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Budgets play a significant role in real-world sequential auction markets such as those implemented by internet companies.
To maximize the value provided to auction participants, spending is smoothed across auctions so budgets are used for the
best opportunities. Motivated by a mechanism used in practice by several companies, this paper considers a smoothing
procedure that relies on pacing multipliers: on behalf of each buyer, the auction market applies a factor between 0 and
1 that uniformly scales the bids across all auctions. Reinterpreting this process as a game between buyers, we introduce
the notion of pacing equilibrium, and prove that they are always guaranteed to exist. We demonstrate through examples
that a market can have multiple pacing equilibria with large variations in several natural objectives. We show that pacing
equilibria refine another popular solution concept, competitive equilibria, and show further connections between the two
solution concepts. Although we show that computing either a social-welfare-maximizing or a revenue-maximizing pacing
equilibrium is NP-hard, we present a mixed-integer program (MIP) that can be used to find equilibria optimizing several
relevant objectives. We use the MIP to provide evidence that: (1) equilibrium multiplicity occurs very rarely across several
families of random instances, (2) static MIP solutions can be used to improve the outcomes achieved by a dynamic pacing
algorithm with instances based on a real-world auction market, and (3) for the instances we study, buyers do not have an
incentive to misreport bids or budgets provided there are enough participants in the auction.
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1. Introduction
In the last decade, auction markets have become a pervasive mechanism used by internet companies to
match buyers to their target audience at the right price. The mechanisms put in place select users matching a
targeting rule that buyers specify, allowing them to bid for selected events of interest such as an impression,
a click, a conversion or a video view. This results in a winning buyer who is given the chance to show an
impression and potentially generate the event of interest. In these auction markets, buyers typically specify
a budget that can be spent over a certain sequence of auctions, as well as valuations for the events of interest.
It is a responsibility of the mechanism to guarantee that the total payments of buyers do not exceed the
budgets they specified. The simplest way to take budgets into account is to bid as if there were no budget
constraint, until the buyer runs out of budget. At that time, the buyer effectively stops participating in the
auctions. Unfortunately, this simple procedure is clearly not optimal: if the buyer is able to anticipate that
the budget will run out well before the time period is over, it makes sense to bid less aggressively at earlier
stages to be able to participate in later auctions. These later auctions, after all, may have some of the best
opportunities for the buyer since, for example, they may provide the same value at a lower price. Figure 1
shows an example in which a buyer has a $5 value for winning and a $10 budget. Here, a Vickrey (second
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Figure 1 Relation bids vs. total value for a budget of $10

price) auction is used at each step. We assume, for simplicity, that all bids are per impression. As shown on
the left, the buyer is able to possibly win any one of the auctions for that value, but can only win the first
6 auctions before running out of budget. The buyer receives a total value of 6× $5 = $30 at a cost of $10,
for a utility of $20. Instead, as shown on the right, the buyer can win more auctions and get a higher utility
bidding $2. The buyer wins 7 auctions for a total value of 7× $5 = $35 at a cost of $10, for a utility of $25.

The previous situation motivates that auction market mechanisms more actively take budgets into
account. One possibility is to perform probabilistic throttling, which consists of tossing an appropriately
weighted coin for each auction. The outcome determines whether a bid is actually placed into the auction on
the buyer’s behalf. Selecting each probability appropriately, the buyer’s budget will run out just around the
end of the bidding period. Doing this for all buyers results in the process being more stable over time—as
opposed to having many buyers early on and then auctions becoming thinner as buyers run out of budget, as
shown on the left side of the figure. Still, this approach also has its drawbacks. Buyers will not be considered
in some auctions purely because of a coin toss, and the missed opportunities may be the ones where the
buyer could have won at lower cost. Thus, this alternative may be suboptimal for buyers as well.

Another solution is to appropriately shade bids on the buyers’ behalf. (Again, for simplicity, consider a
buyer who is bidding on a per-impression basis; appropriate modifications can be made for a buyer bidding
on a per-click basis.) When it appears that simply bidding the valuation vi will result in the budget being
spent before the period is over, the mechanism can simply shade down each bid to αivi, where αi ∈ [0,1] is
referred to as a pacing multiplier. An optimal multiplier will make the budget run out exactly at the end of
the period, unless the buyer would not run out of budget even with αi = 1.

Motivated by the multiplicative mechanism which is used by several internet auction markets, we set out
to study the details of the associated static game, which has not been the subject of a prior methodical study.
One of the reasons that justifies its widespread use is that multiplicative pacing allows a buyer to participate
in more auctions and win at lower prices, compared to probabilistic throttling. Furthermore, Balseiro et al.
(2021) conclude that multiplicative pacing is buyer-optimal out of various options they study.

To motivate the interpretation of the mechanism as a game, note that each buyer is affected by the other
buyers’ multipliers. For instance, for two buyers i and j, if buyer i’s multiplier αi goes down, this may
result in buyer j winning more impressions, so αj needs to go down too. Or, alternatively, it may result in
buyer j having to pay less for the impressions she is winning (because j was setting the price for i, given
that we use a second price auction), so that αj can go up. Because the effect can work in both directions,
and buyer i is similarly affected by αj , it is not obvious that there must exist a vector of multipliers for
all buyers that is mutually optimal. The first question we address is whether there is a vector of multipliers
that are simultaneously optimal for all buyers in a market with multiple single-slot second price auctions.
To be optimal, all multipliers should be set so that each buyer either spends the entire budget or does not
shade the bid. The choice of the vector of pacing multipliers can be viewed as the equilibrium of a one-shot
game in which each αi is a best response to all the other αj . We call such a vector of pacing multipliers,
along with their corresponding allocation, a second price pacing equilibrium (SPPE). Although in practice
the multipliers are computed by the auction market on behalf of the buyers, this can still be viewed as a
game since buyers can in principle change bids themselves to adjust the spending rate and even opt out of
the automatic shading.

Our notion of equilibrium only stipulates that pacing multipliers should be optimal given the auction
prices and winning bids, and it is thus not the case that our equilibria are equivalent to Nash equilibria in
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the one-shot game. In order to specify what a Nash equilibrium would be we would additionally need to
specify what happens under deviations: a single buyer changing their pacing multiplier could change prices
in auctions they are not winning, thus causing other buyers to exceed their budget. If the game is such that
this budget exhaustion does not cause the budget-exhausted buyer to be dropped from some auctions (and
thus this does not cause reduced prices) then our equilibria constitute Nash equilibria, but if they are dropped
from some auctions then there may be an incentive to cause such dropping in order to reduce prices.

We prove that an equilibrium always exists (which does not follow from existing results due to discon-
tinuities when there are ties or when budgets are exceeded) and that a pacing game can admit multiple
equilibria that are not outcome equivalent, which leads to equilibrium selection issues. We compute equi-
libria with respect to commonly-studied objective functions such as social welfare and revenue to provide
insights on the gaps between best and worst equilibria. We show examples where this gap can be quite
large. Then, we study the complexity of finding equilibria, and provide a mixed-integer program (MIP) to
find them. Using the MIP we study the equilibrium-selection issues empirically, and find that equilibrium
multiplicity is rarely an issue across both randomly-generated and real-world instances. We complement the
MIP with best-response and regret-based dynamics as alternative computational tools for finding equilibria.

We go on to show that pacing equilibria are a refinement of competitive equilibria. A competitive equi-
librium consists of good prices and allocations such that each buyer obtains a bundle that she considers
optimal given those prices, and all goods with positive prices are completely allocated. We show that every
pacing equilibrium is also a competitive equilibrium. Moreover, for every competitive equilibrium, it is pos-
sible to add some non-winning buyers so that it becomes a pacing equilibrium. We exhibit an example in
which the unique pacing equilibrium is not revenue-minimizing among competitive equilibria, i.e., there is
another competitive equilibrium with lower revenue. This, in combination with the previous result, implies
revenue-nonmonotonicity in the bids, i.e., additional bids can reduce the revenue of pacing equilibria.

The (near) equivalence between our pacing equilibrium and competitive equilibrium leads to another
motivation of our work: since real auction markets happen dynamically over time, it is not necessarily clear
what the resulting allocations and prices will look like. However, ex-post one may hope that the allocations
and prices roughly constitute a competitive equilibrium. This would imply several important properties such
as envy-freeness, Pareto efficiency, and that market-clearing prices were used. Our paper shows that such
a competitive equilibrium is achievable by having the seller conduct second price auctions, and letting the
buyers (or proxy bidders) use multiplicative pacing. This lends support to the approach often taken in real
auction markets, where a proxy bidder attempts to identify the correct pacing multiplier over time via some
adaptive control algorithm.

Since there are many unknowns in real-world auction markets (e.g., auction participants, user visits,
resulting prices, event realizations, etc.), practical mechanisms learn the optimal multipliers by dynamically
adjusting them using forecasts of when the budget will run out. In our theoretical model, we sidestep the
issue of dynamically adjusting the multipliers, and consider the limit case in which the auctioneer can
perfectly predict the impressions that will arrive. Although the one-shot game assumes away the stochastic
and dynamic elements, the results we obtain for this limit case have clear implications for real-world auction
markets. To address that, we investigate an adaptive pacing setting, and show that the regret-based adaptive
pacing algorithm of Balseiro and Gur (2019) finds an allocation that is close to the solution of our MIP.
Using realistic instances inspired by auctions on the internet, we find that the outcome in the adaptive setting
can be improved by seeding the adaptive dynamics with the MIP solution, even though the MIP solves a
static instantiation of the time-varying auctions.

To create realistic instances for computational studies, we sample impressions from real auctions and
generate a bipartite graph that encodes their structure. Subsequently, we cluster the graph to reduce its size
without losing the important competitive information that describes the auction market. The procedure to
create small instances that capture the intricacies of the market and seeding dynamic mechanisms with
the resulting equilibria may pave the road to practical use of pacing equilibria in real-world markets, in
addition to learning optimal multipliers using dynamics. This observation motivated Kroer et al. (2021) to
study, in follow-up work, how to solve simpler representations of dense instances of competitive equilibrium
problems, and how solutions to an approximation differ from the original ones.
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We employ the MIP solution procedure to study incentive compatibility properties of the pacing mech-
anism studied here. Generating ground-truth values and budgets for buyers, we compute pacing equilibria
when they misrepresent their types. Our study provides evidence that incentives to misreport bids and bud-
gets are weak, provided that there are enough participants in the auctions.

Finally, let us add a remark on the motivation of the paper. A number of real-world platforms started to
use multiplicative pacing because they realized that individual pacing multipliers have attractive properties
from the perspective of an individual buyer. The motivation was that by lowering bids in this way, utilities
would generally be higher, since the benefits accrued when obtaining impressions, clicks or conversions is
held constant. This, in turn, led to platforms implementing control mechanisms to learn those multipliers.
Nevertheless, there was not any principled theory showing that this would lead to solutions that are, in
aggregate, of high quality, or that this would lead to equilibrium points. (Even if, from an individual buyer
perspective, pacing multipliers can be motivated via Lagrangian duality on the budget constraints. Note
that the multiplicative pacing approach can be given a Lagrangian interpretation as follows. Consider the
problem of optimal bidding in hindsight for an individual buyer with a budget constraint. A Lagrangian
relaxation of the budget constraint leads to a simple optimization problem where the buyer wants to buy
all goods that have positive valuation after accounting for the Lagrangian “price.” This solution is obtained
by setting αi = 1

1+µ
and bidding αivij for every good j, where µ is the Lagrange multiplier on the budget

constraint.)
Our motivation when we started working on the present paper was to provide a framework, leaning on

game-theoretic principles, to explain and analyze what the platforms had already done. This complements
seminal research that already existed, but also intersects with research that was being done concurrently, as
discussed in the literature review. Our results contribute evidence that multiplicative pacing is an appropriate
mechanism to manage budgets. Equilibrium multipliers are guaranteed to exist and the MIP we propose can
be used to guide equilibrium selection so buyers can jointly maximize their utility by bidding consistently
within their budgets. In addition, according to our computational study, the mechanism is approximately
incentive compatible when auctions have enough participants.

Presentation of results We start by framing our model with respect to the existing literature in Section 2.
Then, we introduce the pacing game and define our equilibrium concept in Section 3. Section 4 discusses
the details of these equilibria, including existence, sensitivity and multiplicity, followed by a connection to
competitive equilibria in Section 5. Section 6 presents results related to computability of equilibria including
computational complexity, iterated best responses, and a MIP formulation. Finally, we provide an empirical
illustration through computational experiments in Section 7. After describing the instances we consider, we
study the scalability of our MIP formulation, we evaluate uniqueness empirically, we explore how robust
pacing equilibria are to misreporting true values and budgets, and finally we put the pacing equilibrium
concept in perspective by evaluating it through a dynamic algorithm that incorporates time into the model.
We present some final thoughts in Section 8. We refer the reader to the e-companion of this article which
includes missing proofs, additional discussion, model tweaks, and further examples and experiments.

2. Related work
There is a large literature on casting the delivery of online advertising under budget constraints as a cen-
tralized matching problem that assigns advertisers to impression opportunities, rather than taking the per-
spective of auctions and strategic behavior as we do. Mehta et al. (2007) considers an online setting and
introduce an algorithm that has a competitive ratio of 1 − 1/e for revenue maximization when the vol-
ume and sequence of queries is unknown. Abrams et al. (2007) investigate a linear programming approach
based on column generation, where each column is a slate of ads that can be considered for an impression
opportunity, and optimizes efficiency or revenue while controlling advertiser spend within the time horizon.
Considering slates allows the model to price according to GSP. Additional papers that generalize and extend
these results include Feldman et al. (2010), Devanur et al. (2011), Bhalgat et al. (2012). More recently,
Asadpour et al. (2019) considers the case in which there are several budget constraints that apply to differ-
ent subsets of ads that an advertiser is running. Since managing bids at the auction level is difficult, they
propose a system with concise bidding strategies that splits opportunities in clusters and bids uniformly for
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each of them. They develop a constant-factor approximation algorithm to optimize the strategies for a fixed
number of clusters.

Several articles also consider a stochastic version of the matching problem (Goel and Mehta 2008,
Devanur and Hayes 2009, Feldman et al. 2009, 2010, Devanur et al. 2011, Mahdian et al. 2012, Devanur
et al. 2012, Mirrokni et al. 2012), including embedding the matching in a game (Charles et al. 2013). The
approaches in these articles match supply and demand directly, rather than having all candidate ads compete
to determine the winner through an auction, thus they are not directly applicable to our setting.

Another line of research considers how individual buyers should optimize their budget spending across a
set of auctions. This has been cast as a form of knapsack problem (Feldman et al. 2007, Borgs et al. 2007,
Zhou et al. 2008), a Markov Decision Process (Amin et al. 2012, Gummadi et al. 2012), constrained opti-
mization (Zhang et al. 2012, 2014), and optimal control (Xu et al. 2015). Gummadi et al. (2012) consider
a Markov Decision Process formulation of the budget optimization problem. From the perspective of an
advertiser with a budget constraint competing with a set of iid (independently and identically distributed)
bids in a second price auction or GSP setting, the optimal policy is to multiplicatively shade the value of the
impression. Agarwal et al. (2014) describe a practical implementation with experiments on LinkedIn adver-
tising data. Ciocan and Iyer (2021) take a fresh perspective by considering endogenous budget decisions
arising from the cost of capital for advertisers, and allowing them to strategize the selection of ad bids and
campaign budget. The platform then selects a winner and a runner-up that sets the price for each fractional
allocation using a linear program.

The closest paper to ours is a groundbreaking paper by Balseiro et al. (2021), which was written inde-
pendently. They define equilibria for a variety of budget management procedures, including multiplicative
pacing, and prove the existence of equilibria. This is related to the existence result we provide; the main
difference is that they assume independent and continuous valuation distributions and as a result they effec-
tively assume away ties. In contrast, we need to pay special attention to how ties are broken; specifically,
how much of each good goes to each tied buyer. These fractions are a fundamental part of what constitutes
an equilibrium in our setting. (See the model’s description in the next section for a discussion on how to
interpret fractions.) Ties in the bids are not a measure-zero event in our setting, because pacing parameters
will often result in ties even for generic valuations. Balseiro et al. (2021) introduce an iterative algorithm
based on the buyers repeatedly best-responding that is not always guaranteed to converge to equilibrium
and evaluate it in experiments. We show that in our setting such an algorithm can cycle, give an exact MIP
formulation for finding optimal equilibria (and show that these problems are NP-hard), and evaluate it in
experiments.

