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Forecasting COVID-19 poses unique challenges due to the novelty of the
disease, its unknown characteristics, and substantial but varying interventions
to reduce its spread. To improve the quality and robustness of forecasts, we
propose a new method which aims to disentangle region-specific factors –
such as demographics, enacted policies, and mobility – from disease-inherent
factors that influence its spread. For this purpose, we combine recurrent neural
networks with a vector autoregressive model and train the joint model with
a specific regularization scheme that increases the coupling between regions.
This approach is akin to using Granger causality as a relational inductive bias
and allows us to train high-resolution models by borrowing statistical strength
across regions. In our experiments, we observe that our method achieves
strong performance in predicting the spread of COVID-19 when compared to
state-of-the-art forecasts.

Introduction

Modeling the spread of COVID-19 at a high spatial and temporal resolution
(i.e., confirmed cases at county or admin-3 level) has become an impor-
tant task in the public health response to the disease. For instance, accurate
county-level forecasts are not only central to monitor the state of the pan-
demic but are also important to efficiently allocate scarce resources such
as ventilators, personal protective equipment, and ICU beds; and to make
progress towards efficient early detection systems.

Figure 1: Ranking of county-level forecasts
by average MAE over various forecast
horizons. The proposed neural relational
autoregressive model (β-AR) shows strong
performance over all horizons when
compared to state-of-the-art forecasts. Mean
rank over all horizons in parentheses.

Figure 2: Variability of growth in confirmed
cases per region over time. Each line
represents one county in the state. For yt
dentoing the number of cases at time t,
growth rate is computed as (yt+1 − yt)/yt.

However, forecasting COVID-19 poses unique challenges – in particular
when considering confirmed cases at high spatial resolution. Although
there has been considerable progress towards understanding the spread
of the disease, there still exists only limited data and knowledge about
important factors that influence its spread. This is only exacerbated by
the naturally larger noise-levels in county-level data as compared to more
highly aggregated state-level data. Due to the global nature of COVID-19,
the available data is also distributed among regions with very different
properties, many of which may affect its spread. This includes, for instance,
demographics and population densities, enacted policies, adherence to those
policies, mobility patterns, and geographic features such as temperature.
In addition, testing and reporting can vary considerably across regions and
time. All these factors lead to considerable variablity (see also Figure 2)
and uncertainty in the data and makes reliable forecasting at high spatial
resolution difficult.
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To alleviate these issues, we propose a new method for predicting the spread
of COVID-19 by combining recurrent neural networks with a vector autore-
gressive model and a specific regularization relational scheme. Our approach
is motivated by two main aspects: First, we seek to develop an end-to-end
differentiable model, as this allows us to make efficient use of the limited
available data while also enabling us to estimate parameters of powerful
models that can capture the large variability of cases across locations and
time. However, while such flexible models are needed to account for possible
influencing factors there is little data to estimate them reliably and without
overfitting. For this reason, we seek, second, to disentangle region- and
time-specific factors from disease-inherent factors that influence its spread.
This allows us to borrow statistical strength between regions by coupling
their predictions – based on the assumption that once a model has correctly
accounted for region-specific dynamics, information about the spread of the
disease in region j can also help to improve predictions for a related region
i. This approach is akin to using Granger causality as an inductive bias to
improve forecast quality and robustness.

Compared to existing state-of-the-art forecasting models, our method takes
a highly data-driven approach with fewer modeling assumptions as, for in-
stance, in very detailed compartmental models. As such, we see our approach
as complementary to existing models which provides strong forecasting
performance at the cost of reduced interpretability.

Neural Relational Autoregression

We consider the forecasting of m time series that are different realizations
of the same underlying disease process. Let Y = {(y1

i , . . . , yT
i )}m

i=1 denote
the observed case counts where i indexes locations and where T denotes the
maximum observation time. Furthermore, let Y(τ) = {(yt

i : t ≤ τ)}m
i=1

denote the set of all observed case counts up to time τ ≤ T. We then model
the case counts as random variables

Yt+1
i | Y(t) ∼ f (λt

i)

where λt
i denotes the force of infection1 at time t in location i and where 1 Given yt

i infected individuals, the force of
infection (or hazard) models the probability
that a susceptible individual at time t will
become infected by time t + 1

f (x) denotes a probability distribution with parameter x (e.g., a Poisson or
Negative Binomial distribution).

