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ABSTRACT

Unsupervised representation learning aims at describing raw
data efficiently to solve various downstream tasks. It has
been approached with many techniques, such as manifold
learning, diffusion maps, or more recently self-supervised
learning. Those techniques are arguably all based on the under-
lying assumption that target functions, associated with future
downstream tasks, have low variations in densely populated
regions of the input space. Unveiling minimal variations as a
guiding principle behind unsupervised representation learning
paves the way to better practical guidelines for self-supervised
learning algorithms.

Index Terms— Self-supervised learning, unsupervised
learning, minimal variations, first principles.

1. INTRODUCTION

Data is everywhere, but it is often too unstructured or high
dimensional to leverage classical statistics on their raw form.
Recent advances in machine learning have succeeded in exploit-
ing parts of the millions terabytes of unlabeled data contained
on the internet. This was achieved by creating self-supervised
tasks to be solved by the machine, inciting it to learn good
representations of text [1, 2]. Those “foundational” representa-
tions are now being leveraged to solve several “downstream”
tasks on languages [3]. Similar developments have been made
on other high-dimensional data such as images, videos or audio
speeches [4, 5, 6]. Despite their rapid progress, the training
of self-supervised learning (SSL) models remains challenging
and lacks theoretical foundations.

Learning without supervision has been historically referred
to as unsupervised learning. While at first sights, the literature
bodies on unsupervised learning and self-supervised learning
seem relatively disjoint, connections have been made between
the two [7, 8]. This work provides further insights on their
links through the concept of minimal variations, detailed in
Section 3. Theory is verified on synthetic experiments in
Section 4. This understanding could be leveraged in future
work to improve SSL algorithms in practical settings with
limited compute resources.

2. SETTING AND CONTEXT

In the following, X shall be a Hilbert space (i.e. endowed with
a scalar product) and Y an output space. A distribution 𝜌𝑋 is
assumed to have generated a dataset (𝑋𝑖)𝑖∈[𝑛] of independent
samples 𝑋𝑖 ∼ 𝜌𝑋 for 𝑖 ∈ [𝑛].1 Our goal is to find a repre-
sentation 𝜑 : X → R𝑝 for a small 𝑝, such that for relevant
downstream distributions 𝜌 on pairs of input/output and loss
functions ℓ : Y × Y → R, one can efficiently minimize the
subsequent population risk

R( 𝑓 ; 𝑝, ℓ) = E(𝑋,𝑌 )∼𝜌 [ℓ( 𝑓 (𝑋), 𝑌 )] , (1)

based on i.i.d. samples (𝑋𝑖 , 𝑌𝑖). More exactly, the optimal
functions 𝑓 should easily be approached under the form 𝑓 =

𝑔 ◦ 𝜑 for 𝑔 in a small class of functions. Typically, 𝑔 would be
a linear function, a.k.a. a linear probe. Reducing the search of
𝑓 : X → Y in a potentially big function space to the search of
𝑔 : R𝑝 → Y in a much smaller one, will drastically improve
sample efficiency [9].

To learn the representation 𝜑, SSL leverages augmenta-
tions of data. It defines 𝑡 : X × Ξ → X a transformation
parameterized by b ∈ Ξ. For example, Ξ could be X and
𝑡 (𝑋, b) = 𝑋 + b. Assuming that transformations 𝑡 (𝑋, b) do not
fundamentally change the semantic of the input, any pairs of
augmented and original points should be close in the features
space 𝜑(X ). This is put in equations through the minimization
of the variational quantity

E𝑋,b [𝑑 (𝜑(𝑡 (𝑋, b)), 𝜑(𝑋))] , (2)

for 𝑑 a notion of similarity inR𝑝 , e.g. the square loss 𝑑 (𝑥, 𝑥′) =
∥𝑥 − 𝑥′∥2. In practice, 𝜑 is often taken as a neural network,
and its learning is conducted through the optimization of its
parameters. Equation (2) is trivially minimized by setting 𝜑

to a constant. To avoid such a “collapse” phenomenon, one
should encourage diversity in the representation, for instance
by using the constraint

E𝑋 [𝜑(𝑋)𝜑(𝑋)⊤] = 𝐼 . (3)

Classical self-supervised techniques such as SimCLR [4],
Barlow Twins [10] and VICReg [11] can be understood as
implementing different specifications of such a scheme [8]
(respectively, 𝑑 would be the cosine similarity, some cross-
correlation measure, and the square hinge loss).