Balseiro and Gur (2019) study how an individual buyer might adapt their pacing multiplier over time.
They study a stochastic setting, where each buyer has valuations drawn at each time step independently
of time and the other buyers (though they show that they can also support imperfect correlation between
buyers under certain technical conditions). They design regret-minimizing algorithms for their setting, and
show asymptotic optimality under adversarial and stationary settings. Their setting is different from ours in
that it is dynamic, it requires independence of valuations, and it requires the distribution of valuations to
be absolutely continuous. For these reasons their algorithm is not guaranteed to work in an adaptive variant
of our setting. Nonetheless, we show in our experimental setting that their algorithm can achieve strong
performance when combined with good initial pacing multipliers from solutions to our MIP model.

Balseiro et al. (2015) investigate budget-management in auctions through a fluid mean-field approxima-
tion, which leads to elegant existence results and closed-form descriptions of equilibria in certain settings.
Again, this differs from our setting in that they effectively assume away ties by making distributional
assumptions on the payments faced by the buyers. That paper and Balseiro et al. (2021) also assume that
for a given impression, the valuation of each buyer is independent from that of other buyers. We require no
such assumption.

Rather than trying to adapt variants of second price auctions through budget smoothing, one can design
entirely new mechanisms that handle budgets directly (Ashlagi et al. 2010, Bhattacharya et al. 2010, Dobzin-
ski et al. 2012, Goel et al. 2015b,a). However, for practical purposes we focus on methods that implement
second price auctions, as these tend to be preferred in real-world auction markets.
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Figure 2 Two examples of pacing games. Buyers and goods are represented by vertices in a bipartite graph on the left and right,
respectively. The labels on buyer vertices represent budgets, while the labels on edges denote the buyers’ valuation
for the good (missing edges denote null valuations).

Finally, the relationship between auctions and competitive equilibria has been explored in some other
contexts. Klemperer (2010) uses competitive equilibrium as the allocation mechanism in product-mix auc-
tions. Conversely, auction-based algorithms have been used for arriving at competitive equilibrium in certain
contexts (Garg et al. 2004, Garg and Kapoor 2006, Kapoor et al. 2007, Nesterov and Shikhman 2018). In
a follow-up to the present work, Conitzer et al. (2019) show that first price pacing equilibria can also be
interpreted as competitive equilibria, and in particular they correspond to solutions to the Eisenberg-Gale
convex program in the quasi-linear case (Eisenberg and Gale 1959, Cole et al. 2017).

3. Pacing Games for Auction Markets
In this section we define the pacing games that will be the focus of our work. We consider a market in which
a set of buyers N = {1, . . . , n} target a set of divisible goods M = {1, . . . ,m}. An instance of the game
is defined by a set of valuations and budgets: each buyer i has a valuation vij ≥ 0 for each good j, and a
budget Bi > 0 that constrains the spend across all goods. Figure 2 shows two examples of pacing games,
which will be solved later.

A platform enables the transactions through which the goods are sold. To allocate winners and set prices,
it relies on a mechanism based on independent (single slot) second price auctions, one for each good. Our
goal is to study how buyers can smooth out their spending across all of the auctions to make their bids and
budgets compatible with each other. This is achieved via multiplicative pacing: each buyer selects a pacing
multiplier αi ∈ [0,1], which they use to compute the effective bid of αivij for each good j. We refer to the
resulting bids as multiplicatively paced. Thus, the strategy space of buyer i in the pacing game is the set of
possible pacing multipliers αi ∈ [0,1].

Given a vector of pacing multipliers α ∈ [0,1]n chosen by all buyers, the platform allocates goods and
prices according to second price auctions with the bids mentioned earlier. Thus the allocation rule is mostly
straightforward: allocate to the highest paced bid. However, this still leaves open the question of how to
deal with tied bids. This is relevant because multipliers allow buyers to manipulate the effective bids, which
is likely to create ties in equilibrium.

For the majority of the results, our solution concept will consist of a vector of pacing multipliers together
with an allocation of goods to buyers that breaks ties in suitable fashion. However, for the purpose of
explaining how our solution may be viewed as a game, we need to make the tie-breaking rule part of the
rules of the game, so that the strategy space of each buyer consists only of choosing a pacing multiplier.
To that end, we assume that there is some fixed allocation rule xij(α) which denotes how much buyer i
receives of good j, given a vector of pacing multipliers α ∈ [0,1]n. The resulting price for good j arises
from its corresponding second price auction, considering the paced bids: pj = maxk 6=max bidder on j αkvkj . The
allocation rule must satisfy the following conditions:

• xij(α)> 0⇒ αivij = maxk αkvkj for all i, j
•
∑

i xij(α) = 1 for all j
• If there exists an allocation x′ such that

∑
j x
′
ijpj ≤Bi for all i, then

∑
j xij(α)pj ≤Bi for all i

The first and second conditions enforce consistency with second price auctions, whereas the last condition
says that if it is possible to break ties such that all budgets are satisfied, then x(α) should do that.



Conitzer et al.: Multiplicative Pacing Equilibria in Auction Markets
Forthcoming in Operations Research 7

The utility for buyer i resulting from pacing vector α is a regular quasilinear utility function, except that
their budget constraint must be satisfied:

ui(α) =

{∑
j(vij − pj)xij(α) if

∑
j pjxij(α)≤Bi

−∞ otherwise
.

The utility of the platform is inconsequential to the equilibrium analysis, but of course useful when
comparing solutions with each other. In Section 4, we will get back to this, considering revenue and welfare.
We end the description of the pacing game with the sequence of events that defines it:

1. Instance created; each buyer learns their own valuations and budget.
2. Each buyer selects an optimal pacing multiplier anticipating that other buyers do so as well. In order

to do this, we assume that each buyer knows the valuations and budgets of other buyers.
3. The platform gets bids from buyers, runs the mechanism, and produces prices and an allocation. Ties

are broken so as to preserve budgets, if possible.
4. Buyers get allocations, realize spends, and perceive utilities.
Having a game with full information can be justified in two ways. First, auctions happen dynamically

and buyers have the chance to revise their bids over time. As the interactions occur, buyers can adapt their
pacing multiplier until they reach the right rate of expenditure. In order for this to occur it is enough to
observe prices; details about competitors are not needed. This is a common justification for (static) Nash
equilibria; here the notion of a repeated game is natural since the number of auctions is typically large.
In addition, a proxy bidder that acts on behalf of the buyer might have additional context of what other
buyers may do. At the very least, even if the proxy bidder does not have access to any information about
other buyers, the dynamic interpretation applies since it is reasonable that the proxy bidder continuously
monitors the performance of the auctions in which that buyer participates, and adjusts the pacing multiplier
accordingly. Below we provide more details about the platform acting as a proxy bidder.

We assumed that ties can be broken to satisfy the budgets of buyers. Let us see why tie-breaking is
important via the following example.

EXAMPLE 1 (TIES MAY MAKE BUYERS OVERSPEND BUDGETS UNDER ARBITRARY ALLOCATIONS).
As depicted on the left side of Figure 2, assume that v11 = 1, v12 = 1/2, and B1 = 1/2, while v21 = 1/2,
v22 = 1/8, and B2 =∞. If independent auctions with independent bids were used, then buyer 1 could
guarantee a utility of 1/2 by bidding 1 on good 1 and 0 on good 2 and stay within budget.

Assume that buyer 1 wins (some of) good 1 with a multiplicatively paced bid. This implies that α1 ≥ 1/2,
from which it follows that α1v12 ≥ 1/4> 1/8, thus making her win good 2 as well. But without enforcement
of budgets constraints, under second price auctions, the buyer would pay 1/2 + 1/8 > B1, resulting in a
budget violation. In that case, to be safe, she should set αi < 1/2 and lose good 1, resulting in a utility of at
most 1/2− 1/8 = 3/8.

If the buyer were sure that budgets are always satisfied if possible, she would bid α1 = 1/2, the tie would
be broken to win 3/4 of good 1 and all of good 2, for a combined valuation of 3/4 + 1/2 = 5/4 and a
combined payment of 3/8 + 1/8 = 1/2 =B1. This results in a utility of 3/4, which is the best possible.

As an implementation remark for our stylized model, a tie-breaking rule that guarantees budgets to be
satisfied is natural in real-world internet ad auction markets. One way to map the model to reality is to con-
sider that goods of an instance are split into many small units. A buyer could control the fractions she wins
when tied as winner by slightly modifying the bids on these individual units as required. This perspective
can be thought of as mapping goods to impression types, and those subdivisions to particular impressions.
These small bid modifications that result in budget-satisfying allocation are likely to happen automatically
in those real auction markets. The reason is that the pacing multipliers are estimated dynamically and in
real time. The fluctuations of multipliers over time make realized bids fluctuate as well and affect alloca-
tions. Alternatively, tie breaking can be handled in practice by perturbing each bid with independent noise
before computing the allocation of each good. If only the expected value and expenditure of an allocation
are considered, then this can provide a solution concept very similar to ours.
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To start discussing equilibrium concepts in this game, which will lead to pacing equilibria, it is important
to provide evidence that a single dimensional search space for each buyer is appropriate, since that is a cru-
cial justification of pacing multipliers and the definition of the game. The following proposition shows that
relying on multiplicative pacing is in the best interest of buyers. In other words, the set of best responses in
the more general space of strategically modifying all valuations always intersects with the multiplicatively-
paced bid vectors. This fact requires ties to be broken in favor of the buyer in question, which contradicts
our definition of a fixed x(α) function. We will eventually define our pacing equilibria in a way that makes
this a non-problem.

PROPOSITION 1. Suppose we allow arbitrary bids in each auction, i.e., the bids bij are not necessarily
multiplicatively paced. Then, holding the bids of all other buyers in all auctions fixed, each buyer i has a
best response that is multiplicatively paced (assuming that, when she is tied to win a good, she can choose
the fraction of the good she wins).

Proof. Consider a best response by buyer i consisting of bids bi1, . . . , bim. Let αmax
i = maxj bij/vij ,

and without loss of generality suppose αmax
i is minimized among best responses for buyer i. We will show

that bidding b′ij = αmax
i vij is also a best response. Suppose not. Clearly αmax

i ≤ 1 since it never helps to bid
more than one’s valuation. Hence b′ij ≤ vij for all j. Because we have b′ij ≥ bij for all j, then i can only
be winning more goods, at prices below her valuations. Hence the only way in which the b′ij can fail to be
a better response than the bij is by exceeding i’s budget. Because by assumption i can break ties as she
wishes, it follows that with the bid b′ij she exceeds her budget even if she accepts none of the goods for
which she is tied. Because the bid bij did not cause the allocation to exceed the budget, it follows that there
exists a good j∗ with price (highest other bid) pj∗ such that bij∗ ≤ pj∗ < b′ij∗ of which i was not winning
everything when bidding bij . Now consider gradually increasing bij∗ towards b′ij∗ (or increasing the fraction
of j∗ that i is allocated). If under bid bij the budget was not already exhausted, then the moment that i starts
winning some of j∗ (at a price below her valuation), we have found a better response and hence the required
contradiction. If the bid bij did already cause the buyer to exhaust the budget, then once i starts winning
some of j∗, we can pay for this by reducing the amount spent on some good j∗∗ with pj∗∗ = αmax

i vij∗∗ =
bij∗∗ . (Such a good must exist by the minimality of αmax

i : if xij = 0 for all j such that αmax
i vij∗∗ = bij∗∗ then

a different best response with all those bids set to zero exists, contradicting the minimality of αmax
i ). The

utility buyer i receives per dollar spent on j is (vij − pj)/pj = vij/pj − 1. But we have pj∗∗/vij∗∗ = αmax
i

and pj∗/vij∗ < αmax
i . Hence vij∗∗/pj∗∗ − 1 = 1/αmax

i − 1 < vij∗/pj∗ , i.e., the bang-per-buck is actually
higher on j∗. So shifting spending to j∗ is utility-improving, giving us the required contradiction. �

A pure-strategy Nash equilibrium (PNE) is a vector of pacing multipliers α such that every buyer is best
responding, i.e., ui(α) ≥ ui(α′i, α−i) for all α′i ∈ [0,1]. More concretely, in a PNE α each buyer must be
within budget, and if they are not spending their entire budget then every α′i > αi must be such that they
either win the same goods as under αi, or break their budget.

Unfortunately, we cannot follow the standard approach and adopt PNE as our equilibrium concept since
some of them exhibit undesirable properties, as the next example illustrates.

EXAMPLE 2. Consider one good and two buyers. Buyer 1 has valuation 10 and buyer 2 has valuation 5.
Each buyer has budget 5. A subset of the PNE are all pairs (α1, α2) such that α1 = 1, since buyer 1 wins the
whole good and pays 5α2, whereas buyer 2 cannot improve their utility no matter what pacing multiplier
they choose.

In this example budgets play no actual role: neither player needs to smooth their spending, and a regular
second price auction yields a good outcome. In order to avoid these undesirable PNE solutions, we introduce
the following principle:

DEFINITION 1 (NO UNNECESSARY PACING). The no unnecessary pacing principle states that if a buyer
does not spend their whole budget, then there should not be pacing (i.e., the pacing multiplier should equal
one).
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Intuitively, the no unnecessary pacing principle makes sense from the perspective of an individual buyer:
if their budget is not binding, then they should act as a normal buyer in a second price auction, where truthful
bidding is a dominant strategy.

We will restrict our attention to PNEs that satisfy the no unnecessary pacing principle, leading to a
refinement of the set of all PNEs of the pacing game. A priori, it is unclear whether there will always exist
an equilibrium under this refinement (it is not evident that even a PNE must exist). However, as we shall
see, an equilibrium under this refinement is guaranteed to exist as long as ties are broken such that no
unnecessary pacing holds when possible. It turns out that refined equilibria can be characterized purely in
terms of budget feasibility and the no unnecessary pacing principle since these two conditions imply that
buyers must be best responding to each other (see Proposition 2).

Motivated by the refinement of PNE, we now define our notion of equilibrium formally, relying on the
conditions it must satisfy. Then, we prove that this notion coincides with the refinement of PNE that we
discussed earlier. In a standard game-theoretic setting, we would simply rely on our refinement given by
any PNE satisfying no unnecessary pacing. However, the truly game-theoretic pacing game setup requires
us to specify the tie-breaking rule for every pacing vector, which is not practical. Secondly, Proposition 1
would then fail to hold since it requires buyers to be able to choose their tie-breaking allocation. Instead, we
approach this problem as a competitive market and explicitly make the allocations part of the equilibrium
definition.

This makes our pacing equilibrium notion similar to that of competitive equilibria, while still retaining
best-response properties. (We will expand on the connections to competitive equilibria in Section 5.) From
the perspective of the pacing games we have discussed so far, our pacing equilibrium definition captures the
PNEs satisfying no unnecessary pacing for every pacing game where the tie-breaking rule agrees with the
allocation used in the pacing equilibrium.

DEFINITION 2 (PACING EQUILIBRIUM). A second price pacing equilibrium (SPPE) consists of a vector
of pacing multipliers α∈ [0,1]N , and fractions xij ∈ [0,1] indicating allocations of good j to buyer i. These
elements need to satisfy budget constraints, no unnecessary pacing, the feasibility of the allocation and that
prices emerge from a second price auction, all expressed in the following conditions:

• For all j,
∑

i xij ≤ 1 (with equality if there is at least one i with vij > 0); also, for all i and j, xij > 0
implies that i’s bid αivij was (possibly tied for) the highest on j.

• If xij > 0, then the per-unit price pj is the highest bid αi′vi′j other than i’s bid.
• For all i,

∑
j sij ≤ Bi, where sij = pjxij is the total spend of buyer i in good j. In addition, if the

inequality is strict, then αi = 1.