Due to the different interventions during the course of the epidemic, we
regard Y as a time-varying process that is influenced by external factors
such as policies, mobility, etc. For this reason, we decompose λt

i into a
time-specific component βt

i and a time-indepedent component λi such that

λt
i = βt

iλi where βt
i ∈ [0, 1], λi > 0
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Hence, βt
i can be understood as a dampening factor of the underlying force

of infection which models the effect of interventions and depends on time
and location. While some influencing factors for the evolution of βt

i might be
known (e.g., mobility, population density, etc.), we assume that the full set of
influencing factors is unknown and will regard βt

i as a latent variable.

Using this decomposition, we then model the time-independent force of
infection as a autoregressive model of order p,2 i.e., 2 AR models where

Yt+1
i | Y(t) ∼ Poisson(λt

i )

can be interpreted as approximations of
Reed-Frost chain binomial SIR models
(Abbey, 1952). For a detailed discussion see
(Bauer and Wakefield, 2018).

AR(p) : λi =
p−1

∑
`=0

w`yt−`
i (1)

where {w` > 0}p−1
l=0 are the parameters of the model which are shared across

locations i. For the time-depdendent dampening βt
i we employ recurrent

neural networks (RNNs; Elman, 1990; Hochreiter and Schmidhuber, 1997;
Cho et al., 2014) such that

RNN : βt
i = fθ({xk

i }t
k=0) (2)

where θ are the parameters of the network which are again shared across
locations and where {xk

i }t
k=0 denote observed input features to the RNN

(e.g., mobility in location i at time k). Although an RNN as in Equation (2)
has enough capacity to model the evolution of βt

i , the limited data about the
spread of COVID-19 makes it challenging to estimate its parameters without
overfitting. We seek therefore an inductive bias which allows us to estimate
βt

i from few observations.

Relational Inductive Bias

Since all regions are affected by the same underlying process, we assume
that we can borrow statistical strength between regions and use information
about the spread in region i to help predicting the spread in region j – once
we have accounted for time- and location-dependent dynamics. A good
model of βt

i should therefore help to improve the predictions of yt+1
i /βt

i
from cases in other regions yt

j. We interpret this as an inductive bias akin

to Granger causality (Granger, 1969)3 and extend Equation (1) to a vector 3 Granger causality is defined as fol-
lows: Let Xt = {Xt}t

i=1, Yt = {Yt}t
i=1,

Zt = {Zt}t
i=1 denote stochastic processes

and let L denote a loss function. Further-
more, let

R(Yt+1|Yt, Zt) = E(L(Yt+1, f (Yt, Zt)))

denote the expected loss (risk) of a predictor
f . We then say X Granger-causes Y if
its inclusion in the predictor significantly
improves the forecast, i.e., if

R(Yt+1|Yt, Xt, Zt)� R(Yt+1|Yt, Zt)

autoregressive model where it is known that Granger causality is directly
linked to its coefficients. In particular, let

VAR(p) : λi =
p−1

∑
`=0

m

∑
j=1

w`
ijy

t−`
j (3)

be a vector autoregressive model of order p. A time series yj is then Granger-
causing yi if and only if wij 6= 0 (Seth, 2007). For causal discovery, coef-
ficients wij are therefore often `1-regularized. Here, we take the opposite
approach and seek solutions in which many time-series can be considered
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Granger-causal related. However, we do not force all time series to be related
since this is likely an unrealistic constraint. Instead, we assume ∀i 6= j : wij

are drawn from a logit-normal distribution (Atchison and Shen, 1980), what
allows us to specify a prior on the proportion of related and unrelated time
series.

Figure 3: The Logit-Normal distribution is a
probability distribution of a random variable
whose logit has a normal distribution, i.e.,
φ(N (µ, σ)).