1The set {1, · · · , 𝑛} is denoted [𝑛].



3. MINIMAL VARIATIONS

3.1. Classical hypothesis

This section reviews classical assumptions about the nature
of downstream tasks with respect to the input distribution 𝜌𝑋 .
It shows how those assumptions are related to the idea that
future target functions have low variations on highly populated
regions of the input space.

Often praised in semi-supervised learning setting, the
cluster assumption states that the support of 𝜌𝑋 have several
connected components and that downstream classification tasks
are likely to respect this structure, i.e. labels shall be constant
over each connected component a.k.a. cluster [12]. In other
terms, one expects the decision boundary2 between classes
to be situated in regions of the input space where there is no
density. Yet, on big or poorly curated datasets, classes might
not be separated by no-density regions. In such a setting, the
cluster assumption is relaxed as the low-density separation
hypothesis, assuming that downstream decision boundaries
will fall in low-density regions (i.e. where 𝜌𝑋 is small). For
example, in a balanced binary classification problem where
Y = {−1, 1} and d𝜌 (𝑥 | 𝑦) ∝ exp(− ∥𝑥 + 𝑦`∥ /𝜎2) d𝑥, the
optimal decision boundary is the hyperplane `⊥ which does
minimize the value of 𝜌𝑋 (𝐴) for any hyperplane 𝐴 that cross
[−`, +`].

In regression settings, it is often assumed that the down-
stream target functions will be smooth on densely populated
regions of the input space [13]. Variations of functions are
measured through quantities such as

J ( 𝑓 ) = E [∥∇ 𝑓 (𝑋)∥𝑞] , (4)

for 𝑞 = 1 (total variation), 𝑞 = 2 (Dirichlet energy) or higher
(𝑞-Laplacian). Interestingly, binary classification problems
are often approached through the learning of a continuous
surrogate function 𝑓 whose sign is taken as the classification
rule [14]. From a classification perspective, variations of 𝑓

are only needed in order for 𝑓 to change sign, and the low-
variation hypothesis states that those variations should take
place in sparsely populated areas of the input space. This is
coherent with the low-density separation hypothesis stating
that 𝑓 should change sign in sparsely populated regions.

3.2. Embedding for minimal variations

This section extends on classical unsupervised techniques as
aiming to minimize the criterion (4) under the orthonormal
constraint (3).

Assuming low-variation of downstream tasks, it is natural
to design 𝜑 in order to represent a maximum number of low-
variation functions as 𝑔 ◦ 𝜑. Considering linear probes, the

2For a predictor 𝑓 : X → Y , the input space X is partitioned into decision
regions X𝑦 = {𝑥 | 𝑓 (𝑥) = 𝑦} indexed by 𝑦 ∈ Y , “decision boundaries” refers
to the boundaries of those regions.

span of (𝜑𝑖)𝑖∈[𝑝] could be searched as a 𝑝-dimension space of
functions with minimal variations according to the criterion (4).
Put in equations with 𝜑 : X → R𝑝 , this reads

arg min
𝜑;s.t. (3)

max
𝑤∈R𝑝 ;∥𝑤∥=1

J (𝑤⊤𝜑(·)),

under the coverage constraint (3). Such a 𝜑 is an ideal data
representation to solve downstream tasks with linear probes, as
long as solutions verify the low-variation hypothesis. With 𝐷

denoting the Jacobian, the formulation with 𝑞 = 2 translates as

𝜑 = arg min
𝜑 s.t. (3)

E
[
∥𝐷𝜑(𝑋)∥2𝐹

]
. (5)

