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ABSTRACT
Speaker localization in a reverberant environment is a fundamental problem in audio signal processing. Many
solutions have been developed to tackle this problem. However previous algorithms typically assume a station-
ary environment in which both the microphone array and the sound sources are not moving. With the emergence
of wearable microphone arrays, acoustic scenes have become dynamic with moving sources and arrays. This
calls for algorithms that perform well in dynamic environments. In this article, we study the performance of a
speaker localization algorithm in such an environment. The study is based on the recently published EasyCom
speech dataset recorded in reverberant and noisy environments using a wearable array on glasses. Although the
localization algorithm performs well in static environments, its performance fell substantially when used on the
EasyCom dataset. The paper presents performance analysis and proposes methods for improvement.
Keywords: Direction of Arrival (DOA) estimation, Direct Path Dominance (DPD) test, wearable micro-
phone arrays, EasyCom dataset

1 INTRODUCTION
Localizing multiple sound sources recorded with a microphone array in an enclosure is an important task used
in a wide range of applications such as speech enhancement, source separation and video conferencing [2].
Therefore, many direction-of-arrival (DOA) estimation methods have been developed for this task. These include
methods based on beam-forming [11], subspace methods such as multiple signal classification (MUSIC) [9], and
time-delay of arrival estimation methods [3]. Many of the algorithms based on these methods were designed
assuming a free-field environment. When these algorithms are used in a more common reverberant environment
their DOA performance degrades. The reason for this is that in a reverberant environment, room reflections
mask the direct sound which carries the DOA information. Recently, however, several methods have been
developed for DOA estimation of multiple speakers that are robust to reverberation. One such method processes
the microphone signals in the time-frequency domain, and employs a direct-path dominance (DPD) test [7] to
identify time-frequency bins that are dominated by the direct sound from the source. Algorithms which use
this method have been widely studied assuming a static environment, where both the sound sources and the
microphone array are stationary. On the other hand, these algorithms have been less intensely studied in a more
realistic, dynamic environment, where the sound sources and/or the microphone array are moving.

In dynamic environments, the motion of the sound sources and/or microphone array may lead to rapid
change of DOAs in time. Thus to accurately trace the DOA of speakers requires a short interval between suc-
cessive DOA estimates. Additionally, the DOA estimates may be smoothed in time using a tracking algorithm.
Although DOA estimation and tracking algorithms in dynamic environments have been the subject of several
recent studies [5, 12], including the Acoustic Source Localization and Tracking (LOCATA) [6] challenge, none
of these have included experiments with wearable microphone arrays which may bring new challenges. Such
scenes are becoming increasingly more popular due to the increased interest in applications involving augmented
reality.

In this article we address the problem of DOA estimation in a noisy dynamic environment involving a
wearable microphone array. The experiments were performed using the Easy Communication (EasyCom) dataset
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[4] which was explicitly designed to represent a realistic cocktail-party environment. The DOA estimates were
computed using a computationally efficient algorithm which had been shown previously to have good source
localization performance in a static reverberant environment [10]. The algorithm incorporates a DPD test and
operates in the time-frequency domain. We study the performance and limitations of this algorithm on the
EasyCom dataset under different operating parameters. We also introduce two modifications of the algorithm
and study their improvement of performance.

2 MATHEMATICAL MODEL
In this section we first briefly present the model assumed for the recorded signal as captured by the microphone
array at each time-frequency bin (t, f ). Then, we describe the local space domain distance (LSDD) algorithm
[10] for the DOA estimation at each bin (t, f ).

2.1 Signal model
Assume a microphone array with M microphones arranged according to a pre-defined geometry. Next, consider
a sound field comprised of K far-field sources, arriving from directions Ψk,k ∈ {1,2, . . . ,K}. These sources
represent the direct sound from the speakers in the scene, as well as reflections (reverberations) due to objects
and room boundaries.