Since all our results focus on the second price auction, we will sometimes refer to an SPPE simply as a
pacing equilibrium, with the understanding that it is based on second price auctions. This is in contrast to
results by Conitzer et al. (2019) that look at pacing equilibria for both first and second price auctions.

Note that this definition of pacing equilibrium does not explicitly require that buyers are best responding.
Nonetheless, the conditions ensure that each buyer is best responding, thus justifying the solution concept.

PROPOSITION 2. Consider a pacing equilibrium {αi, xij}i∈N,j∈M . For each buyer i ∈N , the pacing mul-
tiplier αi is a best response to the paced bids of all other buyers (even if, when choosing their best response
multiplier, they can choose how ties are broken).

Proof. Consider an arbitrary buyer i ∈N . We will consider two cases. When αi = 1, bids equal values
for all goods. By the properties of the second price auction, this buyer cannot gain additional utility by
raising or lowering their bid. When αi < 1, the buyer is guaranteed to be spending their entire budget by
the definition of a pacing equilibrium. Raising αi causes overspending if additional goods are won, which
yields −∞ utility. If no additional goods are won, then it has no effect on the utility of buyer i. Conversely,
if buyer i lowers αi, the only thing that can happen is winning fewer goods. Since the buyer is already
bidding less than their true valuation, this can only cause them to lose goods that they gained positive utility
from winning. �
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The previous result shows that pacing equilibria yield PNEs with no unnecessary pacing for any pacing
game with a tie-breaking rule that yields the allocation in the pacing equilibrium. To see why any PNE with
no unnecessary pacing yields a pacing equilibrium, note that the first two definitions of pacing equilibrium
are satisfied by the design of a pacing game, while the third condition is simply the “no unnecessary pacing”
refinement condition.

Discussion on the Model Setup
In the definition of the game we took the perspective that it is the buyers who choose pacing multipliers,
but as mentioned in the introduction, we are primarily motivated by the setting where the platform performs
the budget management on behalf of each buyer, via proxy bidders. The proxy-bidding system is built with
the intent that the average buyer does not waste effort in designing complex bidding strategies, so they can
focus their energy in improving the value they provide to their users. In a pure proxy-bidder setting, the
platform is assumed to have access to the (true) budgets and (true) valuations vij , and its goal is simply to
implement budget-smoothing via multiplicative pacing. Since we assume that the game is full information,
the proxy bidders act on behalf of the buyers, compute a pacing equilibrium, and submit the same bid as the
buyer would have submitted. Item (2) in the game play explained earlier is subdivided as follows:

2’ Each buyer submits their true valuations and budgets to the proxy bidder operated by the platform, if
they so desire.

2” The proxy bidder computes an optimal pacing multiplier on behalf of the buyer.
There are a few issues that are important to discuss about proxy bidders. First, the platform gives buyers

the option to pace but it is their choice to do so. The platform anticipates that if it does not do what is best
for the buyer, they will not opt in. Notice that although buyers may not have access to auction-by-auction
outcomes, they can easily experiment with simultaneous campaigns to learn the optimal bidding strategy.
This is why the platform seeks an equilibrium by optimizing buyers’ utilities, as opposed to attempting to
find a centralized solution that maximizes welfare or revenue. As the feature is opt-in, some buyers select
not to use pacing because of various reasons, and in practice there is a mix of buyers pacing themselves and
buyers using proxy bidders.

Second, we assume that the game is full information and do not consider strategic issues of buyers misre-
porting their budgets or valuations. A partial justification for this comes from the best-response properties of
pacing equilibrium. Nonetheless, it is still possible that buyers may shift the pacing equilibrium computed
by the proxy bidders by misreporting. In Section 7.3.2, we investigate the extent to which buyers can gain
utility from this type of manipulation. We find that market thickness quickly makes it impossible for buyers
to significantly improve their utility by misreporting.

Considering a practical implementation of the above, in the internet ad markets typically buyers are not
able to submit their valuation vectors; they do not even know them exactly. Instead, they would submit their
value-per-click vi, budget Bi, and targeting criteria specifying which user segments they are interested in.
The valuation for an impression j that fits the targeting criteria would be calculated as vij = γijvi, where
γij is the click-through rate of impression j (i.e. the probability that the user clicks on the ad). The click-
through rate would typically be estimated by the platform, and thus not modifiable by the buyer. To this
point, and as mentioned in the previous paragraph, Section 7.3.2 investigates whether buyers have incentive
to misreport, both in the setting where they report their value-per-click, as well as the setting where they
report their entire valuation vector.

Finally, we highlight that our model is fully static, so values, prices and everything else are all realized at
the same time. Our solution concept gives us an ex-post notion of what we would like the market outcome
to be, similar to the setting of a competitive equilibrium. In terms of predictions needed to feed the model, a
platform is in a good position to use it to evaluate a market. Campaigns are submitted beforehand, budgets
refresh daily, and impression opportunities arise from users logging onto the platform, which can be pre-
dicted with accuracy. In the computational section, we introduce a model with dynamics as a more realistic
version that can be used for evaluation. We provide evidence that the dynamics approach the (static) pacing
equilibria, for various initial conditions. Moreover, if we feed the dynamic model with starting points com-
ing from (static) pacing equilibria, we verify that the resulting (dynamic) pacing multipliers do not fluctuate
much from the starting points.
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4. Equilibrium Analysis
In this section we study the equilibria resulting from the pacing game. We first prove that all instances admit
equilibria and later we study properties of these equilibria such as multiplicity and efficiency.

4.1. Equilibrium Existence
To characterize a pacing equilibrium, as introduced in Definition 2, we require not only a profile of strategies
(where the αi would correspond to strategies) but also one of allocations. Even ignoring that we need
allocations, there are discontinuities involved that might be suspected to get in the way of equilibrium
existence: upon exceeding another bid there is a jump in one’s utility, and again for exceeding one’s budget.
On top of that, in the definition of pacing equilibrium, we require buyers to break certain indifferences
towards higher bids: a buyer i who at αi = 1 does not spend the budget is not allowed to use a lower value
of αi in the definition. Despite these difficulties, we can show that a pacing equilibrium always exists via a
smoothing argument. This smoothing argument relies on a smoothed pacing game, where every good is split
among all bids that lie within an additive band around the winning bid, with the split applied proportionally
depending on where each bid falls in the band. This is reminiscent of how one might handle tie-breaking in
practice (either in the indivisible case, or in the divisible case by dividing every divisible good up into many
separate units): in the allocation rule, every bid has a small amount of noise added to it, before computing
the allocation. (Borgs et al. (2007) studied such a scheme, and show convergence results in the case of first
price auctions with budgets.)

THEOREM 1. Any pacing game admits a pacing equilibrium.

To provide this result we rely on a smoothed version of the pacing game, which takes care of all the
discontinuity issues. In the smoothed version, the allocation varies continuously and is determined as a
function of the αi only, the penalty for exceeding one’s budget varies continuously, and strict incentive is
given to bid higher. We show we can apply a pure Nash equilibrium existence result to such games. We then
show that if we take a sequence of such games that converges to a (non-smoothed) pacing game, then this
sequence of pure Nash equilibria converges to a pacing equilibrium.

DEFINITION 3. For ε > 0 and H > 0, an (ε,H)-smoothed pacing game is a game where the set of pure
strategies for each buyer i is the set of pacing multipliers αi ∈ [0,1]. For a fixed choice of pacing multipliers,
the original pacing auction market is modified as follows in order to compute allocations and payments:

• Reserve bid: there is an artificial bid of 2ε on all goods (treated as one of the buyers in the below).
• Allocation and pricing rule: For every good j, consider the highest bid b∗j = maxiαivij . Let Sj = {i :
αivij ≥ b∗j − ε} be the set of buyers close to the maximum bid for j. Then i ∈ Sj wins the following

fraction of good j: xij =
αivij−(b∗j−ε)∑

i′∈Sj
[αivij−(b∗j−ε)]

, and pays sij = xijpj for this, where pj is the highest bid

on j among buyers other than i, minus ε (which is necessarily at most b∗j − ε). For the other buyers,
xij = sij = 0.

• Additional artificial spend (to encourage higher bids from those who have not spent their bud-
gets): Each buyer will additionally receive a quantity αi of an artificial good (with unlimited supply)
worth 2ε per unit to her, and pay αiε for this. This results in a profit of αiε if the budget is not exceeded
by this payment.

• Utility: The utility of buyer i is (Bi − αiε−
∑

j sij) + 2αiε+
∑

j xijvij if she does not exceed the
budget Bi, or H(Bi−αiε−

∑
j sij) + 2αiε+

∑
j xijvij if she exceeds it.

The smoothing of allocations and payments allows us to apply existence theorems about pure-strategy
Nash equilibria.

THEOREM 2. Consider a smoothed pacing game in which a strategy for buyer i consists of choosing αi ∈
[0,1]. Also, let M be any upper bound on the sum of a buyer’s valuations in the game, including those for
the artificial good. For H >M/ε, the game admits a pure-strategy Nash equilibrium.
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Proof. We will apply a theorem by Debreu (1952), Glicksberg (1952), and Fan (1952) (see also
Ozdaglar 2010, p. 20) that guarantees existence of a pure-strategy Nash equilibrium under the following
conditions (which we immediately show apply to our game):

• Compact and convex strategy space. This holds because αi ∈ [0,1].
• Continuity of utility in all strategies. This holds for the following reasons: xij and sij are continuous

in all the αi′ (in particular, note that buyers i who are just barely in Sj with αivij = b∗j − ε receive
xij = 0). And utility is continuous in these quantities (in particular, note that the expressions for buyers
who exceed and do not exceed the budget coincide at 2αiε +

∑
j xijvij when the budget is spent

exactly).
• Quasiconcavity of utility in the buyer’s own strategy. This means we must show that ui(αi, α−i) is

quasiconcave in αi. This is the case if there exists a number t such that for αi < t, ui is nondecreasing
in αi, and for αi > t, ui is nonincreasing in αi. Buyer i’s total spend αiε+

∑
j sij is increasing and

continuous in αi. Holding α−i fixed, let t be the value of αi such that αiε+
∑

j sij =Bi (if no such
value exists we may set t= 1). Then, for αi < t, ui is increasing in αi, because increasing αi results
in winning more goods (including more of the artificial good) at prices below i’s valuation (αi does
not affect pj , and if i is winning part of j then vij ≥ αvij ≥ b∗j − ε ≥ pj). For αi > t, i’s total spend
(including on the artificial good) is increasing in αi, and any additional spend will exceed i’s budget,
decreasing the utility term H(B−αiε−

∑
j sij) at rate H . Because each good (including the artificial

good) costs at least 2ε− ε= ε, the value gained from goods bought increases at a rate of at most M/ε,
which by assumption is smaller. Hence, utility is decreasing in αi when αi > t.

�
With this result we are ready to prove Theorem 1. Using the existence of pure-strategy Nash equilibria

in smoothed pacing games, we can show that a limit point of decreasingly smoothed games constitutes a
pacing equilibrium in the original pacing game.

Proof. For a given pacing game, consider a sequence of smoothed versions of it, defined by (εl,H l),
satisfying H l >M/εl, liml→∞ ε

l = 0, and liml→∞H
l =∞. Consider an associated sequence of equilibria

of these games (guaranteed to exist by Theorem 2) defined by {αli, xlij, plj, slij}. This sequence must have
a subsequence with a limit point {α∗i , x∗ij, p∗j , s∗ij} by virtue of the fact that these numbers lie in a compact
space (the values provide an upper bound on the payments); replace the sequence by this subsequence. We
will show that this limit point is an equilibrium of the original pacing game, via the following claims.

• The allocation is feasible. Since for each l and j,
∑

i x
l
ij ≤ 1, we must have

∑
i x
∗
ij ≤ 1. Moreover,

suppose that there exists i with vij > 0. Because Bi > 0, there is some positive value of αi that
guarantees i stays below budget; hence i will bid at least αivij for every l. Thus, for sufficiently
large l, εl will be sufficiently small that the reserve buyer wins none of j, and

∑
i′ x

l
i′j = 1. Hence∑

i′ x
∗
i′j = 1 in this case. Finally, if x∗ij > 0, this implies that there exists L such that for l > L, αlivij ≥

maxi′ α
l
i′vi′j− εl. Since liml→∞ ε

l = 0 this implies α∗i vij ≥maxi′ α
∗
i′vi′j , so i in fact is at least tied for

the highest bid on j.
• The payments are right. p∗j = liml→∞ p

l
j . The latter is the highest other bid minus εl. The highest

other bid converges to the highest other bid at the limit point (note the reserve bid goes to 0), and εl
goes to 0. Moreover, s∗ij = liml→∞ x

l
ijp

l
j = x∗ijp

∗
j .

• No buyer exceeds her budget. We must show that for each buyer i,
∑

j s
∗
ij ≤Bi. Suppose not. Then,

there exists δ > 0 such that for any L, we can find l > L with
∑

j s
l
ij ≥ Bi + δ. But if we let L be

such that for l > L, we have H l >M/δ, then the buyer’s utility for the equilibrium of the resulting
game l is at most M − δH l <M −M = 0. (Spending on the artificial good only makes things worse.)
But the buyer can guarantee herself utility 0 by setting αli = 0, contradicting the fact that we have an
equilibrium. Hence no buyer exceeds her budget.

• A buyer with α∗i < 1 spends her entire budget. Suppose not, i.e., there is such a buyer with
∑

j s
∗
ij <

Bi. Then we can find L such that for l > L, both αliε
l +
∑

j s
l
ij <Bi (because εl goes to 0) and αli < 1.

But as we pointed out earlier, for such a buyer utility is strictly increasing in αli (the strictness is due
to the artificial good). Thus this buyer is not best-responding, contradicting the fact that we have an
equilibrium. Hence a buyer with α∗i < 1 spends her entire budget.

�
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4.2. Sensitivity and Multiplicity of Equilibria
Knowing that at least one pacing equilibrium exists, we ask the following questions. First, can pacing equi-
libria be very sensitive to input parameters? Second, can a pacing game admit multiple pacing equilibria,
and if so, can they differ significantly from each other? We provide affirmative answers in each case. For
this, we need to quantify how different one equilibrium is from another. Fixing a feasible solution to a
pacing game, we rely on the following three objective functions that capture instance-wide measures of
interest.

DEFINITION 4.
• Revenue is the total spending in the game (

∑
ij sij).

• Social welfare is the sum of winning valuations (
∑

ij xijvij).
• Paced welfare is the sum of paced winning valuations (

∑
ij xijαivij).

Revenue and social welfare are natural objectives; we now justify why we consider paced welfare. If
buyers’ budgets are small, then their valuations are relevant only insofar as they indicate the relative values
of the goods. But they no longer make sense as an absolute dollar figure: if one were to double all the
valuations, without touching the budget, nothing would change in the auctions. The next observation makes
this precise.

Observation 1 Given a pacing equilibrium where αi < 1 for some i, if we modify all of i’s valuations to
v′ij = βivij where βi ≥ αi, then we can retain the original pacing equilibrium by setting α′i = αi/βi. We call
this an irrelevant shift in valuations.

This leads us to a definition and a corresponding result.

DEFINITION 5. A welfare measure is robust to irrelevant shifts in valuations if it produces the same value
after an irrelevant shift in valuations. A welfare measure coincides with social welfare when budgets are
large if, whenever αi = 1 for all buyers i, it evaluates to

∑
ij xijvij .

PROPOSITION 3. Paced welfare is the unique welfare measure that coincides with social welfare when
budgets are large and is robust to irrelevant shifts in valuations.

Proof. It is straightforward to check that paced welfare satisfies the conditions. To show that it does so
uniquely, consider any welfare measure satisfying the two conditions and any feasible solution of a pacing
game. We prove that the welfare measure must coincide with paced welfare, by induction on the number of
buyers i with αi < 1. If there are 0 such buyers, then this follows from the fact that the measure coincides
with social welfare in this case. Suppose we have shown it to be true with k such buyers; we will show it
with k+ 1. Choose an arbitrary buyer i with αi < 1. Modify the buyer’s valuations to v′ij = αivij , and let
α′i = αi/αi = 1. This is an irrelevant shift in valuations, so the modification affects neither paced welfare
nor the welfare measure under consideration. But by the induction assumption, the two must coincide after
the shift. So they must have coincided before the shift as well. �

Equipped with these objective functions, we look at concrete examples that show that equilibria are
sensitive to budgets. In particular, Examples 3a and 3b below show that small budget perturbations can
cause large swings in paced welfare and revenue. Note that these examples admit a single equilibrium.