In practice, this formulation is favored for analytical reasons.
By making J ( 𝑓 ) a quadratic form, it reveals the operator
L that represents it.3 In particular, equation (5) is solved
explicitly with 𝜑𝑖 the 𝑖-th eigenfunctions of L.4 The proof is a
simple application of the Rayleigh-Ritz formula, that defines
eigenfunctions recursively through the formula

𝜑𝑖 = arg min
𝜑:X→R

⟨𝜑,L𝜑⟩ = E
[
∥∇𝜑(𝑋)∥2

]
s.t. E

[
𝜑𝑖 (𝑋)𝜑 𝑗 (𝑋)

]
= 𝛿𝑖 𝑗 ∀ 𝑗 < 𝑖.

In the literature, this approach is often referred to as
spectral embedding (the space is embedded through the spectral
decomposition of the operator). It is particularly well suited
for the cluster assumption, since the null space of L is nothing
but the span of the indicator functions of each connected
component of 𝜌𝑋 , which has motivated its use for clustering
and manifold regularization [15]. Under mild assumptions,
L is indeed a diffusion operator (when 𝜌𝑋 has a density and
compact support L 𝑓 = −Δ 𝑓 + ⟨∇ log 𝜌𝑋 ,∇ 𝑓 ⟩), which links it
to diffusion maps [16], label propagation [17] and Langevin
dynamics [18].

Since the 2000s, the criterion (4) has been approached in a
non-parametric fashion based on finite differences, leveraging
graph Laplacians [17, 19]. Based on samples (𝑋𝑖)𝑖∈[𝑛] , it aims
at minimizing

E𝑔 (𝜑) =
∑︁

𝑖, 𝑗∈[𝑛]

[
𝑘𝜎 (𝑋𝑖 , 𝑋 𝑗 )

𝜑(𝑋𝑖) − 𝜑(𝑋 𝑗 )
2
]
, (6)

with 𝑘 a notion of similarity to perform finite differences and 𝜎

a scaling parameter (e.g. 𝑘𝜎 (𝑥, 𝑥′) = exp(− ∥𝑥 − 𝑥′∥2 /𝜎2)),
and subject to the empirical version of the constraint (3),

1
𝑛2

∑︁
𝑖, 𝑗∈[𝑛]

𝜑(𝑋𝑖)𝜑(𝑋𝑖)⊤ = 𝐼 .

3Some minor mathematical precautions should be taken to deal with this
weighted Sobolev pseudo-norm, we will omit them in this paper.

4The solution of 𝜑 is unique up to orthonormal transformations 𝑈𝜑 for
𝑈 ∈ R𝑝×𝑝 orthogonal, and to permutation of eigenfunctions associated with
the 𝑝-th eigenvalue of L.



3.3. Consistency results

This section discusses limiting behaviors of the methods de-
scribed previously, namely SSL (2), graph Laplacian (6) and
Dirichlet energy (5).

Graph Laplacians have arguably two convergence proper-
ties. On the one hand, keeping the scale 𝜎 constant, as the
number of samples 𝑛 goes to infinity, the empirical minimizer
minimizes the following measure of variations

E
[
∥𝑑 (𝑋) 𝑓 (𝑋) − 𝑘𝜎 ∗ 𝑓 (𝑋)∥2

]
, with

𝑘𝜎 ∗ 𝑓 (𝑥) = E[𝑘𝜎 (𝑥, 𝑋) 𝑓 (𝑋)], 𝑑 = 𝑘𝜎 ∗ 1,

which can be seen as a smoothed, reweighted version of the
Dirichlet energy. The convergence happens relatively fast,
typically in𝑂 (𝑛−1/2) in 𝐿2-norm [20]. On the other hand, with
the right scaling of 𝜎, this finite difference method is able to
converge towards the ideal solution defined by (5). Yet the
convergence rates are much worse, e.g. in 𝑂 (𝑛−1/𝑑) for 𝑑 the
dimension of the data manifold (𝑑 = dim supp 𝜌𝑋 ) [21]. This
may be understood intuitively, to measure variations with finite
differences, the number of points needed grows exponentially
with dimension [22].