In the next step, the recorded microphone signals are transformed into the joint time-frequency domain by
applying the short-time Fourier transform (STFT). This is done by first separating the speech signal into short
time intervals of length δ t. A fast Fourier transform (FFT) is then applied to each time segment. Following
these pre-processing steps, the signal received by the microphone array can then be described in the STFT
domain as

x(t, f ) =
K

∑
k=1

sk(t, f )v( f ,Ψk)+n(t, f ) , (1)

where x(t, f ) = [x1(t, f ),x2(t, f ), . . . ,xM(t, f )]T is an M × 1 complex vector denoting the signal as measured
by the microphones composing the array; v( f ,Ψk) = [v1( f ,Ψk),v2( f ,Ψk), . . . ,vM( f ,Ψk)]

T is an M × 1 vector
denoting the response of the microphone array to a unit-amplitude plane wave at frequency f arriving from the
k’th source in direction Ψk; sk(t, f ) is a scalar which represents the amplitude of the k’th sound source signal;
and n(t, f ) = [n1(t, f ),n2(t, f ), . . . ,nM(t, f )]T is an M×1 vector denoting the noise in the signal x(t, f ).

2.2 Local Space Domain Distance (LSDD) Algorithm
The LSDD algorithm is a recently developed DOA estimation algorithm characterized by DOA performance
that is robust to reverberation. The algorithm was first proposed in [10] and works as follows. The directional
spectrum S(t, f ) = [S1(t, f ),S2(t, f ), . . . ,SL(t, f )]T computed within this algorithm is an L×1 vector defined over
a grid of DOAs Θl , l ∈ {1,2, . . . ,L}. The l’th component is defined as:

Sl(t, f ) = d (x(t, f ) ,v( f ,Θl)) = d
(
[x1(t, f ), . . . ,xM(t, f )]T , [v1( f ,Θl), . . . ,vM( f ,Θl)]

T ) , (2)

where d(a,b) is a function which measures the similarity between two vectors a and b. In [10], d(a,b) was
defined as

d(a,b) =
1

min
β

( ∥a−βb∥
∥a∥

) , (3)

where ∥.∥ is the 2-norm. In this article we shall use, however, the more conventional cosine similarity measure:

d(a,b) =
|< a,b > |
∥a∥∥b∥

, (4)

where < a,b > denotes the inner product between a and b.
Given the spectrum vector S(t, f ), the estimated DOA for bin (t, f ) is computed by:

θ̂(t, f ) = argmax
l

{Sl(t, f )} . (5)



Some of the bins (t, f ) do not, however, contain a valid θ̂(t, f ) value. These are bins in which the direct signal
from the speaker is masked by noise and reverberations. We eliminate these bins by calculating a DPD measure
value χ(t, f ) for each bin which we then test against a threshold λ . Although there are different methods
available for calculating χ(t, f ), we shall, for simplicity, use the following:

χ(t, f ) = max
l

{Sl(t, f )} . (6)

Together, Eqns. (5) and (6) define a (joint) LSDD DOA/DPD algorithm.

2.3 Energy Weighted Local Space Domain Distance (LSDDe) Algorithm
We describe an energy weighted modification for calculating the DPD test value χ(t, f ). In this equation, we
weight the DPD test value in Eqn. (6) with its corresponding signal energy. The energy weighted DPD test
value is then:

χ(t, f ) = max
l

{
Sl(t, f ) ·MED[|x1(t, f )|2, |x2(t, f )|2, . . . , |xM(t, f )|2]

}
, (7)

where MED is the median operator. Together Eqns. (5) and (7) define a (joint) LSDDe DOA/DPD algorithm.

3 PROPOSED DOA ESTIMATION ALGORITHM
We propose a new DOA estimation algorithm which was the outcome of investigating the performance of the
LSDD algorithm with the EasyCom dataset. It is clear from Eqns. (2), (4) and (5) that the LSDD algorithm
does not use any information about the behavior of S(t, f ) with respect to Θl . As such information may be
useful, it is proposed to incorporate this information using a correlation process, as follows. For each frequency
f we define an ïdeal two-dimensional spectrum represented by matrix W, whose elements, Wlh ≡ W (Θl ,Θh),
represent the similarity between the l’th steering vector v( f ,Θl) and the h’th steering vector v( f ,Θh):

W (Θl ,Θh) = d(v( f ,Θl),v( f ,Θh))

= d([v1( f ,Θl), . . . ,vM( f ,Θl)]
T , [v1( f ,Θh), . . . ,vM( f ,Θh)]

