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ABSTRACT

It is well known that microphone arrays can be used to en-
hance a target speaker in a noisy, reverberant environment,
with both spatial (e.g. beamforming) and statistical (e.g.
source separation) methods proving effective. Head-worn
microphone arrays inherently sample a sound field from an
egocentric perspective — when the head moves the apparent
direction of even static sound sources change with respect to
the array. Traditionally, enhancement algorithms have aimed
at being robust to head motion but hearable devices and
augmented reality (AR) headsets/glasses contain additional
sensors which offer the potential to adapt to, or even exploit,
head motion. The recently released EasyCom database con-
tains microphone array recordings of group conversations
made in a realistic restaurant-like acoustic scene. In addition
to egocentric recordings made with AR glasses, extensive
metadata, including the position and orientation of speakers,
is provided. This paper describes the use and adaptation of
EasyCom for a new IEEE SPS Data Challenge.

Index Terms— augmented reality, data challenge, micro-
phone array, head-worn array, head movement

1. INTRODUCTION

Augmented Reality (AR) systems render virtual objects
which appear to be present in the user’s local environment.
This requires a certain amount of knowledge about the local
scene which, in practice, requires appropriate sensors, such
as head tracking, cameras, etc. It is also necessary for the
user to retain their sense of presence in the local scene. In [1],
in-ear microphones were equalised to compensate for the ef-
fect of blocking the ear canals but, by being in the ears, the
spatial cues of the environment were inherently maintained.
The effect of microphone placement and compensating for it
was studied in [2], where microphones were placed at various
position in or behind the ear. Obtaining correctly spatialised
binaural signals from a circular array on the head has also
been studied [3–5].

∗ Both authors contributed equally to this work.

In many situations, it is desirable to enhance speech from
one (or more) target talkers which exist in the local envi-
ronment. For example, to help a normal-hearing or hard-
of-hearing listener to understand more words in a conversa-
tion [6]. With head-tracking capabilities, AR devices could
adapt to head motion [7, 8] or exploit it [9, 10]. Moreover,
non-acoustic sensor data may provide more reliable direction
of arrival information, e.g. during periods of source inactivity.

Speech enhancement for augmented reality can be seen as
a logical evolution of existing microphone array signal pro-
cessing. Along with the rest of the field, there is potential
for machine learning approaches to find innovative solutions
to fusing multi-modal sensor data. To stimulate research in
this emerging field, we are running an IEEE SPS data chal-
lenge. The goal of the SPeech Enhancement for Augmented
Reality (SPEAR) challenge is to obtain the “best possible”
binaural signals given noisy array signals, head orientation
and direction of arrival of a single target. In contrast to ex-
isting microphone array systems, it is assumed that these data
can all be obtained from a single AR device using the avail-
able sensor modalities. Since speech enhancement for AR is
a new application area, it is not yet clear what “best possible”
means. Accordingly, challenge entrants are free to optimise
the enhancement in whatever way they think listeners will ap-
preciate most. Entries will be scored in terms of a wide variety
of intrusive metrics and in listening tests. All enhanced audio
submitted by entrants, along with the evaluation results, will
be shared with the research community after the challenge so
that the data can be fully and openly interpreted. Full and up-
to-date details of the evaluation can be found on the challenge
website [11].

In Sec.2 the datasets used in the challenge are presented
while Sec. 3 develops our approach to improve the reliability
of intrusive metrics computed on the first of these.

2. SCENES AND DATASETS

The EasyCom database (hereafter EasyCom) contains sev-
eral realisations of a scenario (see Fig. 1) in which a small
group of people have a natural conversation in a noisy envi-
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ronment whilst sitting around a table. The strength of Easy-
Com comes from its realism and rich metadata. However,
since the recordings are made “live”, it is impossible to define
the ground truth signals at the array that an ideal enhance-
ment would produce. Moreover, the time required to make
such a set of recordings means that the possible diversity is
unavoidably limited. To be able to evaluate intrusive metrics
over a variety of acoustic conditions, SPEAR will use three
simulated datasets, D2–D4, in addition to a dataset, D1, of
real recordings taken from EasyCom. All four datasets are
detailed below and summarised in Table. 1.

2.1. Dataset 1: EasyCom Original

In EasyCom, participant ID 2 is wearing a pair of spectacles
fitted with a 6-microphone array, representing an AR device,
where 4 microphones are integrated into the frames and 2 mi-
crophones are placed in the ear canals, as shown in Fig. 2.
It is the enhancement of this array audio which is the focus
of SPEAR. Participant ID 1 adopts the role of “waiter” and
is exceptional in not being tracked or individually recorded.
The remaining participants each wear a close-talking head-
set microphone. For SPEAR, this is approximately time- and
level-aligned to the array signals to provide a reference for
computing intrusive metrics (see Sec. 3).

An optical tracking system provides position and orienta-
tion data for all but participant ID 1. For SPEAR, enhance-
ment algorithms will have access to the orientation of the AR
device and the direction with respect to the AR device of a
single target talker. Acoustic transfer functions for the ar-
ray measured on a mannequin under anechoic conditions may
also be used. Metadata, such as human-labelled voice activity
for each participant, is provided to assist with training but will
not be provided in the evaluation.