EXAMPLE 3. Large changes in objective function from small changes in budgets:
Case 3a. (Large paced welfare loss from small changes in budgets) Buyer 1 has valuation v11 = 100 and
budget B1 = 1.01. Buyer 2 has valuation v21 = 1 and budget B2 = ∞. Then we have a pacing equi-
librium with α1 = α2 = 1 where 1 wins all of good 1 for a paced welfare of 100. Moreover this is the
unique pacing equilibrium because neither buyer can spend her whole budget. Now, reduce B1 to 0.99. We
must still have α2 = 1. Hence, we must have α1 ≤ 0.01, because otherwise 1 will exceed her budget on
good 1. As a result, both buyers have a paced valuation of less than 1, and thus, no matter the allocation,
paced welfare is at most 1.
Case 3b. (Large revenue loss from small changes in budgets) Buyer 1 has valuations v11 = 100 and v12 =
100, and budget B1 = 1.01. Buyer 2 has valuations v21 = 1 and v22 = 101, and budget B2 =∞. Then we
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have a pacing equilibrium with α1 = α2 = 1 where 1 wins all of good 1 at price 1 and 2 wins all of good
2 at price 100, for a total revenue of 101. Moreover this is the unique pacing equilibrium: buyer 2 cannot
possibly spend his whole budget and hence must have α2 = 1, and given this, buyer 1 cannot win any of
good 2 and will spend less than her whole budget on good 1, so that α1 = 1 as well. Now, reduce B1 to
0.99. We still must have α2 = 1. Hence, we must have α1 ≤ 0.01, because otherwise buyer 1 will have to
win all o good 1 and exceed her budget. As a result, the second price on each good is less than one, and thus
revenue from each good is at most 1, for a total revenue of at most 2.

A second particularity of pacing equilibrium that we want to highlight is the possibility of multiplicity,
i.e., the existence of multiple equilibria, possibly substantially different in character. Examples 4c, 4d, and
4e given next, one after the other, show instances with multiple pacing equilibria. The examples focus on
large difference in revenue, welfare, and paced welfare, respectively.

EXAMPLE 4. Two equilibria with large objective function difference:
Case 4c. (Two equilibria with large revenue difference) Let v11 = v22 = 100, v12 = v21 = 1, v13 = v23 = 99,
and v14 = v34 = 100. Let all other valuations be 0. Moreover, let buyers 1 and 2 have budget 1 each, and let
buyer 3 have budget 100. One pacing equilibrium is α1 = 1, α2 = 0.01, α3 = 1, where buyer 1 wins good
1 for 0.01 and good 3 for 0.99, buyer 2 wins good 2 for 1, and buyer 3 wins good 4 for 100, resulting in
a total revenue of 102. Another pacing equilibrium is α1 = 0.01, α2 = 1, α3 = 1, where buyer 1 wins good
1 for 1, buyer 2 wins good 2 for 0.01 and good 3 for 0.99, and buyer 3 wins good 4 for 1, resulting in a
total revenue of 3.
Case 4d. (Two equilibria with large welfare difference) Let v11 = 100, v22 = 200, v12 = 2, v21 = 1, v13 =
v23 = 99, v14 = 0.01, v24 = 1, and v34 = 10000. Let all other valuations be 0. Moreover, let B1 = 1, B2 = 2,
and B3 = 0.01. One pacing equilibrium is α1 = 1, α2 = 0.01, α3 = 1, where buyer 1 wins good 1 for
0.01 and good 3 for 0.99, buyer 2 wins good 2 for 2, and buyer 3 wins good 4 for 0.01, resulting in a
total social welfare of 10399. Another pacing equilibrium is α1 = 0.01, α2 = 1, α3 = 0.0001, where buyer
1 wins good 1 for 1; buyer 2 wins good 2 for 0.02, good 3 for 0.99, and a fraction 0.99 of good 4 at 0.99;
and buyer 4 wins a fraction 0.01 of good 4 at 0.01. This results in a total social welfare of 499.99.
Case 4e. (Two equilibria with large paced welfare difference) Let v11 = v22 = 100, v12 = v21 = 1, v13 =
v23 = 99, v14 = 10000, and v24 = 0. Moreover, let buyers 1 and 2 have budget 1 each. One pacing equilib-
rium is α1 = 1, α2 = 0.01, where buyer 1 wins good 1 for 0.01, good 3 for 0.99, and good 4 for 0, and buyer
2 wins good 2 for 1, resulting in a total paced welfare of 100 + 99 + 10000 + 1 = 10200. Another pacing
equilibrium is α1 = 0.01, α2 = 1, where buyer 1 wins good 1 for 1 and good 4 for 0, and buyer 2 wins good
2 for 0.01 and good 3 for 0.99, resulting in a total paced welfare of 1 + 100 + 100 + 99 = 300.

The last examples would seem to suggest that in practice it may be worthwhile to consider equilibrium
selection procedures. We highlight that while the multiple equilibria in the examples have very different
objective values, multiplicity might not happen often in practice, and the gaps may not be that large when it
does. That conclusion is driven from a computational study, presented in Section 7, which investigates how
often multiplicity happens and how large the gaps are.

In work related to ours, Balseiro et al. (2015), Balseiro et al. (2021), and Balseiro and Gur (2019) study
stochastic versions of a pacing game, where the buyers draw their valuations independently, typically from
a well-behaved CDF that is absolutely continuous and potentially bounded. The budget constraint is then
typically only required to hold in expectation (Balseiro and Gur (2019) is an exception since they consider
an adaptive dynamic setting). The models put forward by those papers do not admit multiple equilibria,
which motivates the question of why our model does. One potential conjecture would be that it is the non-
smoothness of our discrete setting that enables the multiplicity. We provide evidence against this conjecture
by providing examples where valuations for a good are sampled, and the budget constraint is required to
hold in expectation. First, we observe that a simple extension of one of our instances with multiplicity
allows us to show that multiple equilibria exist even in the case of valuations drawn from an absolutely
continuous CDF with bounded density (a smooth setting with correlated valuations). This also shows that
even smooth instances with a continuum of goods exhibit multiplicity. Second, we show an example where
two buyers with unequal budgets sample valuations uniformly and independently drawn from a simple
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discrete distribution (an iid valuation setting with a discrete distribution). Both examples are explained in
Appendix EC.2 in the e-companion.

Our examples show that neither absolute continuity of the CDF (or equivalently a continuum of goods),
nor having iid valuations, is enough to guarantee uniqueness of pacing equilibria by itself. Based on our
work, it seems plausible that if we assume both absolutely continuous CDFs with bounded density and
independence of valuations, then there is potentially a single unique pacing equilibrium. These findings
are supported by those of Balseiro et al. (2021). They show that there is a unique equilibrium in several
2-buyer settings with independent exponential, uniform, Rayleigh, and Weibull distributions (their results
do also use a non-zero reserve price and are thus slightly incomparable). They also show multiplicity in a
2-buyer example where valuations are independent from piecewise-linear CDFs (again these results utilize
a reserve price as well). These results were added to the 2018 working version of their paper, which cites an
earlier version of the present paper as showing that multiplicative pacing can lead to multiple and unstable
equilibria.

Finally, let us go back to the interpretation of pacing equilibria as games between proxy bidders, assuming
that the platform has full information because advertisers truthfully report their values and budgets. This
information structure assumes that an advertiser may not be better off misreporting to strategically get to
a better pacing equilibrium when the proxy bidders play the game. The following example shows that it
is possible that an advertiser achieves a large gain in utility through a small change in reported values. In
Section 7, we will empirically test whether practically advertisers have an incentive to misreport, and show
that when there is competition our games do not create large incentive issues in practice.

EXAMPLE 5 (LARGE UTILITY GAIN WHEN SLIGHTLY MISREPORTING VALUES). Buyer 1 has valuations
v11 = 100 and v12 = 100, and budget B1 = 0.99. Buyer 2 has valuations v21 = 0.98 and v22 = 101, and
budget B2 =∞. Then we have a pacing equilibrium with α1 = α2 = 1, where buyer 1 wins all of good 1 at
price 0.98 and Buyer 2 wins all of good 2 at price 100. Buyer 2’s utility for this outcome is 101− 100 = 1.
Moreover this is the unique pacing equilibrium: buyer 2 cannot possibly spend his whole budget and
hence must have α2 = 1, and given this, buyer 1 cannot win any of good 2 and will spend less than her
whole budget on good 1, so that α1 = 1 as well. Now, increase the reported v21 to 1. We still must have
α2 = 1, since buyer 2 has infinite budget. Hence, we must have α1 ≤ 0.01, because otherwise buyer 1
will exceed her budget on good 1. As a result, buyer 2 wins all of good 2, receiving value 101 at a price
no larger than 1; buyer 2 also wins some of good 1, receiving nonnegative value and cost at most 1.
Buyer 2’s utility for this outcome is at least 99.

5. Relationship to Competitive Equilibrium
We now show that pacing equilibria are a refinement of competitive (Walrasian) equilibria, a widely studied
concept for understanding markets. These results are in contrast to those for stochastic settings in Balseiro
et al. (2021) and Balseiro and Gur (2019), which do not have a such a relationship to competitive equilibria.
We define a competitive equilibrium with budgets as follows.

DEFINITION 6. A competitive equilibrium with budgets consists of a price pj on every good j, and an
allocation of goods to buyers such that every buyer buys a bundle that maximizes her utility, subject to her
budget constraint. (A buyer is allowed to acquire goods partially.) That is, buyer i’s bundle, consisting of
fractions {xij} that she obtains of each good j, must be in arg max{0≤xij≤1:

∑
j xijpj≤Bi}{

∑
j xij(vij−pj)}.

Additionally, every good with a positive price must be fully allocated.

Competitive equilibria have several attractive properties. For example, in a competitive equilibrium, buy-
ers have no envy, meaning that they prefer their own bundle to that of any other buyer (in a budget-adjusted
sense when budgets are not equal).

We can characterize the optimal actions of buyers as selecting goods in decreasing order of bang-per-
buck. This will be helpful in the derivations below.

PROPOSITION 4. A bundle maximizes a buyer’s utility under her budget constraint if and only if she buys
(parts of) goods in decreasing order of bang-per-buck (vij/pj), starting with the highest, until she either
runs out of budget or reaches goods such that vij < pj .
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PROPOSITION 5. For every pacing equilibrium, there is an equivalent competitive equilibrium.

Proof. Given the pacing equilibrium, set the price of each good equal to the second-highest paced bid
on it (possibly equal to the highest bid), and use the same allocation as in the pacing equilibrium. Note
this means buyers also pay the same as in the pacing equilibrium. Every buyer i that does not run out of
budget (and therefore has multiplier αi = 1) buys every good j with vij > pj , because the valuation being
above the price means that buyer was uniquely the highest bidder on it in the pacing equilibrium; and
buys no good j with vij < pj , because the valuation being below the price means that the buyer was not a
highest bidder for it. A buyer that runs out of budget is spending her money on maximum bang-per-buck
goods, because xij = 1 for every good for which αivij > pj ⇐⇒

vij
pj
> 1

αi
≥ 1. For a good j such that

αivij = pj ⇐⇒
vij
pj

= 1
αi
≥ 1 she may buy a fractional amount: such goods provide worse bang-per-buck

than any other good that i buys, and thus since they are spending their whole budget they do not wish to
buy more of j. No buyer buys anything that is priced above her valuation, because the price being above her
valuation means that she did not have the highest (paced) bid on that good in the pacing equilibrium. �

Proposition 5 shows that SPPE inherits all the desirable properties of competitive equilibrium, which
are quite desirable to buyers, and thus also to the platform. For example, it follows that SPPE is guar-
anteed to have no envy among buyers (in a budget-adjusted sense), while being Pareto optimal. Another
interesting consequence is that SPPE inherits strategyproof in the large properties from competitive equi-
librium (Azevedo and Budish 2019, Kroer and Peysakhovich 2019).

The converse is not true: pacing equilibria strictly refine competitive equilibria. For example, consider
a setting with a single buyer and good, with value v11 = 1. All pacing equilibria have zero revenue, but
a competitive equilibrium can have p1 = 1

2
. Hence, a competitive equilibrium can result in higher revenue

than any pacing equilibrium. The opposite direction is more interesting: a competitive equilibrium can yield
a lower revenue than any pacing equilibrium. The intuition is that setting a high price on one good can drain
some buyer’s budget, thereby making that buyer effectively “paced,” as shown below.

EXAMPLE 6 (COMPETITIVE EQUILIBRIUM WITH MORE REVENUE THAN PACING EQUILIBRIUM).
Suppose we have 3 buyers and 3 goods. Buyer 1 values good 1 at 101, buyer 2 values goods 1, 2 and 3
at 100, 200, and 10, respectively, and buyer 3 values good 3 at 1. All other valuations are 0. Buyer 2 has
budget 10.1, the other two have budget ∞. Since buyer 2 faces no competition for good 2, in a pacing
equilibrium, buyer 2 gets it for free and will pay at most 1. Hence, no buyer will be paced, resulting in
independent second price auctions. The revenue for good 1 is 100. However, in a competitive equilibrium,
we can arbitrarily set a price of 10 for good 2. We then price good 3 at 1 and let buyer 2 buy one tenth of it,
thereby spending his budget. Finally, we price good 1 at 101 so buyer 2 will no longer want to buy it. (For
buyer 2, the goods ordered by bang per buck are 2, 3 and 1, which satisfies the competitive equilibrium
conditions.) Revenue has plummeted to 11 + 10 + 1 = 22.

Nonetheless, every competitive equilibrium can be reinterpreted as a pacing equilibrium as well.

PROPOSITION 6. For every competitive equilibrium, one can construct an equivalent pacing equilibrium
after possibly adding a single buyer who acts as a price setter but who does not win anything.

Proof. Given the competitive equilibrium, add a buyer with infinite budget who bids exactly pj (as in
the competitive equilibrium) on every good. Use the same allocation as in the competitive equilibrium (so
the new buyer wins nothing). Buyers who bought every good for which their valuations exceeded the price
are not paced. Buyers who ran out of budget are paced as follows. Since they bought goods in order of
maximum bang-per-buck, for each such buyer i, consider the good j with minimum vij

pj
of which she still

bought some. Define αi = pj/vij for that good.
We must show that every good is in fact won by the highest paced buyer for it and that the added buyer

is always the second highest (allowing for ties). First, we show that the added buyer is never the uniquely
highest bid, because its bids are always (weakly) exceeded by any buyer who wins (some of) the good in
the competitive equilibrium. If that buyer is an unpaced buyer, we must have vij ≥ pj , because otherwise
she would not have bought the good in the competitive equilibrium. If it is a paced buyer, because she buys
some of j in the competitive equilibrium, it follows that vij

pj
≥ 1

αi
by the definition of αi. Then, αivij ≥ pj .
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Next, we show that there cannot be two or more buyers with paced bids strictly higher than that of the
added buyer. For suppose there are; there is at least one that will not win the entire good. If that buyer is
not paced, then we have vij > pj , but this leads to a contradiction because unpaced buyers must have won
all such goods completely in the competitive equilibrium. If the buyer is paced, we have αivij > pj ⇐⇒
vij
pj
> 1

αi
. By the definition of αi that means there is some other good j′ with

vij′
p′j

= 1
αi
<

vij
pj

of which i
bought some in the competitive equilibrium. But this leads to a contradiction, because if so, then i should
have bought all of j in the competitive equilibrium before moving on to j′.

It follows that every buyer winning part of a good has the highest paced bid on that good and the added
buyer is always (possibly tied for) second. This means that the allocation and prices are consistent with the
definition of pacing equilibrium. �

While Proposition 6 shows that every competitive equilibrium can be implemented by adding an addi-
tional price-setting buyer, this proposition also has another interesting interpretation: the price-setting buyer
could also be implemented via reserve prices. Thus, any competitive equilibrium can be implemented by
constructing an SPPE with reserve prices.