In particular, let φ(·) denote the logistic function, let ∀i 6= j : wij = φ(αij),
and let N (µ, σ2) denote the Normal distribution with mean µ and variance
σ2. Putting everything together, we then model the full time-varying force of
infection as

β-AR(p) : λt+1
i = βt

i

p−1

∑
`=0

m

∑
j=1

w`
ijy

t−`
j (4)

αij ∼ N (µ, σ2) ∀i 6= j

Hence, the β-AR model consists of a standard AR component (wii > 0)
and a relational component (wij ∈ [0, 1]) which aims to couple the different
regions. The number of non-zero entries in the “adjacency matrix” wij can
then be controlled through the logit-normal prior.

Accounting for Overdispersion

Count data such as confirmed cases is naturally modeled using Poisson distri-
butions. However, COVID-19 case counts exhibit substantial overdispersion,
i.e., the variance of the observed counts can significantly exceed their mean
(e.g., see fig. 4). For this reason, we will model case counts with Negative
Binomial distributions what allows us to account for varying degrees of
overdispersion (Lloyd-Smith, 2007). Specifically, we set

yt+1
i ∼ NB(λt

i , νi)

where λt
i and νi are mean and dispersion parameter of the distribution and

λt
i is modeled using the β-AR model of eq. (4). The likelihood function in

eq. (5) is then of the form

pθ(y) =
Γ(y + ν)

y!Γ(ν)

(
µ

µ + ν

)y (
1 +

µ

ν

)−ν
µ > 0, ν > 0

Figure 4: Overdispersion of daily case
counts in US states and counties with most
number of cases.

Parameter Estimation and Implementation Details

To estimate the parameters of the model, we regularize the model log-
likelihood such that wij is drawn from a logit-normal distribution with
location µ and scale σ. Let θ denote the model parameters (i.e., αij as well as
parameters of the RNN). and let pθ(y) denote the likelihood function of the
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Group Model

Center for Disease Dynamics, Economics & Policy CDDP-SEIR_MCMC (Klein et al., 2020)
Columbia University CU-* (Pei and Shaman, 2020)
COVID Alliance at MIT MITCovAlliance-SIR (Baek et al., 2020)
Iowa State University Lily Wang Research Group IowaStateLW-STEM (Wang et al., 2020)
Johns Hopkins ID Dynamics COVID-19 Working Group JHU-IDD_CovidSP (Lemaitre et al., 2020)
LockNQuay LNQ-ens1 (Wolfinger and Lander, 2020)
Oliver Wyman Pandemic Navigator (Koyluoglu and Milliken, 2020)
UCLA Statistical Machine Learning Lab UCLA-SuEIR (Zou et al., 2020)
University of Southern California Data Science Lab USC-SI_kJalpha (Srivastava et al., 2020)
University of Massachussets Amherst UMass-MechBayes (Sheldon et al., 2020)

Table 1: Forecasting models for confirmed
cases on county-level.

β-AR model. Furthermore, let q denote the prior normal distribution for αij.
We then maximize the regularized log-likelihood

max
θ

∑
y

log pθ(y) + ∑
ij

log q(αij | µ, σ). (5)

We regard µ, σ > 0 as hyperparameters which allow us to control the ratio of
related and unrelated time series.

Since Equation (5) is end-to-end differentiable we can jointly estimate
the parameters of the entire model using gradient-based optimization. We
compute gradients via automatic differentiation using the PyTorch framework
(Paszke et al., 2019). To maximize Equation (5) we then use the stochastic
optimization method AdamW (Loshchilov and Hutter, 2018) where we
decouple the updates of the normally distributed parameters αij from the
adaptive updates of the remaining parameters.

Results

In the following, we evaluate the forecast quality of our method compared to
multiple state-of-the-art forecasts for confirmed cases on county-level. All
comparison forecasts are collected from the COVID-19 Forecast Hub4 as 4 https://github.com/reichlab/

covid19-forecast-hubsubmitted by the respective teams. The COVID-19 Forecast Hub features
county-level forecasts from July 5th onwards and we selected those models
for which at least 10 forecasts where available since then. The full list of
comparison forecasts is shown in Table 1.