The purpose of D1 is to train/evaluate algorithms with sig-
nals that are as representative as possible of a real-world sce-
nario. Of course, this implies some limitations. For example,
the close-talking microphones are noisy references and might
lead to imperfect calculation of intrusive metrics, especially

Fig. 1. Schematic of the scene used in EasyCom [12].

Table 1. Summary of dataset properties.

Scene Audio Acoustic Scene Head Movements

D1 Original Original Original

D2 Denoised Original Original
D3 Denoised Modified Original
D4 New Modified Synthesised

in the case of binaural metrics. Also, it has been observed
that the group conversations in EasyCom contain very little
overlapping speech (less than 7% overall). This means it is
not well suited to evaluate the effectiveness of algorithms to
suppress undesired speech, as encountered in multi-dialogue
situations.

2.2. Dataset 2: EasyCom Reproduced

The purpose of D2 is to reproduce using simulations the same
scenes as encountered in D1. This is useful for several rea-
sons, namely (i) as a proof of concept of the simulation pro-
cedure, (ii) to compute intrusive metrics on EasyCom where
the reference signal(s) are known precisely, and (iii) to allow
a comparison of algorithm performance on real and simulated
audio for both metrics and listening tests.

Simulated scenes are rendered using the TASCAR soft-
ware platform [13]. Each scene is defined in terms of the
“acoustic scene”, meaning the geometry and properties of the
environment, the “scene audio”, meaning the signals emitted
by each source, and the “head movements”, meaning the tra-
jectories of each participant relative to their nominal position
and orientation. The acoustic scene is created using a shoe-
box room with reflective walls and a horizontal surface repre-
senting a table. Since the aim of D2 is to reproduce D1, the
geometry of the scene is matched as closely as possible. Dis-
tributed across the room are 10 fixed sources, representing
loudspeakers, each emitting restaurant-like, babble noise to
mimic the creation of diffuse noise as employed in EasyCom.
The required number of sources, representing participants, are
arranged around the table according to the positions and head
movement trajectories in EasyCom. Each participant source
emits a denoised version of the associated close-talking head-

Fig. 2. Glasses microphone array used in EasyCom [12]. Mic
5 and 6 are in ears.



set signal from EasyCom. This denoising, performed using
the CEDAR DNS Two plugin1, was found in informal lis-
tening to greatly improve the naturalness of the simulations
whilst causing little, if any, distortion to the target speech.

In addition to the complete simulation, by simulating the
scene separately for each source without any reflections or
reverberation, the reference audio at the array, required for
intrusive metrics, is obtained. It should be noted that, should
any distortion be introduced by denoising the headset signals,
this becomes part of the ground truth input signal and so will
not affect the calculation of intrusive metrics.

2.3. Dataset 3: EasyCom Augmented

Using the same simulation approach as in D2, D3 introduces
variations in the acoustic scene in order to increase the di-
versity. It is expected that this will help to avoid machine
learning-based approaches from over-fitting to the specific
acoustic properties of D1/D2.

The particular parameters that are varied are (i) the acous-
tic scattering coefficient of the table, (ii) the reverberation
time of the room, (iii) the dimensions of the room, (iv) the po-
sition of the table and, consequently, of the participants within
that room (v) the sound level of the 10 loudspeakers used for
diffuse noise, (vi) the type of diffuse noise used, (vii) the
positions of the 10 loudspeakers used for diffuse noise, and
(viii) the nominal head positions of each participant (slightly
moved). These modifications are randomly perturbed for each
minute-long segment of each session.

2.4. Dataset 4: Synthetic Dialogues

The purpose of D4 is to increase further the diversity of
the training materials by removing all dependence on the
specifics of EasyCom. In particular it uses (i) clean speech
from an independent corpus [14], (ii) synthesised head move-
ments, and (iii) competing dialogues which significantly
overlap with the target speech.

Competing dialogues are synthesised by concatenating ut-
terances for each talker with random intervals of silence be-
tween each utterance. To synthesise head movement and head
rotation, the look direction of each participant is oriented ap-
proximately towards each of the other participants in a ran-
domly generated sequence. Jitter is introduced to both posi-
tions and orientations to simulate real life non-stationarity.

3. INTRUSIVE METRICS USING CLOSE-TALKING
MICROPHONES AS REFERENCE

Calculation of intrusive metrics require that the clean target
signal at the array’s reference microphone(s) be available.

1www.cedar-audio.com/products/cedarstudio/
cedarstudiodns.shtml. Thanks to CEDAR Audio for their generous
assistance.

This is ensured, by design, for the simulated datasets (D2-4).
However, for D1 only the close-talking headset microphone
signals are available. In this section we briefly present a
simulation-based study in which the effect of background
noise and interferer leakage on the calculation of intrusive
metrics is investigated and describe the approach used in
SPEAR to limit the error.