Combining Example 6 with Proposition 6, we obtain a revenue nonmonotonicity result.

COROLLARY 1. Adding a buyer may decrease the revenue at a pacing equilibrium.

Finally, the first fundamental theorem of welfare economics states that competitive equilibria are Pareto
optimal. Although this is a known result, we include a direct proof for our setting in Appendix EC.1 in the
e-companion. This, together with Proposition 5, implies that pacing equilibria are Pareto optimal as well.

PROPOSITION 7. Any pacing equilibrium is Pareto optimal (when considering the utilities of both the seller
and buyers).

6. Computing Pacing Equilibria
In this section, we look at algorithmic issues regarding computation of equilibria. We start with some com-
plexity and hardness results, continue exploring whether iterating best responses will be useful to find
equilibria, and present a MIP formulation that can helps us find equilibria.

6.1. Complexity Results
Motivated by equilibrium existence, and having defined the relevant objectives, we investigate the complex-
ity of computing an equilibrium that optimizes an objective. (We leave open the complexity of identifying
an arbitrary equilibrium.) Using a pacing equilibrium gadget that captures binary variables, we can reduce
3SAT to our problem. An instance of 3SAT consists of a tuple (V,C), where V is a set of Boolean vari-
ables, and C is a set of clauses of the form (l1 ∨ l2 ∨ l3) with li representing literals. We define the decision
versions of our problems and show hardness results for them.

DEFINITION 7. We are given goods, buyers, buyers’ valuations for goods, buyers’ budgets, and a num-
ber T . MAX-REVENUE-PACING consists in deciding whether there exists a pacing equilibrium that
achieves revenue at least T . MAX-WELFARE-PACING and MAX-PACED-WELFARE-PACING are
similar but for social welfare, and paced social welfare, respectively.

THEOREM 3. MAX-REVENUE-PACING, MAX-WELFARE-PACING and MAX-PACED-
WELFARE-PACING are NP-complete.

While full proofs are deferred to Appendix EC.1 in the e-companion because they are technical, we
provide the intuition for the proof here. To get the results, we rely on Example 1, given below. This is
an auction-market instance that models binary decisions. We use one instance for each variable, with both
buyers representing literals true and false. Given a 3SAT instance, we construct an auction market in which
additional buyers and the objectives encode whether all clauses are satisfied.
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Table 1 Valuations resulting in cycling best responses
i vi,1 vi,2 vi,3 vi,4 vi,5 vi,6
1 100.0 1300.0 123.0 0.0 11.0 0.0
2 0.0 6503.0 300.6 501.0 0.0 25.0
3 50.0 0.0 0.0 500.0 10.0 5.0

Example 1 (Gadget for binary decisions) Given K1 > 0, α > 0, δ ≥ 0 (with α+ δ < 1), and small ε, let
K2 = 1−α−δ

2α
K1. Let v11 = v12 = v21 = v22 =K2, v23 = v14 =K1, and v13 = v24 =K1/α+ ε. Both buyers

have budget K1. One pacing equilibrium is α1 = 1, α2 = α. This results in buyer 1 winning goods 1, 2, and
3, for a total price of 2αK2 +αK1 = (1−α− δ)K1 +αK1 = (1− δ)K1, and buyer 2 winning good 4 for a
total price of K1. By symmetry, there is another equilibrium with α1 = α, α2 = 1, in which buyer 2 retains
δK1 of his budget.

For small α and δ, this instance does not admit a pacing equilibrium where both buyers have even a
moderately high multiplier. Hence, if we were interested in pacing equilibria with high multipliers, we can
choose to make either α1 or α2 as high as possible, but we cannot attempt to make both of them somewhat
high at the same time.

These hardness results limit the performance that we may expect from simple dynamics. Hence, it may be
worthwhile to attempt to intelligently guide the dynamics to improve the chances of ending up at a desirable
equilibrium.

A natural question to ask is whether it is possible to approximately maximize any of these objectives that
lead to NP-complete problems. This would be a very desirable result. However, an approximation algorithm
would need to output a valid pacing equilibrium. Whether an arbitrary pacing equilibrium can be computed
in polynomial time is itself an interesting open problem. We believe that computing a pacing equilibrium
could be a PPAD-complete problem, which would preclude approximation algorithms.

6.2. Iterated Best Responses
A standard approach to find the equilibria of a game is to iterate best responses. In many games, this is
a reasonable learning procedure that converges to an equilibrium. However, for pacing games this is not
guaranteed to work if we start from an inadequate solution. Indeed, if we sequentially set each buyer’s
bids via best-responding multiplicatively paced bidding, we may end up with a cycling sequence of pacing
vectors, as the following example demonstrates.

Example 2 (Best responses may cycle) Consider an instance given by the set of valuations shown in
Table 1 and budgets 60, 1300 and ∞, for buyers 1 to 3, respectively. All buyers start with pacing multi-
pliers equal to 1. Iterating best responses, all multipliers return to 1 after 5 iterations. See Figure 3 for an
illustration and Appendix EC.3 in the e-companion for a step-by-step explanation.

Although applying iterated best responses to pacing multipliers can cycle, the example above still admits
multipliers that constitute an equilibrium with the corresponding fractional allocation. Since we know that
an equilibrium exists and iterating best responses will not work as a general method to find one, we need
another way to find an equilibrium. The next section develops such a method, while Appendix EC.4 in the
e-companion contains experiments showing the practical performance of best-response dynamics.

6.3. MIP Formulation of Pacing Equilibria
Even though in earlier sections we showed that computing equilibria is hard in the worst case and that
iterating best responses may cycle, this does not mean that it is a hard problem in practice and for specific
instances. Being able to compute equilibria will allow us to study their properties (e.g., find gaps among
multiple equilibria, study incentive compatibility), and to use them as initial solutions when learning pacing
multipliers in dynamic settings. We provide a MIP formulation in which the constraints are equivalent to
the equilibrium conditions. This guarantees that a solution is feasible if and only if it satisfies the conditions
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Figure 3 Best-response bids for the cycling example

given in Definition 2. By optimizing with respect to various objectives, we can refine the solution procedure
and find different equilibria. To define the problem, it will be convenient to let v̄j = maxi∈N vi,j be the
maximum value for good j for any buyer. We will need the following variables:

• αi ∈ [0,1] : Buyer i’s pacing multiplier.
• sij ∈R+ : Buyer i’s spend on good j.
• pj ∈R+ : Price of good j.
• hj ∈R+ : The highest bid for good j.

• dij ∈ {0,1} : 1 if buyer i may win any part of good j.
• yi ∈ {0,1} : 1 if buyer i spends its full budget.
• wij ∈ {0,1} : 1 if buyer i is the winner of good j.
• rij ∈ {0,1} : 1 if buyer i is the second price for good j.

Most variables are self-explanatory, as they denote the same as in the pacing-game definition. Variables
wij , and rij represent a buyer that is considered the winner and a buyer that is considered the runner up
because the bid was a second price, respectively, for each good j. The winner does not participate in lower-
bounding the price (constraint (9)), and the runner up upper bounds the price (constraint (10)). In both cases,
ties are broken arbitrarily but only one buyer can be chosen. Although there could be multiple winners and
runner-ups, selecting exactly one of them is useful to encode the rules of a second price auction.

The equilibria of the pacing game are given exactly by the feasible solutions to the following MIP. From
a feasible solution, we get pacing multipliers αi for each buyer and spendings sij for each buyer-good pair.
The fraction of good j allocated to buyer i can then be computed as xij = sij/pj . (This last computation is
not done inside the MIP because it would be nonlinear, but it is an easy computation to do once a solution
to the MIP is obtained.)
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∑
j∈M

sij ≤Bi (∀i∈N) (1)∑
j∈M

sij ≥ yiBi (∀i∈N) (2)

αi ≥ 1− yi (∀i∈N) (3)∑
i∈N

sij = pj (∀j∈M) (4)

sij ≤Bidij (∀i∈N,j∈M) (5)
hj ≥ αivij (∀i∈N,j∈M) (6)

hj ≤ αivij + (1− dij)v̄j (∀i∈N,j∈M) (7)
wij ≤ dij (∀i∈N,j∈M) (8)
pj ≥ αivij −wijvij (∀i∈N,j∈M) (9)
pj ≤ αivij + (1− rij)v̄j (∀i∈N,j∈M) (10)∑
i∈N

wij = 1 (∀j∈M) (11)∑
i∈N

rij = 1 (∀j∈M) (12)

rij +wij ≤ 1 (∀i∈N,j∈M) (13)

We now describe the constraints. Constraint (1) ensures that a buyer can spend no more than its budget,
while (2) ensures that a buyer’s total spend must be at least as large as its budget if that buyer is spending
its full budget (this enforces the definition of yi). Constraint (3) ensures that a buyer must have a pacing
multiplier of at least 1 if it does not spend its full budget, (4) ensures that the total spend of a good across
buyers must equal the price of that good, and (5) ensures that a buyer’s spend on a good is no greater than 0
if it did not win part of that good. Constraint (6) ensures that the highest bid for a good must be at least as
high as every paced bid for that good, and (7) ensures that the highest bid for a good must be no greater than
the paced bid of every buyer that wins part of that good. Constraint (8) ensures that the designated winner
for a good is designated as allowed to win a partial amount of that good, and (9) ensures that the price for a
good is at least as high as all paced bids besides the designated winner’s paced bid. Constraint (10) ensures
that the price for a good is no greater than the runner-up’s paced bid, (11) ensures that there is exactly one
designated winner, (12) ensures that there is exactly one designated runner-up, and (13) ensures that a buyer
cannot be both the designated winner and the designated runner-up of a given auction.

A revenue-maximizing pacing equilibrium can be computed by maximizing
∑

j∈M pj in the feasible
region defined above, whereas one can use max

∑
j∈M hj to maximize the sum of the winning paced bids.

We show in Appendix EC.1.3 in the e-companion that our MIP correctly computes a pacing equilibrium.

PROPOSITION 8. A solution to the MIP (1)-(13) is feasible if and only if it corresponds to the conditions of
a pacing equilibrium.

If we are not concerned with a particular objective, but instead just want to compute any one pacing
equilibrium, we can use the following two approaches: The first is to simply run the original MIP as a
feasibility problem with no objective. The second is to relax the complementarity condition (3). We intro-
duce a variable zi for each buyer i that represents whether that buyer satisfies (3). We replace (3) by αi ≥
1− yi− zi(∀i ∈N). If zi = 1, then this constraint is no longer active since αi ≥ 0≥−yi is implied by the
nonnegativity of αi and yi. If z0 = 0 then this constraint is our standard complementarity condition on αi
and yi. We can then solve this relaxed MIP with the objective

∑
i∈N zi. A solution where the objective is

zero corresponds to a feasible solution to the original MIP.

7. Computational Experiments
In this section, we revisit our analytical results from an empirical point of view and put those results in
perspective through a computational study. Rather than investigating worst-case instances as before, we con-
sider various distributions over pacing instances that attempt to capture real-life phenomena. We investigate
the following questions.
MIP Scalability. How large are the instances that the MIP can solve? We formulated a MIP to compute

the value-maximizing pacing equilibria, but the problem of computing the value-maximizing pacing
equilibrium is NP-complete.

Equilibrium Analysis. What are the empirical properties of pacing equilibria? We showed that pacing equi-
libria are guaranteed to exist, but they are not necessarily unique, and there can be large gaps between
the highest- and lowest-valued equilibria with respect to revenue, welfare, and paced welfare.
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Incentive Compatibility. Does the system provide the right incentives? The pacing system takes advertisers’
reported values as input. While an equilibrium is guaranteed to exist for those values, we showed that
a buyer can sometimes increase their utility by misreporting their values. This calls for a deeper study
of the welfare properties of pacing equilibria to understand when input values are truthful.

A Dynamic Setup. How can our analytical results lead to improvements of practical pacing algorithms? We
study a static game but our framework can inform how one paces budgets in a dynamic setting with
noisy realizations of impressions.

The remainder of this section is organized as follows. In Section 7.1, we describe the different classes
of problem instances we construct. In Section 7.2, we describe how well the MIP scales on these different
instances. Section 7.3 describes equilibrium properties: empirical gaps between equilibria, and incentives
for advertisers to misreport bids and budgets. Section 7.4 explores using the MIP to seed a heuristic algo-
rithm for a dynamic setup of the problem.

7.1. Problem Instances
We run experiments on two types of problem instances: stylized instances, which were generated from a
distribution over bipartite graphs; and realistic instances, for which a bipartite graph was constructed from
real-world auction markets. We describe how each type of instance is constructed below. Recall that a
pacing instance consists of a tuple (n,m, (vij)i∈N,j∈M , (Bi)i∈N), where n is the number of buyers, m is the
number of goods (we use ‘auctions’ interchangeably), vij is buyer i’s value for winning good j, and Bi is
buyer i’s budget. We denote N = {1, . . . , n} and similarly with M and m.

Stylized Instances For stylized instances, we consider three distributions over bipartite graphs: complete,
sampled, and correlated. They refer to how the graph is connected and the correlation between edge weights.
Complete. In complete graph instances, every buyer is interested in every good. For each buyer i and good j,

the valuation vij is drawn uniformly iid from [0,1]. For each buyer i, its budget Bi is drawn uniformly
from [0,

∑m

j=1 vij/n].
Sampled. Sampled graph instances are generated similarly to complete graphs, except that buyers are inter-

ested in a subset of goods. For each good, a subset of interested buyers is sampled uniformly at random
from the power set of {1, . . . , n}. If a buyer happens to not be interested in any goods, a single good
of interest is uniformly sampled for that buyer. Valuations vij for the resulting edges and budgets Bi
are generated in the same manner as for complete graph instances.

Correlated. Correlated graphs are similar to sampled graphs, except that, for each good, the valuations are
correlated across buyers through the additional parameter σ. For each good j, an expected valuation
µj is drawn uniformly at random from [0,1]. For each buyer-good pair, valuation vij is then sampled
from a Gaussian distribution truncated to [0,1] with mean µj and standard deviation σ.

We generated 5 stylized instances for all combinations of instance type ∈ {complete, sampled,
correlated}, numbers of buyers n∈ {2,4,6,8,10}, number of goods m∈ {4,6,8,10,11,12,14}, and in the
case of correlated instances, standard deviations σ ∈ {0.01, . . . ,0.09,0.1,0.2,0.3}. This resulted in a total
of 175 complete instances, 175 sampled instances, and 2100 correlated instances, totalling 2450 stylized
instances.

Realistic Instances We construct realistic instances from real-world auction markets in two steps. We
first take all bidding data for a country in a one-hour interval and use it to create n buyers and m goods.
For that data, we identify the n buyers that participate in the most auctions. (Here, ‘auctions’ refer to the
data while ‘goods’ refer to the generated instance.) Each of those buyers maps to a buyer in the generated
instance. For now, we define the goods in the instance as the auctions that include at least one of the n
buyers. We set the bid in each buyer-auction pair to be the value of the buyer for the corresponding good.
The budget for each buyer was set to the buyer’s original budget multiplied by a single scalar, calibrated
to get the percentage of budget-constrained buyers equal to what was observed in the real-world auction
market.

These instances were too large for the MIP to solve. In a second step, we reduce the size through clus-
tering: we apply the k-means algorithm to the goods generated so far, using the n-dimensional vector of
values for that good as features. The goods in the resulting instance were the resulting clusters. Each buyer
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valuation for a (cluster-level) good is set to the sum of valuations among goods in the cluster. To generate
the final buyer budgets, we execute the clustering algorithm for k = 8 and choose a single factor to scale
the budget such that the paced-welfare-maximizing pacing equilibrium had the same fraction of budget-
constrained buyers as that of the original auction market. Finally, we run the clustering algorithm again and
generate the required m clusters.

For the computational experiments, we preselected 50 country-hour pairs from 26 unique countries, and
used n= 10. In each case, we generated scaled-down instances for 8 to 15 clusters, for a total of 450 realistic
instances.