Alternatively, (4) might be estimated directly with empirical
samples and a parametric model such as neural networks or
kernel methods. This enables fast convergence towards the
solution of (5) within the search space of functions for 𝜑. By
not suffering from the curse of dimension and converging to
the ideal operator, this approach is statistically superior [23].
Yet, it requires optimization over derivatives which can lead to
computational drawbacks.

3.4. Insights for SSL

We argue that SSL objectives such as (2) can be seen as
measures of variations. In particular, since 𝑡 (𝑥, b) is supposed
to be closed to 𝑥 (at least semantically speaking), it behaves
as a random variable (with respect to b) to compute finite
differences at a point 𝑥 ∈ X . Therefore, we expect SSL
algorithms either, when keeping the scale of b constant,5 to
converge fast to the minimizer of some smoothed version of
a functional that measure variations (4) (depending on 𝑡 and
the distance 𝑑), or, with the right decreasing scale, to converge
slowly to the ideal functional itself.

4. EXPERIMENTS

Prior sections have introduced three techniques to learn 𝜑, SSL
(2), graph Laplacian (6) and empirical Dirichlet energy (5).
We have argued that they all aimed at learning the same type of
functions, i.e. orthogonal functions that minimize variations.
After implementation details, proof-of-concept experiments
verify this claim.

5Here, Ξ is implicitly assumed to be a Banach space and the transformation
to verify 𝑡 (𝑥 + b) = 𝑥 + 𝑜(∥b∥).

4.1. Implementation details

This section reviews implementation details based on empirical
samples (𝑋𝑖)𝑖∈[𝑛] . Experiments were made with the following
specification of the self-supervised learning objective

E𝑠 (𝜑) =
1
𝑛

∑︁
𝑖∈[𝑛]
∥𝜑(𝑋𝑖) − 𝜑(𝑋𝑖 + 𝜎b𝑖)∥2 , (2)

with b𝑖 a random unit Gaussian variable, and 𝜎 a scale param-
eter. The empirical version of Dirichlet energy reads

E𝑒 (𝜑) =
1
𝑛

∑︁
𝑖∈[𝑛]
∥∇𝜑(𝑋𝑖)∥2 , (5)

which, in the case of deep networks, is related to double
backpropagation [24] and has been used in other contexts [25,
26]. Finally, the graph Laplacian objective is nothing but (6).

In experiments, the orthogonality constraints was relaxed
as a penalty reading

Ω(𝜑) =
 1
𝑛2

∑︁
𝑖∈[𝑛]

𝜑(𝑋𝑖)𝜑(𝑋𝑖)⊤ − 𝐼
2
,

while the final objective is E (𝜑) + _Ω(𝜑).
Self-supervised learning is known to be quite unstable

to changes in hyperparameters. In experiments, the scale
parameters (standard deviation of augmentation in SSL, and
kernel scaling in graph Laplacian) were set to match the
width of the half-moon dataset (which was itself generated
with Gaussian noise). Stochastic gradient descent parameters
(learning rate scheduling, batch size) were tuned to succeed
the sole minimization of Ω.6 Finally, the regularizer _ was
set to approximately balance the penalty and the objective at
hand (the learning rate was divided by _ accordingly). The
representation 𝜑 was parameterized with a fully connected
neural network with five hidden layers, each containing a
hundred neurons. The code is available online at https:
//github.com/VivienCabannes/laplacian.

4.2. Consistency results.

This section checks the claim that the three objectives (2), (5)
and (5) are learning similar functions. It proceeds with the two
half-moons dataset (Figure 1).