Forecast setup and model selection To compute forecasts for the different
dates in the test set, we use the following fully automated model selection
scheme: For each forecast date d, we perform cross-validation by holding out
additional 21 days of validation data and train the model on the remaining
data. We then select the best hyperparameters as measured by RMSE on the

https://github.com/reichlab/covid19-forecast-hub
https://github.com/reichlab/covid19-forecast-hub
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Dataset Source Resolution

Confirmed Cases The New York Times (2020) County
Confirmed cases based on reports from state & local health agencies

Symptom Survey Facebook Data for Good (2020b) County, State
Prevalence of COVID-like symptoms from self-reported surveys

Movement Range Maps Facebook Data for Good (2020a) County, State
Mobility metrics related to physical distancing measures
(change in movement and staying put)

Community Mobility Google (2020) County, State
Movement trends across different categories of places
(retail and recreation, groceries and pharmacies, etc.)

Doctor visits CMU COVIDcast (Farrow et al., 2015) County, State
Percentage of COVID-related doctor’s visits in a given location

Testing The COVID Tracking Project (2020) State
Total number of COVID PCR tests per state

Weather NOAA GHCN (Menne et al., 2012) County
Average, minimum, maximum temperature & rainfall per county

Table 2: Data sources for β-AR.

validation set and retrain the whole model with those hyperparameters on
the combined training and validation set to compute the final forecast. When
computing the forecasts, we hold all additional input data (e.g., symptom
survey, mobility, weather, etc.) constant after the last observed day d.5. For 5 This setting places natural limits on the

duration of the forecasting horizon. We
reserve the joint forecasting of cases and
covariates – what could extend the horizon –
for future work.

all training details of the model, please see the supplementary material.

Input data As input features for β-AR, we use multiple data sources as
listed in Table 2. Confirmed cases enter the model only in the autoregressive
part. All other covariates enter the model only as input features for the time-
varying β-part. For cases and weather data, we use the preprocessed data
from the Google COVID-19 Open Data repository (Wahltinez et al., 2020).
All datasets are publicly available, de-identified, and aggregated at county- or
state-level.

Forecast evaluation Figure 5 shows the forecast quality as measured by
MAE for multiple forecast horizons.6 It can be seen that the proposed β-AR 6 MAE numbers are com-

puted in accordance with
https://github.com/youyanggu/
covid19-forecast-hub-evaluation

models shows a consistently strong performance and is for all forecasting
dates and horizons either the best model or among the best. Figure 1, which
shows the ranking of all models by the average MAE for each forecast
horizon, further illustrates this property. It can be seen that β-AR model is
consistently ranked first over all horizons. Furthermore, other models show
much larger variability in their performance.

To also evaluate the performance of our model on days prior to July 5th, we

https://github.com/youyanggu/covid19-forecast-hub-evaluation
https://github.com/youyanggu/covid19-forecast-hub-evaluation
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Figure 5: Comparison of β-AR model (blue)
to 15 county-level models from COVID-
19 forecast hub (gray). Forecast quality
is measured in MAE (log-scale) where
the absolute errors are averaged over all
counties. For similar analysis using RMSE
please see the supplementary material.

compare to forecasts of Google Cloud AI (Arik et al., 2020) and Columbia
University (Pei and Shaman, 2020) which provide county-level forecasts of
confirmed cases from May 11th to June 27th. Figure 6 shows the average
MAE over all counties for 7 and 14 day forecasts for these models.7 It can 7 For this comparison, average MAE is

computed as described in (Arik et al., 2020)be seen that the β-AR model shows again consistently strong performance on
these earlier days and is typically ranked first for both 7 and 14 day forecasts.

