue
bars) and G-FTRL (yellow bars) with the GBDT baseline.

Features Selected andPerformance acrossDifferentRegular-
ization Weights. To test the stability of G-FTRL, we train a series
of feature selection models under different regularization weights,
and select the top 1500 features from each model. We calculate
the number of overlapping features between G-FTRL and GBDT
baseline (Fig. 7 (a)). We find that the number of common features is
very stable with the increase of the regularization weight.

We further explore the relationship between the regularization
weights and the performance of feature selection models (Fig 7
(b)), where we can find that our method generally outperforms the
GBDT baselines with appropriate regularization weights.

(a) (b)

Figure 7: (a) The number of non-zero features under dif-
ferent regularization weights (blue bars), and the number
of overlapping features between G-FTRL and GBDT (yellow
bars). (b) The AUC across different regularization weights.

Evaluation on Real Models for Social Network. The perfor-
mance of G-FTRL is evaluated on Facebook feed ranking system.

The evaluation metrics are AUC loss reduction (AUC LR = (a1 −
a0)/(1 − a0), where a1 is the AUC for G-FTRL and a0 is for GBDT),
and the NE Reduction (NER = (n1 − n0)/n0, where n1 is NE for
G-FTRL and n0 is for GBDT). Negative NER indicates better per-
formance. We use the results from “like” model as an illustration.
The AUC LR of “like” model is 0.20%, and the NER of “like” model
is -0.07%. The average AUC LR and NER of all the models is 0.68%
and -0.23%, which indicate improved performance for both metrics.

4 CONCLUSIONS AND DISCUSSIONS
We designed a new optimizer algorithm called G-FTRL algorithm
that applies group lasso regularizers directly to the optimizer to
cut the insignificant features. Compared to adding the group lasso
regularizer to the loss function and the original FTRL algorithm,
G-FTRL sets the weights of the insignificant features to exactly zero
instead of small numbers. We applied G-FTRL to feature selection
models in a real feed ranking system and find that our algorithm
successfully selects the significant features from candidate feature
pools. Our method outperforms the existing GBDT feature selection
method and can be integrated easily into the neural ranking system.
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