3.1. Method

Room Impulse Responses (RIRs) for a shoebox room with
T60=645ms and similar dimensions to the room used in Easy-
Com are obtained using the image-source method [20]. As
shown in Fig. 4, the array is placed at (4.0, 2.5, 1.0) m. A tar-
get and an interferer are located 1.5m from the array, in the
same horizontal plane, at azimuth angles 0° and 40°, respec-
tively. Ten source positions representing loudspeaker loca-
tions for generating ambient noise are arranged with almost
uniform spacing around a circle of radius 3m, again in the
same horizontal plane as the array. RIRs from each source
to the array were obtained by convolving each reflection with
the nearest measured array impulse response from [12]. Ad-
ditionally the RIRs from each source to an omnidirectional
microphone co-incident with the target were used to simulate
the response of a close-talking headset microphone.

The target and interferer consist of 8 s anechoic speech
utterances taken from [21] where each source is selectively
muted such that they are simultaneously active for approxi-
mately 0.6 s. This matches the overlapping duration ratio of
approximately 7.5% observed in EasyCom. The loudspeaker
sources have the same restaurant-like signals used for Easy-
Com. Signal levels are adjusted in order to achieve signal-to-
interferer ratio of 0 dB and signal-to-babble ratio of 5 dB at
the array. Spatially white Gaussian noise with signal-to-noise
ratio of 40 dB is also added to the sensors. Ten trials are per-
formed using independent realisations of speech activity and
different speech utterances. The data is processed at sample
rate of 8 kHz.

To assess the effect of noise on a selection of intrusive
metrics, three possible references are considered; “Headset”:
the raw noisy headset signal; “Headset-VAD”: Headset signal
that is muted during target inactivity, as indicated using Voice
Activity Detector (VAD) labels obtained according to [22] us-
ing clean target at the headset; “Oracle-Array”: the ground
truth anechoic target signal at the array. To ensure that only
the effect of noise is evaluated, the Headset and Headset-VAD
signals are time- and level-aligned to the Oracle-Array signal
using sigalign from [23].

Metrics are computed for both the noisy array signal,
“Passthrough”, and the “Perfect Enhancement” case, where
the enhanced signal is identical to “Oracle-Array”.
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Fig. 3. Absolute metric scores for Passthrough (Pass.) and Perfect-Enhancement (Perf.) using Headset, Headset-VAD and
Oracle-Array each as the reference signal based on simulated data. Metrics are STOI [15], PESQ [16], fwSegSNR [17],
SDR [18], ISR [18], SAR [18] and SI-SDR [19]. Note that the infinite values in case of Perfect-Enhancement (method) and
Oracle-Array (reference) where both signals are identical are excluded in the visualisation. Boxes, horizontal black lines and
black dots show the inter-quartile range, median and mean, respectively.

Fig. 4. Simulated setup for analysis of Reference signal pre-
processing.

3.2. Results and Analysis

Figure 3 shows the distribution of the scores for the metrics
for different combination of processed signal (Passthrough
or Perfect-Enhancement) and Reference signal (Headset,
Headset-VAD, Oracle-Array). For Passthrough, there are
several metrics (PESQ, fwSegSNR and SDR) where Oracle-
Array (white) reference leads to a worse metric value than
Headset (red), suggesting that noise in the reference makes
it more similar to the noisy array signal. For both PESQ and
fwSegSNR using Headset reference, Perfect-Enhancement
scores lower than Passthrough, indicating a complete failure
of the metric. Comparing Headset (red) and Headset-VAD
(yellow) it can be seen that muting the reference signal dur-
ing signal inactive periods improves the reference and so
makes the metric value closer to the true value obtained with
Oracle-Array (white). For STOI, PESQ, SAR and SI-SDR
the effect is most pronounced for the Perfect-Enhancement
signals whereas for fwSegSNR both Passthrough and Perfect-
Enhancement are substantially impacted.

These results suggest that, whilst metrics computed us-
ing close-talking headset microphones as reference should be
treated with some caution, they can be made more reliable by
muting the reference during periods of speech inactivity.

Fig. 5. For target ID = 6, excluding active own-voice mo-
ments resulting in final segments used to calculate the met-
rics.

3.3. Implications for SPEAR

In light of the results presented in Sec. 3.2, metrics for SPEAR
will be computed individually for each period of target ac-
tivity, using ground truth VAD labels provided in EasyCom
(D1-3) or from the anechoic source signals (D4). Addition-
ally, it is observed that during periods in which the wearer of
the array (participant ID 2) is talking (own-voice condition)
the received signal level at the array is substantially louder
than during listening-only periods. This makes A-B compar-
isons of passthrough and processed signals challenging and
so these own-voice periods are also removed from the met-
rics calculations. For a given target talker, segments in which
metrics are computed is visualised in Fig. 5.

4. CONCLUSIONS

Speech enhancement for augmented reality is a new applica-
tion of microphone array processing. The SPEAR challenge
seeks to benchmark existing algorithms and encourage more
researchers to get involved. More information can be found
on the challenge website [11].
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