Ablations In addition to comparisons to state-of-the-art county-level
forecasts, we also evaluate the contributions of different aspects of our model.
First, we test the effect of the relational autoregressive part. For this purpose,
we trained additional models were we disabled the relational part (by setting
∀i 6= j : wij = 0) and compared their forecasts to the full model of
Equation (4). To measure the relative improvement of the full model over the
non-relational model, we compute then the relative error of both models, e.g.,

Relative Mean Absolute Error =
MAEfull

MAEnon-relational

It can be seen from Figure 7 that full model offers substantial improvements
over the non-relational model as the relative forecast quality grows expo-
nentially with the forecasting horizon. While the non-relational model can
offer acceptable forecast for horizons of 1-2 days, it quickly deteriorates with
larger horizons. This show the importance of the relational component for
disentangling the different growth factors and learning high quality models.
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Figure 6: Comparions of β-AR model
to forecasts from Google Cloud AI and
Columbia for 7 and 14 day horizons and
earlier forecast dates. Forecast quality
is measured in MAE where the absolute
errors are averaged over all counties. For a
similar analysis using RMSE please see the
supplementary material.

Figure 7: Relative Error (MAE and RMSE)
of the fully relational β-AR model compared
to a non-relational variant.

In addition to the non-relational component, we also evaluated the contribu-
tions of the logit-normal regularization method. For this purpose, we trained
a model where we explicitly set the reqularization parameter σ = 0. We then
compare the forecast quality to the standard model where the regularization
parameter has been selected via cross-validation. Figure 8 shows the results
of the comparison. It can be seen that the logit-normal regularization can be
very beneficial to improve forecast quality. While the differences to the stan-
dard model are much smaller than for the non-relational model, the addition
of the regularization term can lead to substantial improvements, especially for
horizons of 13 days and longer.

Finally, we also evaluated the contributions of the Negative Binomial distri-
bution compared to a standard Poisson distribution for modeling confirmed
cases. Similar to the logit-normalization method, we trained an additional
model with Poisson likelihood and compared the forecast quality to the stan-
dard model. It can be seen from Figure 9, that Negative Binomial likelihood
significantly improves the quality of the model over all forecast horizons.
This is likely due to the fact that the Negative Binomial can better model the
noise in the observed data, while the stricter Poisson likelihood causes the
(recurrent) model to overfit to these variations.
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Figure 8: Comparison of β-AR model
with (blue) and without (magenta) Granger
regularization. Forecast quality is measured
in MAE.

Figure 9: Comparison of β-AR model with
Negative Binomial (blue) and Poisson
(magenta) likelihood. Forecast quality is
measured in MAE.
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Figure 10: Evolution of β over time

Related Work

We build on prior work that has proposed to use autoregressive models for
spatially and temporally aggregated disease surveillance data of endemic-
epidemic processes (Held et al., 2005; Meyer and Held, 2014; Meyer and
Held, 2016). Such autoregressive models are, for instance, used to monitor
infectious diseases by public health agencies like the Robert Koch Institute
(Salmon et al., 2016).

Moreover, the negative binomial distribution has become a popular way to
model infectious diseases, largely to its ability to model count data with vary-
ing degrees of overdispersion (Lloyd-Smith, 2007). Autoregressive models
in combination with negative binomial distributions have, for instance, been
used by Bauer and Wakefield (2018), Wakefield et al. (2019), and Held et al.
(2005) to model infectious disease count data.

Valdés-Sosa et al. (2005) proposed a combination of VAR(1) models and `1

regularization to for the discovery of Granger-causal relations to understand
brain connectivity. Haufe et al. (2010) proposed an improved estimator which
can be applied for VAR models of order p > 1.

Conclusion

To improve the quality and robustness of forecasts, we propose a new method
which aims to disentangle region-specific factors – such as demographics,
enacted policies, and mobility – from disease-inherent factors that influence
its spread. For this purpose, we combine recurrent neural networks with
a vector autoregressive model and train the joint model with a specific
regularization scheme that increases the coupling between regions. In our
experiments, we observe that our method achieves strong performance
in predicting the spread of COVID-19 when compared to state-of-the-art
forecasts. Through ablations of the model, we show that the relational
approach in general, the added logit-normal regularization, and the negative
binomial likelihood are all important factors that contribute to the forecast
quality. Compared to existing state-of-the-art forecasting models, our method
takes a highly data-driven approach with fewer modeling assumptions as, for
instance, in very detailed and mechanistic compartmental models. As such,
we see our approach as complementary to existing models with focus on
strong forecasting performance at the cost of reduced interpretability.
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