7.2. MIP Scalability
We start by exploring the size of instances one can solve with the MIP. It is evident that the MIP will not
scale to the size of real-world pacing instances, which may involve tens of billions of auctions in a single
day. However, less clear is how long it takes to solve instances of different size, and whether some structure
in problem instances or MIP objectives were harder to solve than others. The larger the instances that the
MIP can solve, the better equipped we are to use the MIP to answer other empirical questions.

The high-level experimental setup is: (1) We generated the 2450 stylized and 450 realistic instances
mentioned earlier. (2) We solved each instance using different versions of the MIP. (3) We computed the
fraction of instances that were optimally solved, broken down by solution method and instance features.

We considered several versions of the MIP, which we name within parenthesis: the pure feasibility MIP
as defined by (1)-(13) (feasibility), the MIP with the relaxed version of (3) (relaxed feasibility), and the
feasibility MIP with objectives that minimize or maximize revenue or paced welfare (min revenue, max
revenue, min paced welfare, max paced welfare, respectively). All computations were done with a time
limit of 5 minutes using Xpress Optimization Suite 8.0 FICO (2016) on a server with 24 single-core Intel
Haswell CPUs running at 2.5GHz and 60GB of RAM. The relatively short timeout allowed us to run the
study for our extensive set of instances. (We tested a longer runtime on 98 randomly-selected instances
with 9-14 buyers and 9-14 goods. With two hours of runtime we solve 30 of those instances, as opposed to
17 with a five-minute runtime. Thus additional time yields some improvement, but does not greatly extend
scalability.) Solutions were programmatically checked to make sure they satisfy the pacing equilibrium
conditions.
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Table 2 Gaps between equilibria for different objectives and classes of problem instances.
Objective Instances Pairs % No Gap % Max Gap
Revenue Complete Graph 40.6 97.2 44.2
Revenue Sampled Graph 73.1 96.9 33.8
Revenue Correlated Values 68.4 99.7 13.3
Paced Welfare Complete Graph 46.3 91.4 39.7
Paced Welfare Sampled Graph 80.0 93.6 16.1
Paced Welfare Correlated Values 70.6 93.7 42.9
Welfare Complete Graph 60.0 92.4 5.3
Welfare Sampled Graph 88.0 92.2 2.6
Welfare Correlated Values 81.7 94.2 2.9

Results We report the percentage of instances for which equilibria were found (as opposed to timing
out) and report results by three breakdowns: MIP objective, number of goods m, and number of buyers n.
Figure 4 shows how runtimes scale on stylized instances for each breakdown. We observe that complete
graph instances are harder to solve than sampled or correlated instances. This is not surprising, since they
require more decision variables than the other two types. The instance type played a larger factor in whether
an instance was solved than did the objective type. Still, we observe some differences between objective
types. Across all three sets of stylized instance distributions, the value-maximizing MIP objectives were
solved more often than value-minimizing objectives. Paced welfare objectives were solved slightly more
often than revenue objectives. Neither feasibility MIP greatly outperformed the paced-welfare-maximizing
MIP. The feasibility MIP solved about as many instances as the relaxed version.

Grouping the realistic instances by m = 8, . . . ,15, the MIP respectively found the equilibria for all the
sub-cases in 43, 37, 30, 25, 19, 17, 16, and 15 instances out of the 50 combinations of country-hour pairs
that we considered. In agreement with the stylized instances, complexity increases as instances comprise
more goods.

7.3. Empirical Analysis of Equilibria
In this section, we use the MIP to improve our understanding of equilibrium properties among instances
we can solve. We focus on two properties of pacing equilibria that we covered in our analytical work, and
explore how they change as a function of instance size. First, do we frequently observe large empirical
differences in equilibria—that is, between the value-maximizing and value-minimizing equilibria—or do
such gaps only arise in pathological examples? Second, how frequently do we observe large incentives
for advertisers to misreport bids and budgets? How are such incentives affected by features of the pacing
instance?

7.3.1. Empirical Differences in Equilibria Even though we have seen large gaps for instances con-
structed carefully for that purpose, we see that this is not the case for the practically-inspired instances that
we put forward. For each of those instances, we solve a pair of MIPs to find the difference between the
value-maximizing and value-minimizing equilibrium. We then measure such gaps across sets of instances.
We measure equilibrium gaps for revenue, welfare, and paced welfare. For revenue and paced welfare, we
have a MIP that finds extremal equilibria. Measuring welfare gaps is less straightforward: Since we could
not represent the welfare objective as a linear expression, we do not have a MIP to optimize. Instead, we
compute the gap among the MIP solutions optimizing the other objective functions. Hence, the reported
gaps in social welfare are a lower bound on the maximal achievable gap. We report the following metrics:
Pairs %: the percentage of instances for which a pair of MIPs (objective-maximizing and -minimizing)

both returned prior to the five-minute timeout. (For the welfare objective, a pair was counted if any
two MIPs where any objectives were solved.)

No Gap %: the percentage of paired instances with no gap in objective value.
Max Gap: the largest observed gap across instances, as a percentage of the objective-maximizing value.
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Results Computing pacing equilibria for the stylized instances, we find that for the majority of instances,
there was no gap in the objective value across equilibria. In some cases, however, gaps were as large as
44.2%. The welfare objective had smaller gaps: all were less than 5.3%, but recall that for this objective
those are only lower bounds. Table 2 summarizes the empirical study of gaps.

Some instances remained unsolved at the end of the time limit, and it could be that these instances also
have large gaps. To test this hypothesis, we looked at runtimes of solved instances with large gaps. The
conclusion is that these tend to be instances that can be solved quickly. For instance, none of the instances
with nonzero gaps took more than ten seconds to solve. This analysis suggests that longer runtimes arise
from sparseness of equilibria, rather than from their multiplicity.

The conclusions on equilibrium gaps also extend to realistic instances. We saw essentially no differences
for the 43 realistic instances for which the scaled-down instance had solutions for all objectives for at
least one number of clusters m. Only one unclustered instance had any revenue difference (and only for a
single choice of m): a difference of 0.03%. Only two unclustered instances had welfare differences: one
with a difference of 0.03% in a single clustering, and one with about 2.9% in every clustering. Only one
unclustered instance had paced welfare differences: 5.7% in the worst clustering, but 2-3% in the remaining
clusterings.

Overall, these results are promising: Although our theoretical results demonstrated that gaps can be large
in theory, we found empirically that most gaps on instances we considered were small, and often times,
there was no gap at all. More summary statistics on gaps are given in Appendix EC.5 in the e-companion.

Even when there is no gap in revenue or welfare across computed equilibria, multiple equilibria with
the same objective value could nevertheless exist. To test whether this occurs, we looked at 156 instances
where at least two MIPs finished within five minutes. Amongst those instances, we identified the subset
of instances for which two or more MIP models returned non-identical vectors of pacing multipliers. We
found that 144 instances (i.e., all but 12 instances) returned the same vector of pacing multipliers across all
MIP models that returned a solution within five minutes. For the 12 instances that had multiple equilibria,
either revenue or paced welfare differed as well. While this does not prove that there are no other solutions
with the same objective value, it does suggest that this does not happen often. We expect that the smoother
the instances are, the less likely it is that the instance will admit multiple equilibria with the same objective
values.

7.3.2. Robustness to Misreporting We now explore whether buyers can improve their performance by
misreporting bids or budgets to affect the pacing equilibrium in the proxy-bidder setting where the platform
adjusts pacing multipliers. Although Proposition 1 implies that buyers do not benefit from misreporting
given the current pacing equilibrium, buyers may improve their utility if they can influence the resulting
equilibrium. Example 5 highlighted such a case where a buyer significantly increased its utility by misre-
porting; we investigate the extent to which misreporting may be a problem in practice with a computational
study. Concretely, we study the relation between the incentive to misreport and market thickness.

We consider two possibilities in how a focal buyer may strategically misreport. Motivated by pacing
multipliers, a simple case is when the buyer misreports values by choosing bids that arise from multiplying
all values by a fixed constant, and submitting some alternative budget. We refer to this case as uniform
deviations. A second case is when the focal buyer performs a grid search to find optimal bids for each good.
For this latter case we omit budget deviations, since the number of MIPs that need to be solved during the
grid search is already substantial. We performed both studies and show the output in Figure 6. Results turn
out to be of similar magnitude but marginally higher for grid search.

Since the case of uniform deviations is closely aligned with the setting of our model, we describe it first.
Here, buyers submit a budget Bi and a single valuation vi for a generic good. The valuation for specific
goods is then set to vij = viγij , where we assume that γij is fixed ahead of time. This setting models paced
internet auction markets, where buyers typically submit their budget, targeting criteria, and their valuations
for clicks. Their valuation for an individual impression is then typically calculated as their valuation for a
click times the click-through rate of the impression-ad pair. Because the click-through rate γij is estimated
by the platform, each advertiser can only affect their overall bid for a click.
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Figure 5 An overview of the steps to measure an advertiser’s gain in utility for strategically misreporting values and budgets to
the proxy bidder
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Figure 6 Utility gains when misreporting. The utility gain is defined as v∗−v, where v∗ is the optimal value when misreporting
and v is the truthful value. Left: Advertiser uniformly manipulates all bids by multiplying them with a constant. Right:
Advertiser explores all bid manipulations using grid search.

We generated 40 instances, each with 4 auctions, 2 through 20 buyers, and budgets and valuations
generated according to the complete-graph setting described in Section 7.1. To model misreporting,
we assume that buyers may multiply their budgets and valuations, respectively, by scalars (βi, νi) ∈
{0.6,0.8, . . . ,1.4} × {0.5,0.6, . . . ,1.4}. We consider that only a focal buyer per auction is strategically
misreporting while the others remain true to their actual values. The focal buyer submits scaled budgets
and valuations to the pacing mechanism, instead of the actual ones. With this setup, we solve the MIPs
and compare the resulting utility received by the focal buyer across all (βi, νi). An overview of the setup is
shown in Figure 5.

Results We say that the focal buyer in an instance has an incentive to misreport when there is a combina-
tion (βi, νi) for which the buyer’s utility is higher than that when true values are reported. The left panel of
Figure 6 shows the utility gain that results from applying the multiplicative scalars. With more buyers, the
incentive to misreport disappears rapidly. Since we only tried a discrete and finite set of scalars, one could
argue that perhaps it would have been optimal to use another scalar that was not in the set. To provide evi-
dence that this is unlikely, we tried a much finer discretization for 10 instances composed of 6 to 14 buyers.
This time we considered scalars (βi, νi)∈ {0.6,0.65, . . . ,1.4}×{0.5,0.55, . . . ,1.4}; i.e., a step size of 0.05
instead of 0.1. Out of these 50 instances, we found only one instance for which a deviation increased the
utility. It is also unlikely that we needed a bigger interval of scalars: none of the instances we tested resulted
in the optimal scalar being at the extremes of an interval.

The right panel of Figure 6 shows the utility gain that results from performing grid search across each
valuation. Here, we consider the more general case where the buyer can submit an independent valuation
νijvij for appropriately chosen scalars νij . We considered a coarser discretization for the values of ν and for
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how many buyers to consider than before for computational reasons: we consider every misreport {νij}4j=1
∈

[.5, .9,1.,1.1,1.5]4. We also only consider 2, 4, 8, 16, and 20 buyers, and generate 20 instances per size.
As can be seen in the figure, although the maximum deviation is marginally higher, it is the same order of
magnitude and it rapidly goes to zero as the market gets denser, thus not affecting the conclusions drawn in
the first part.

In summary, we found that the buyer was rarely incentivized to manipulate its valuation or budget, and
that the incentive decreased as the size of the instance grew. Collectively, the empirical conclusions on
equilibrium properties reassure us that some of these potential problems may not actually be so in practice.

7.4. Seeding Dynamic Instances
Real-world pacing heuristics rely on tractable adaptive algorithms that update buyers’ pacing multipliers
over time. Recent results have shown that such algorithms can converge to stable pacing multipliers in the
limit, given simplifying distributional assumptions (Balseiro and Gur 2019). While convergence in the limit
is a positive result, the rate at which the learning algorithm converges is important in practice: The longer
the pacing algorithm takes to converge, the worse it is at optimizing the buyer’s utility. This motivates us to
study how the stability of adaptive algorithms can be improved.

The adaptive algorithm we use for this set of experiments is from Balseiro and Gur (2019), which we
refer to as ADAPTIVEPACING; see Algorithm 1. ADAPTIVEPACING takes as input a pacing instance Γ,
a vector of initial pacing multipliers (αinit

i )i∈N , a minimum allowable pacing multiplier αmin, and a step
size ε, which affects how much the multiplier changes across auctions. After each auction j ∈M , each
buyer i updates its multiplier based on the difference between the buyer’s spend and its target per-auction
expenditure, which is the average amount to spend per auction to perfectly exhaust the budget. In this paper,
Algorithm 1 uses the notion of a multiplier α, which differs from the notion of a multiplier µ in Balseiro and
Gur (2019); the relationship is α= 1/(1 + µ). Other minor differences from Balseiro and Gur (2019) are
that (1) we made the initial multipliers an explicit parameter to the algorithm; and (2) we removed per-buyer
subscripts for αmin and ε, since all buyers use the same value in our experiments.

Algorithm 1: ADAPTIVEPACING (Balseiro and Gur 2019)
Input: Pacing instance Γ = (N,M, (vij)i∈N,j∈M , (Bi)i∈N); initial multipliers (αinit

i )i∈N ; minimum
multiplier αmin; step size ε.

1 for i∈N do
2 Set target expenditure ρi =Bi/m;
3 Initialize remaining budget Bi1 =Bi and multiplier αi1 = αinit

i ;

4 for j ∈M do
5 Each buyer i places bid bij = min(vijαij,Bij).
6 The auction outputs an allocation (xij)i∈N and payments (sij)i∈N .
7 Each buyer i updates its multiplier αi,j+1 = max(αmin,1/max(1,1/αij − ε(ρi− sij))) and

remaining budget Bi,j+1 =Bij − sij .
8 return bids, allocations, and payments;

We now describe the computational study that evaluates using the MIP to improve the adaptive algorithm.
Our study consists of running the adaptive algorithm on large instances, seeded from the pacing multipliers
of a small instance that compactly represents each of them. We compare outputs under two types of initial
multipliers: a unique constant for all buyers which is what one would do without additional information
(e.g., each buyer starts with multiplier 0.5), and the pacing multipliers returned by the MIP for the original
(static) instance. For each set of initial pacing multipliers, we determine parameters ε and αmin through grid
search by choosing those that minimize the average ex-post relative regret (i.e., the average amount that a
buyer could have improved its utility by playing a single best-response multiplier, given the other bids are
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Figure 7 Steps to measure the benefit from warm-starting heuristics with the MIP

fixed). This is summarized in Figure 7. (See Appendix EC.4 in the e-companion for analogous experiments
on using the MIP to improve existing algorithms of a one-shot model, where the tractable algorithm in that
case is best-response dynamics.)

In the case of stylized instances, we createK complete-graph instances, and scale each one up to produce
a large instance. To scale, we make C copies of each good, and scale budgets by C. For each edge in the
scaled-up graph, we perturb the buyer-good value by adding Gaussian noise with mean 0 and standard devi-
ation σ (this noise parameter σ is different from that of the correlated stylized instances). The parameters we
used for these experiments are K = 6, C = 500, σ ∈ {0,0.1,0.5}, αmin ∈ {0.1,0.05}, and ε ∈ {0.01,1,2}.
More details on these instances are given in Appendix EC.5 in the e-companion.

In the case of realistic instances, as explained in Section 7.1, we take a large instance constructed from
real data, and we cluster it to make a compact representation. In this case, we solve the MIP corresponding
to the clustered instance and then provide the resulting pacing multipliers as input when running ADAP-
TIVEPACING on the original one without clusters.