In this setting, the eigenfunctions of L are related to the
Fourier basis on the union of two segments and are relatively
stable under smoothing of the differential functional. Beside
the constant function, the null space of L is made of 𝜑1 the
difference of the indicator functions of both half-moons. The
second two eigenfunctions 𝜑2 and 𝜑3 are first-mode waves on
each component. Figure 1 reports the learned 𝜑 for the three

6Note that because the expectation is inside the norm in Ω a naive mini-
batch strategy does not provide unbiased stochastic estimate of its gradient.
We overcame this issue by considering large batches.

https://github.com/VivienCabannes/laplacian
https://github.com/VivienCabannes/laplacian


Fig. 1: Functions learned with 𝑝 = 2 for SSL (2) on the right, graph Laplacian (6) in the middle, and Dirichlet energy (5) on the right.
Datapoints (𝑋𝑖)𝑖∈[𝑛] are represented as black dots, while the functions 𝜑𝑖 (𝑋) are represented through the level regions in different colors.

methods with 𝑝 = 2. All methods recover 𝜑1 (top), the first two
recover 𝜑2 while the third one recovers a mixture cos(\)𝜑2 +
sin(\)𝜑3 for some \ ∈ [0, 2𝜋], which also minimizes (5).
Table 1 is concerned with 𝑝 = 5, and the downstream task
that consists in predicting if 𝑥 was in the top (or bottom) of
the left (or right) half-moon. This generates a classification
problem with four different classes. Such a task is ideal to
evaluate our argumentation since the first five eigenfunctions
of the diffusion operator L discriminate those four parts of the
space with linear probing. The results are satisfying.

SSL (2) energy (5) graph (6)
96.14 ± 0.16 97.32 ± 0.16 95.15 ± 0.19

Table 1: Accuracy on downstream task with linear probing to
check eigenspace retrieval (random is 0.25).

4.3. Discussion

While the previous experiments are made on small synthetic
data, some behaviors are worse mentioning. First, the SSL
objective (2) and the graph Laplacian (6) lead to similar results.
Yet, graph Laplacian only uses samples on the data manifold,
while augmented data in SSL gets out of it. At first sight, it
seems better to restrict computations of finite differences to the
manifold: the method would scale with the intrinsic dimension
of data instead of the explicit input dimension [21]. In practice,
on the contrary, people do use aggressive color jittering leading
to unnatural augmented images. We notice in experiments
that this prevents neural networks from taking arbitrary values
outside the support of the data. On the other hand, graph
Laplacian can exhibit high values outside the manifold, making

it vulnerable to distribution shift or adversarial attacks [27].7
In high dimensional input space, the Dirichlet energy

method (5) is supposed to exhibit much better statistical prop-
erties [23]. In practice, however, it suffers from some com-
putational drawbacks. More specifically, for neural networks
with two hidden layers with both one hundred neurons, graph
Laplacian and SSL find similar solutions as the one in Figure 1
while the Dirichlet energy method tends to collapse to basic
orthogonal functions such as 𝜑𝑖 = cos(2𝜋𝜔𝑖 ⟨𝑒𝑖 , 𝑥⟩) for some
small 𝜔 and some unit vector 𝑒𝑖 . This behavior vanishes with
deeper networks.

Finally, when 𝑝 gets big, the different functions 𝜑𝑖 learned
are hard to parse visually. While a solution for 𝜑 are waves with
increasing modes, in practice the networks learn an orthogonal
transformation of it, i.e. 𝜑 ← 𝑈𝜑 for 𝑈 ∈ R𝑝×𝑝 a random
orthogonal matrix. If those different modes were to correspond
to features in the original data, it would be natural to ask for (𝜑𝑖)
to describe those local regions of the input space associated
with features. This suggests room for future improvements of
SSL methods.

5. CONCLUSION

This paper unveiled the link between novel self-supervised
learning techniques and classical unsupervised learning ones.
Key to all those methods is the low-variation hypothesis. In
future work, we hope to leverage this understanding to provide
practical guidelines to design self-supervised learning algo-
rithms and deploy them in the wild without having to rely on
expensive hyperparameters validation.

7Additionally, rote that SSL gets fresh samples for each b𝑖 at each opti-
mization epoch, which reduces in-samples bias.
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