Results As shown in Figure 8, running ADAPTIVEPACING with MIP-based initial multipliers produces a
lower regret than with other choices of initial multipliers. Performance of the MIP-based solution degrades
as the noise parameter σ grows, but even at the highest levels we considered, the MIP-based solution out-
performed the baseline solutions. When using fixed initial multipliers, the resulting regret is highly sensitive
to choices in the step size: low initial multipliers would often not reach the MIP’s equilibrium multipliers
by the time the algorithm terminated. For realistic instances, Figure 8 also shows that the regret experienced
by buyers when starting from the MIP-based initial multipliers was lower than in the other cases, for every
learning rate ε we considered. More strongly, the worst learning rate for the MIP was better than the best
learning rate for any of the baselines. These findings were robust to different number of clusters m when
producing the realistic instances. Surprisingly, 8 clusters was enough to find good multipliers and increasing
m to 15 clusters did not reduce the regret.

These experiments for the dynamic setting leave us optimistic about the potential value of computing
static pacing multipliers with the MIP. Using the MIP to warm-start an adaptive algorithm on these larger
instances resulted in better convergence, and these improvements were robust to noise in the MIP input.
Such robustness is important for two reasons: First, it suggests that the MIP does not need the exact valuation
distribution to be useful (which is unlikely to be known in practice); second, it suggests that the valuation
distribution could be compressed to create a smaller (approximate) problem instance that could be tractably
solved by the MIP. In follow up work, Kroer et al. (2021) address both of these issues.

Interpretation of MIP Solution A natural question is whether the MIP output when solving static
pacing has any interpretation regarding the dynamic pacing setup we discussed. We provide evidence that
the output of the adaptive algorithm on the large instances matches the pacing multipliers computed by
the MIP on the small instances. Appendix EC.6 in the e-companion describes a limit dynamics model and
prove that a solution in that model is stable if and only if it constitutes a pacing equilibrium (which the MIP
outputs).
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Figure 8 Mean relative regret from running ADAPTIVEPACING. Each curve plots different initial pacing multipliers αinit
i .

Left: Stylized instances with random perturbations. Regret as a function of the noise parameter σ. Right: Realistic
instances with 8 clusters (no noise). Regret as a function of the learning rate ε (shown in log scale as log 10(1+ ε)).
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Figure 9 Left: An empirical CDF over absolute differences between the empirical allocation and the MIP allocation. Empirical
allocations were approximately equal to the MIP allocation across all instances. Right: An example of buyers adap-
tively adjusting their pacing multipliers to effectively win a fraction of the good type; the empirical allocation in this
instance was approximately equal to the feasibility MIP fractional allocation.

In a similar setup to the study of dynamic pacing with stylized instances, we randomly sampled K
complete-graph problem instances and run ADAPTIVEPACING with initial multipliers equal to the feasibil-
ity MIP output. For each instance, we compute the absolute difference between the MIP fractional allocation
and the empirical allocation (that is, the fraction of goods won in the scaled-up instance that corresponded to
the same good in the original instance). The parameters we used for this experiment were K = 20, C = 50,
αmin = 0.05, and ε= 10−4; other parameter settings gave similar results.

Results Figure 9 (Left) shows a summary of the absolute differences between the fractional allocations
output by the MIP and ADAPTIVEPACING. The difference between the fractions allocated never exceeded
0.07, and over 75% of the time, the difference was less than 0.02. To understand why the empirical allo-
cations so closely match the MIP allocations, see Figure 9 (Right) for an illustrative example. The figure
shows the per-auction bids for a particular pacing instance, good type, and subset of buyers. In the original
version of this instance, the feasibility MIP found a solution in which three buyers won a fractional allo-
cation of the good. When we started ADAPTIVEPACING from the MIP output multipliers, the induced bids
danced around the winning price such that the empirical allocation for these buyers nearly matched the MIP
output (with allocation values of (0.51, 0.24, 0.25) versus (0.52, 0.24, 0.22) for each respective buyer).

These results illustrate that the MIP fractional multipliers have a meaningful interpretation for larger
instances in which one runs an adaptive algorithm.

8. Conclusion
In auction markets, buyers with budgets are not necessarily best off submitting their true valuations. We
considered multiplicative pacing and proved its optimality from the buyer’s viewpoint (Proposition 1). We
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introduced a notion of pacing equilibrium (Definition 2 and Proposition 2), proved (a) their existence in
Theorem 1, (b) close relations to competitive equilibria in Section 5, and that (c) finding equilibria max-
imizing welfare and revenue is NP-hard in Theorem 3. We gave a MIP formulation for finding optimal
pacing equilibria and evaluated it experimentally. We found that although multiple equilibria may exist,
their paced welfare and revenue are frequently similar. For adaptive pacing, we found that regret-based
dynamics arrived at allocations near our MIP-based solutions, and that these allocations were improved by
warm-starting with solutions from our MIP, even when the MIP input was noisy. Our experimental findings
were robust to several different random models of markets, as well as markets generated from real-world
auction data.

While the MIP can only be run on small-enough instances, its solution has an interpretation for larger
instances, both when doing clustering or when valuations were drawn jointly across buyers in proportion
to valuations from the original instance. Using the MIP to warm-start an adaptive algorithm on these larger
instances indeed results in better convergence, and these improvements were robust to noise or to different
ways to generate the smaller instance from the larger instances.

A few open questions remain: What is the computational complexity of finding an arbitrary pacing
equilibrium? Can we generalize to multiple-slot auctions or to a dynamic setting with uncertainty about
future auctions? Can we make further realistic assumptions on the primitives to get tractability or stronger
results? In dynamic settings, how do we improve the convergence to optimal equilibria? One direction is
to explore how to best compress extremely large problem instances—those with many buyers and many
more auctions—so that the MIP provides valuable output for warm-starting large-scale dynamic pacing
problems.
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Multiplicative Pacing Equilibria in Auction Markets: E-Companion with
Proofs and Additional Material

EC.1. Missing Proofs
EC.1.1. Pareto Optimality of Competitive Equilibria
We prove formally that competitive equilibria are Pareto optimal, which is a known result, but we do it
specialized to our setting of buyers with budgets for concreteness.

Proposition 7 (The first fundamental theorem of welfare economics). Any competitive equilibrium is Pareto
optimal (when considering the utilities of all buyers and the seller).

Proof. For the sake of contradiction, suppose there is a Pareto dominating allocation of goods and
money. Let pj denote the price of good j in the competitive equilibrium, Si the bundle received by buyer
i in the competitive equilibrium (and S′i in the dominating allocation), and ti = p(Si) ≤ Bi the amount
of money buyer i spends in the competitive equilibrium (and t′i ≤ Bi in the dominating allocation). Here,
we let p(S) =

∑
j∈S pj be the price of any bundle of goods S under the competitive equilibrium prices.

Now, for every buyer i, it must be the case that t′i ≤ p(S′i). This is because either p(S′i) > Bi or vi(Si)−
p(Si)≥ vi(S′i)− p(S′i) by the property of competitive equilibria, yet vi(Si)− p(Si)≤ vi(S′i)− t′i by Pareto
dominance. If t′i < p(S′i) for some i, then it follows that the total payment in the dominating allocation is
less than the sum of the good prices, contradicting that the seller is at least as well off. On the other hand,
if t′i = p(S′i) for all i, then no buyer is better off, and also the seller is just as well off, again contradicting
Pareto dominance. �

EC.1.2. NP-Hardness of Computing Pacing Equilibria
We first note the following proposition about our Example 1 for modeling binary choices.

PROPOSITION EC.1. In Example 1, when α+ δ < 1/3, no equilibrium satisfies min(α1, α2)≥ 3α.

Proof. The reason is that if such an equilibrium existed, the total price of the first two goods would be
at least 6αK2 = 3(1− α− δ)K1 > 2K1 (which follows from the statement). This is the combined budget
of the two buyers, resulting in a contradiction. �

With this proposition we are ready to prove our complexity result.

Theorem 3. MAX-REVENUE-PACING, MAX-WELFARE-PACING and MAX-PACED-
WELFARE-PACING are NP-complete.

Proof. We reduce an arbitrary 3SAT instance to the following MAX-REVENUE instance. We set
T equal to the number of clauses, plus 4 times the number of variables, in the 3SAT instance. For every
variable xj , we create a copy of Example 1, consisting of buyers 1xj ,2xj and goods 1xj ,2xj ,3xj ,4xj , with
bids as specified in the example, using K1 = 4, α= 1/4, δ = 0, and (hence) K2 = 6. Each of these goods
will only be bid on by the buyers corresponding to its own variable (the other buyers have valuation 0 for
them). However, the buyers will bid on other goods as well, namely goods corresponding to the clauses.
Specifically, we associate buyer 1xj with the literal +xj , and buyer 2xj with the literal −xj . A buyer values
a clause good at 1 if its literal occurs in that clause, and at 0 otherwise. Finally, we add a single buyer with
unlimited budget that values every clause good at 2. Hence, this buyer will necessarily win all the clause
goods, at price at most 1 each.

Suppose a satisfying assignment exists. If xj is set to true, set α1
xj = 1 and α2

xj = α; otherwise, set
α1

xj = α and α2
xj = 1. This depletes the budgets of the buyers corresponding to variables, resulting in a

revenue of 4 times the number of variables. Moreover, for every clause good, the unlimited-budget buyer
faces one of the variable buyers with a multiplier of 1, since we had a satisfying assignment. Hence this
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buyer pays an amount equal to the number of clauses. Hence the MAX-REVENUE-PACING instance
has a solution.

Conversely, suppose the MAX-REVENUE-PACING instance has a solution. Then, the unlimited-
budget buyer must pay at least an amount equal to the number of clauses. Because she pays at most 1 on
each clause good, it follows that she must pay exactly 1 on each clause good. Hence, at least one of the
buyers corresponding to positive literals in each clause must have a multiplier 1. But since, by Proposi-
tion EC.1, at most one of the two buyers corresponding to a variable can have a multiplier of 1, it follows
that these buyers correspond to a satisfying assignment.

Now we switch to the welfare objective. We reduce an arbitrary 3SAT instance to the following MAX-
WELFARE instance. We set up buyers corresponding to variables as in the MAX-REVENUE proof. We
set α = δ = 1

8
, K1 = 1, and thus K2 = 3. We let V,C be the sets of variables and clauses in the 3SAT

instance, respectively. We set T equal to

δK1 + |V |
(

2K2 +

(
K1

α
+ ε

))
=

1

8
+ |V |(14 + ε),

For clauses, a buyer values a clause at value δK1
|C| if its literal occurs in that clause, and at 0 otherwise.

Finally, we add a single buyer with unlimited budget that values every clause good at δK1
2|C| .

Suppose a satisfying assignment exists. Perform the assignment as in the MAX-REVENUE setting.
That gives a social welfare of |V |(2K2 + (K1

α
+ ε)) from the variable goods. Furthermore, for each clause,

at least one satisfied-literal buyer has its pacing multiplier set to 1, thus winning the clause good, yielding
utility δK1

|C| . Summing over the clauses gives the desired social welfare. Each buyer can at most win all the
clauses, and thus their spend is bounded by (1− δ)K1 + δK1, satisfying their budget constraint.

Conversely, suppose the MAX-WELFARE-PACING instance has a solution. Then each clause good
must be allocated to a satisfied-literal buyer. But, in order to beat the unlimited-budget buyer, the satisfied-
literal buyer must have a pacing multiplier of at least 1

2
. By Proposition EC.1, this means that the buyer

corresponding to the opposite literal must have a multiplier less than or equal to 3
8
. Therefore, the buyers

with pacing multipliers of at least 1
2

correspond to a satisfying assignment.
We can perform almost the same reduction for MAX-PACED-WELFARE-PACING. We construct the

same set of buyers and valuations. We set T equal to

δK1 + |V |
(

2K2 +α

(
K1

α
+ ε

))
=

1

8
+ |V |

(
7 +

ε

8

)
,

If a satisfying assignment exists, we can set the same pacing assignment as before. The only difference from
the previous construction is that the paced welfare from the variable goods is now |V |(2K2 + (K1 + ε

8
)).

Combined with the clause good assignment, this gives exactly the desired paced welfare.
The converse case becomes simpler. For any MAX-PACED-WELFARE-PACING solution, it must be

the case that each variable has at least one buyer with a pacing multiplier of 1. To obtain the remaining
paced welfare of δK1, these buyers with pacing multiplier 1 must correspond to a satisfying assignment.
�

EC.1.3. Correctness of MIP Formulation
Proposition 8. A solution to the MIP (1)-(13) is feasible if and only if it corresponds to the conditions of a
pacing equilibrium.

Proof. Assume that all goods j have some buyer i such that vij > 0. Otherwise, we preprocess the
problem by removing all goods that no buyers are interested in.

First, let αi, xij ∈ [0,1], sij ∈ R+ be a pacing equilibrium for a pacing game. Let all MIP variables be
set according to their definition as it pertains to the pacing equilibrium. Set xij = 1 if xij > 0. If there
are multiple buyers with xij > 0 for good j, set wij = 1, ri′j = 1 for two (and only those two) arbitrary
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buyers i 6= i′ among the winners. We now show that all equations are satisfied. Constraint (1) is implied
by the third condition of pacing equilibria. Constraint (2) holds since we set yi = 1 exactly when buyer i
spends the whole budget. Constraint (3) is implied by our choice of yi combined with the third condition
of pacing equilibria. Constraint (4) is implied by the first condition of pacing equilibria. Constraint (5) is
implied by the third condition of pacing equilibria combined with the fact that buyers spend nothing on
a good unless they are allocated a non-zero amount. Constraint (6) and (7) are implied by our choice of
hj being the highest bid on good j and the fact that v̄j upper-bounds vij . Constraint (8) is implied by our
choice for wij, xij . Constraint (9) is satisfied because we set pj equal to the second price, and the constraint
is disabled for the highest bid due to wij = 1 and vij being an upper bound on αivij . Constraint (10) is
implied by our choice of setting rij = 1 only if buyer i constitutes the second price, and the fact that the
constraint is disabled for all other buyers. Constraints (11), (12), and (13) are implied by our choices for
wij, rij , respectively.

Now assume that we have some satisfying assignment to the MIP. To construct a pacing equilibrium,
assign pacing multipliers and spendings according to the values from the MIP, and set xij = sij/pj . We now
show that each of the three conditions for a pacing equilibrium are satisfied.

Constraint (4) implies
∑

i∈N xij =
∑

i∈N sij/pj = 1. If xij > 0 then sij > 0 and by (5) xij = 1, therefore
(6) and (7) imply αivij = hj . For all buyers i′ with xi′j = 0, we have αi′vi′j ≤ αivij , otherwise we would
violate (6) and thereby contradict our assumption of having a satisfying assignment. This shows that the
first condition of a pacing equilibrium is satisfied.

We first show that, in a feasible assignment pj must be equal to the second price. pj is both upper and
lower-bounded by αivij for the buyer i such that rij = 1. Furthermore, (9) guarantees that pj is at least
as high as the second-highest bid. Finally note that if αivij is the highest bid hj and rij = 1, then there
must exist at least one other buyer such that αi′vi′j = hj because (13) ensures that wi′j = 1 for some i′,
and (7)-(8) then imply that buyer i′ must satisfy αi′vi′j = hj . This shows that pj is the second price. Now
it remains to note that all buyers i with xij > 0 pay pj , which is exactly the highest bid other than their
own for rij = 0. When rij = 1, we established that wi′j = 1 for some other buyer, and thus i and i′ must be
tied for first price, and buyer i is thus still paying the highest bid other than their own. This shows that the
second condition of a pacing equilibrium is satisfied.

Constraint (1) ensures that all budgets are satisfied. Constraints (2) and (3) ensure that if budgets are
not fully spent then yi = 0, and αi is then forced to be 1. This shows that the third condition of a pacing
equilibrium is satisfied. �

EC.2. Multiple Equilibria with Stochastic Valuations
We provide two examples of pacing games with multiple equilibria where valuations are stochastic.

EC.2.1. Stochastic Pacing Games Equivalence
In this section we show that our deterministic model has a natural stochastic analogue where valuations are
not known ahead of time. In this model, we assume that there are n buyers as before. We also assume that
there are m categories of goods, and for each category j, buyer i has a weight wij ≥ 0 (the weight vector
wi is analogous to the valuation vector vi of a buyer in a deterministic instance). The buyers participate in
` auctions. For each auction, a category j is sampled uniformly at random from the m categories, and a
quality score q ∈ [0, ωj] is sampled from a distribution with mean 1. The value that buyer i has for the good
is then q ·wij , where j is the sampled category. Each buyer has some budget Bi. We want to find a vector of
pacing multipliers α and a tie-breaking rule x : [m]→ [0,1]n specifying how each category is split in case
of a tie, such that each buyer’s budget constraint holds in expectation. Formally:

` ·E[xi(j)pj]≤Bi

The above stochastic model turns out to be equivalent to a deterministic pacing game where each buyer
has a valuation vector wi, and a budget of m

`
Bi. In particular, pacing equilibria in the deterministic pacing

game and in the stochastic model are in a one-to-one correspondence:
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PROPOSITION EC.2. Any vector of pacing multipliers α and corresponding tie-breaking function x(j) is a
pacing equilibrium of a stochastic pacing game if and only if it is a pacing equilibrium in the corresponding
deterministic game.

Proof. To show the proposition, it is sufficient to prove that

E [xi(j)pj] =
`

m

∑
j

xijpj,

since this implies that the pacing complementarity condition holds in the stochastic model if and only if it
holds in the deterministic model. To that end, let k(j) be the index of the buyer k with the second-highest
bid αkqwkj for category j. We have

` ·Ej [xi(j)pj] = ` · 1

m

∑
j

xijαk(j)wk(j)jE[q] =
`

m

∑
j

xijαk(j)wk(j)j =
`

m

∑
j

xijpj.

�
Next, let us see an example of how this reduction can be applied to one of our examples from the paper.

We consider a subset of the valuations used in Example 4c shown to the left of Table EC.1. Remember that
in this example we have two very different pacing equilibria: α= (1,0.01) or α′ = (0.01,1).

Table EC.1 Valuations in the infinite goods example. Left: Deterministic valuations. Right: Stochastic valuations.

g1 g2 g3
v1 100 1 99
v2 1 100 99

g1 = 1/3 g2 = 1/3 g3 = 1/3
v1 Unif(0,200) Unif(0,2) Unif(0,198)
v2

v1
100

100 · v1 v1

We can convert this discrete instance into a stochastic model by sampling valuations for v1 and v2 in
correlated fashion. In particular, applying our reduction from above and sampling the quality score for each
category from Unif(0,2), we get a stochastic setting where we sample columns uniformly as indicated to
the right of Table EC.1. Here, v1 is chosen by uniformly sampling one of three uniform distributions, and
then sampling from the chosen distribution. Each uniform distribution corresponds to one of the goods
in the deterministic values in Table EC.1, and the expected value of each uniform distribution is equal to
the corresponding deterministic value. The valuation v2 is then a deterministic function of v1, chosen to
preserve the relative relationship between values from Table EC.1. The marginal CDF of v2 is the same as
that of v1. We sample n goods and set budgets equal to n

3
. In the stochastic setting we wish to satisfy the

budget constraint in expectation. This is achieved by both of the solutions from before, α = (1,0.01) or
α′ = (0.01,1), by linearity of expectation.

EC.2.2. Independently Drawn Valuations
In the second example, we consider the following instance with independently drawn valuations. There are
two buyers with budgets B1 = 1.2 and B2 = 1, respectively, and a single good. Each buyer samples their
valuation uniformly iid from:

vi ∼

{
40 1

2

4 1
2

.

We show two very different pacing solutions that are equilibria. In the first one, both buyers have the same
multipliers. Setting α1 = α2 = α, the total spend is α 1

4
(40+4+2 ·4) = 13α. It follows that if we set α= 2.2

13
then exactly B1 +B2 = 2.2 is spent. A buyer wins when their value is 40 and the other one has value 4, and
they may split the good when tied at (40,40) and (4,4). In order for budgets to be spent exactly, we solve
for the fraction x of the tied goods that buyer 2 should receive as follows:

2.2

13
(1 + 10x+x) = 1,



e-companion to Conitzer et al.: Multiplicative Pacing Equilibria in Auction Markets ec5

which yields x= 54
121

.
In the second equilibrium, buyers have different multipliers. We set α = (1,0.1), in which case buyer

1 wins for every valuation vector except (4,40); we allocate all of the good to buyer 2 in the case of the
valuation vector (4,40). The spend of buyer 1 is then 0.1

4
(40 + 4 + 4) = 1.2, while the spend of buyer 2 is

1
4
4 = 1.
Buyer 2 achieves expected utility of 54

121
(10 + 1) + 10− 1≈ 14.9− 1≈ 13.9 in the first equilibrium, but

an expected utility of 9 in the second.
The above example was for the case of a single good. However, we can extend this example to multiple

goods as follows: say that there are m goods in total, and each buyer draws their valuation vij iid according
to the same distribution as before; i.e.,

vij ∼

{
40 1

2

4 1
2

.

Now, we set the budgets equal to B1 = 1.2m and B2 =m, respectively. By linearity of expectation, the
equilibria from the single-good case still cause each buyer to exactly spend their budget in expectation, and
thus are equilibria for the m-good case as well.

EC.3. Iterating Best Responses Cycles
Here, we provide step-by-step details of Example 2 which shows that iterating best responses may cycle.

• Initially, buyer 1 wins auctions 1 and 5 and pays 60; buyer 2 wins auctions 2, 3, 4, and 6 and pays
1928. buyer 2 exceeds its budget of 1300 at these multipliers—it exhausts its budget from auction 2
alone, in which it pays 1300, and it also wins three other auctions. Buyer 2’s best response is to lower
its multiplier so that it wins only auction 2. To do so, buyer 2 sets its multiplier somewhere on the
interval (1300/6503,5/25)≈ (0.1999,0.2): any lower, and its bid for auction 2 drops below buyer 1’s
bid of 1300, in which case buyer 2 wins nothing; any higher, and its bid for auction 6 exceeds buyer
3’s bid of 5, in which case buyer 2 exceeds its budget.

• After buyer 2 lowers its multiplier, buyer 1 wins more auctions: In addition to what it was win-
ning previously, buyer 1 also wins auction 3 at a price equal to buyer 2’s paced bid of at least
300.6(1300/6503)≈ 60.09. Buyer 1 exhausts its budget of 60 from auction 3 alone. Buyer 1 must set
its multiplier low enough to not win auction 3, but such a multiplier is so low that it results in buyer 1
losing all other auctions. Buyer 1’s best response is to tie on auction 3, where buyer 2’s paced bid is at
most 300.6(5/25). To do so, buyer 1 sets its multiplier to at most 300.6(5/25)/123≈ 0.488.

• After buyer 1 lowers its multiplier, buyer 2 goes from losing to tying on auction 3, causing buyer 2 to
pay more than it was previously for that auction, but it also pays much less for auction 2: Instead of
paying 1300 for auction 2 as it was previously, it pays around 1300(0.488) = 634.4. Because buyer 2
is paying so much less for auction 2, it can raise its multiplier to 1, causing it to win auctions 3, 4, and
6 and to pay less than its budget.

• After buyer 2 raises its multiplier to 1, buyer 1 no longer wins auction 3. It can raise its multiplier to 1
and still not exhaust its budget. This brings us back to the first iteration, where all multipliers were set
to 1.

EC.4. Experiments on Best-Response Dynamics (One-Shot Setting)
We considered best-response dynamics (BR dynamics) to search for a pacing equilibrium in the standard,
one-shot setting. We briefly describe these experiments here. BR dynamics can be thought of as a repeated
auction market where each buyer has some budget to spend every day and wishes to set its pacing multiplier
appropriately. At the end of each day, buyers observe the outcome for the day and best respond to the
strategy of the other players. Our goal in these experiments was to see whether warm-starting BR dynamics
with the MIP output can improve convergence of BR dynamics and lead it to outcomes with higher welfare
than it would otherwise achieve.

We consider two BR algorithms that differ in how the best response is computed. If there is more than
one BR pacing multiplier, we break ties towards the highest pacing multiplier (BR high), or towards the
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Figure EC.1 BR dynamics convergence rate. For each iteration, we show the absolute difference in a buyer’s multipliers from
the previous iteration, averaged across buyers and instances. For MIP initialization we average across solutions
from all objectives.
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Figure EC.2 Maximum relative regret over buyers in an instance for various BR algorithms averaged across instances.

lowest (BR low). Both algorithms always start from the same random initialization of pacing multipliers. In
addition, we consider BR high starting from the MIP solutions and refer to it as Init MIP. When needed, we
replace MIP in the name by a specific MIP objective. For the BR setting, we consider random tiebreaking
rather than having fractional allocations be part of the bids. Thus, a pacing equilibrium might not be stable
if it includes fractional allocations. We evaluated the BR algorithms on a subset of 50 synthetic instances
taken randomly from those in the computational study.

We start by looking at BR dynamics convergence and regret. Figure EC.1 shows that the BR algorithms
converge quickly in our computational study. They required less than 10 iterations to reach small oscillations
in pacing multipliers. Figure EC.2 shows the maximum relative regret across all buyers, averaged across
instances. The relative regret for a buyer is computed as the ratio of the utility-improvement they could get
by best responding, divided by the utility of the best response (i.e., the fraction of utility they are missing out
on). For the purposes of computing regret, when a buyer exceeds its budget, we do not set utility to negative
infinity; instead we penalize utility by the amount over budget multiplied by the spend-to-budget ratio times
paced-welfare-to-budget ratio. We see that both BR high and BR low have somewhat high relative regret,
missing out on 7.5%-12% utility. Contrary to this, Init MIP solutions perform well and are able to stay near
equilibrium for most instances.
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Figure EC.3 Relative regret broken down by each algorithm. Each point represents a BR algorithm running on a particular
problem instance.
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Figure EC.4 Performance of BR and MIP algorithms across 50 instances. The x-axis shows the percentage of the best value
for each objective, averaged across buyers and instances.

Figure EC.3 shows the relative regret broken down by each algorithm. This plot shows that the poor
performance of initializing with the objective that minimized paced welfare was actually caused by a single
outlier.

Finally, we look at the improvement in market outcomes from seeding BR dynamics with the MIP out-
put. Figure EC.4 shows the revenue, welfare, and paced welfare achieved by the different BR dynamics
algorithms relative to the MIP. Each point in the plot shows the average performance of a given algorithm
relative to the solution maximizing each objective. BR low performs significantly worse than BR high across
all three dimensions. For revenue and welfare, they both perform significantly worse than the MIP solutions
as well, in spite of the fact that the BR solutions may not even respect budgets. The BR dynamics perform
significantly better with MIP initializations than without.

EC.5. Additional Experimental Results and Details
This section describes our experimental setup in more detail than space permitted in the main body of the
paper and provides additional results.
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Figure EC.5 Percentage optimality for equilibria maximizing or minimizing the different objectives, measured with respect to
each objective, grouped by instance type.

EC.5.1. Equilibrium Gaps
The experiments section reported on maximum gaps for different objectives and instance distributions. Here,
we show additional summary statistics. Figure EC.5 shows the relative gap compared to optimal solutions
for equilibria maximizing or minimizing the different objectives, measured with respect to each objective,
grouped by instance type.

EC.5.2. Other Terms and Notation
We informally defined some terms in the experiments section, which we now define more precisely. For a
given scaled-up instance Γ̃, let kj ∈M be the good type of auction j; this good type associates the auction
in the scaled-up instance with a good in the original instance. Let M̃j ⊆ M̃ be the set of auctions in the
scaled-up instance that have good type j (i.e., M̃j = {j′ ∈ M̃ : kj′ = j} for j ∈M ). For a given run of
ADAPTIVEPACING on a scaled-up instance, let x′ij be the empirical allocation over good types: the fraction

of auctions that buyer i won for good type j ∈M . That is, let x′ij =
(∑

j′∈M̃j
x̃ij′
)
/
(∑

i′∈Ñ,j′∈M̃j
x̃ij′
)

,

where x̃ij′ is ADAPTIVEPACING’s output allocation (∀i ∈ Ñ , j′ ∈ M̃ ). For a given run of ADAPTIVEPAC-
ING on a scaled-up instance, let a buyer’s regret be the difference between the buyer’s maximum possible
utility in hindsight (given fixed bids of other buyers) and the buyer’s realized utility; let the max regret be
the maximum such regret across all buyers.
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EC.6. Pacing Dynamics
While there are no dynamics in the definition of our game, we consider dynamics to evaluate the quality
of the solutions provided by the equilibrium concept. It is instructive to consider the definition of pacing
equilibrium in the context of dynamics. Specifically, suppose that the goods are sold continuously over the
period [0,1]. I.e., at time t ∈ [0,1] a fraction t of every good will have been sold. Within each infinitesimal
slice of time a second price auction is used for each infinitesimal fraction of a good; if there is a tie for a
good then it may be split into arbitrary fractions xijt among the buyers, summing to 1 if there are positive
bids. In an ad auction, this would correspond to the limit case where there are large numbers of all types
of impressions, and the distribution of such types does not vary over time. Then, we can consider αi to
change dynamically over time (so we get αit). Specifically, if a buyer i is currently spending at a rate that
will overspend her remaining budget over the remaining period [t,1], we decrease αit; if it will underspend
and αit < 1, then we increase αit. Call this the limit dynamics model.

DEFINITION EC.1. Multipliers αi ∈ [0,1] and fractions xij ∈ [0,1] constitute a stable solution in the limit
dynamics model if setting αit = αi and xijt = xij (for all i, j, t) satisfies the feasibility conditions for the
xijt and is consistent with the dynamics (i.e., no αit ever needs to be adjusted up or down).

PROPOSITION EC.3. Multipliers αi and fractions xij constitute a stable solution in the limit dynamics
model if and only if they constitute a pacing equilibrium.

Proof. Suppose they constitute a pacing equilibrium. Then, xijt is nonzero only if αijtvij = αijvij is
one of the highest bids, and for any j, t, we have

∑
i xijt =

∑
i xij ≤ 1 with equality if there is at least one

positive bid. For a buyer with
∑

j sij =Bi in the pacing equilibrium, we also have
1∫

t=0

∑
j sijt = 1 ·

∑
j sij =

Bi, so the buyer is always exactly on track to spend her budget and the multiplier need not be adjusted. For a

buyer with
∑

j sij <Bi in the pacing equilibrium we must have αi = 1; we have
1∫

t=0

∑
j sijt = 1 ·

∑
j sij <

Bi, so the buyer is always on track to underspend (which is fine because αit = αi = 1). Hence they constitute
a stable solution. Conversely, suppose they constitute a stable solution. Then

∑
i xij =

∑
i xij0 ≤ 1 with

equality if there is at least one positive bid. We also have pj = sij/xij = sij0/xij0 = pj0 which is the second-

highest bid αi0vij = αivij . For any buyer i,
∑

j sij =
1∫

t=0

∑
j sijt ≤ Bi. Finally, if αi < 1 then

∑
j sij =

1∫
t=0

∑
j sijt = Bi (otherwise the multiplier would be adjusted and we would not have αijt = αij for all t).

�


	Introduction
	Related work
	Pacing Games for Auction Markets
	Equilibrium Analysis
	Equilibrium Existence
	Sensitivity and Multiplicity of Equilibria


	Relationship to Competitive Equilibrium
	Computing Pacing Equilibria
	Complexity Results
	Iterated Best Responses
	MIP Formulation of Pacing Equilibria

	Computational Experiments
	Problem Instances
	MIP Scalability
	Empirical Analysis of Equilibria
	Empirical Differences in Equilibria
	Robustness to Misreporting

	Seeding Dynamic Instances


	Conclusion

	Missing Proofs
	Pareto Optimality of Competitive Equilibria
	NP-Hardness of Computing Pacing Equilibria
	Correctness of MIP Formulation

	Multiple Equilibria with Stochastic Valuations
	Stochastic Pacing Games Equivalence
	Independently Drawn Valuations

	Iterating Best Responses Cycles
	Experiments on Best-Response Dynamics (One-Shot Setting)
	Additional Experimental Results and Details
	Equilibrium Gaps
	Other Terms and Notation

	Pacing Dynamics