T ) ,∀l,h ∈ {1,2, . . . ,L} ,
(8)

where measure d is defined in (4). Now, the similarity between each column vector in W and the spectrum
S(t, f ) is computed, which provides the following indication. Suppose that Θh is a DOA of an actual source.
Then, we expect the h’th column of W to be similar to S(t, f ). This, in effect, defines the new directivity based
Space Domain Distance (dSDD) DOA estimation algorithm. The corresponding DOA estimate for bin (t, f ) is
now computed using:

θ̂(t, f ) = argmax
h

{d(S(t, f ),Wh)} , (9)

where Wh denotes the h’th column in W. We follow Eqn. (6) and define a corresponding DPD test measure:

χ(t, f ) = max
h

{d(S(t, f ),Wh)} . (10)

Together, Eqns. (9) and (10) define a (joint) dSDD DOA/DPD algorithm. It should be noted that under ideal
conditions where signal x in Eqn. (1) is composed of a single plane wave, the two algorithms, LSDD and
dSDD should provide the same estimate as they both rely on the same set of steering vectors. However, the
motivation for proposing dSDD is the expected robustness against potential noise and reverberation due to the
comparison of entire functions, or vectors. This is in contrast to the LSDD where DOA estimates are based on
looking for a peak in a function.

As in the case of the LSDD algorithm, we describe an energy weighted dSDD algorithm (dSDDe), in which,
for each bin (t, f ), we weight the dSDD DPD test measure with the corresponding signal energy. The energy
weighted DPD test value is therefore:

χ(t, f ) = max
h

{d(S(t, f ),Wh)} ·MED
[
|x1(t, f )|2, |x2(t, f )|2, . . . , |xM(t, f )|2

]
. (11)



4 EXPERIMENTS
This section presents an experimental study that aims to investigate the performance of the LSDD and the dSDD
with the EasyComm dataset. First, experimental setup and methodology are presented. This is then followed by
the evaluation of the results.

4.1 Set-up
The experiments described in this article were performed on the EasyCom dataset [4]. This dataset was designed
with the aim of analyzing the cocktail party effect with audio signals captured by augmented reality (AR)
glasses equipped with an egocentric six-channel microphone array. Figure 1 shows a schematic drawing of the
glasses with locations of the microphones [4].

The dataset contains recordings of natural conversations in a noisy restaurant environment. Participants were
equipped with close-talk microphones, a camera and tracking markers. They were asked to engage in conver-
sations during several tasks, including introductions, ordering food, solving puzzles, playing games and reading
sentences. The recordings also contain an egocentric video viewpoint of the participants. The pose (position
and rotation) of every participant was also recorded. The dataset was additionally labelled with annotators of
voice activity.

Figure 1. Illustration of the AR glasses with locations of microphones [4]. Four of the microphones are fixed
rigidly to the glasses and two of the microphones are placed in the user’s ears.

The signals recorded by the microphones were sampled at a rate of 48 kHz. The recorded data was trans-
formed into the STFT domain using a 1024 samples (≃ 20 msec) Hann window with an overlap of 512 samples.
The microphone signals in the STFT domain were employed as an input to the algorithms under study.

4.2 Methodology
Evaluation of the DOA/DPD algorithms incorporated a direction search with a resolution of 5◦ which was lim-
ited to the horizontal plane. The ground truth azimuthal DOA (Ψk) was obtained from the EasyCom dataset as
a function of time. Altogether, a series of three experiments was performed with the EasyCom dataset. The first
experiment measured the effective frequency range of the array [ flow, fhigh], and the second and third experiments
investigated the effect of frequency smoothing and the length of the time interval ∆T on the performance.

DOA estimation performance was evaluated as follows. For each (t, f ) bin, the absolute error

ε(t, f ) = |Ψ(t)− θ̂(t, f )| , (12)

between the true DOA Ψ(t) and the estimated DOA θ̂(t, f ) was computed. Note that Eqn. (12) assumes that
both Ψ(t) and θ̂(t, f ) are measured with respect to the same axis. In practice, in this dataset, Ψ(t) is measured
with respect to an axis defined relative to the room, while θ̂(t, f ) is measured with respect to the orientation of
the glasses. Thus, before calculating ε(t, f ), θ̂(t, f ) is transformed to the fixed axis of the room by incorporating
head tracking information. In addition, each bin was labeled a "hit" if ε(t, f )≤ 10◦; otherwise it was labeled a
"miss".

The bins (t, f ) were divided into time blocks of length ∆T . For each block, only bins which satisfied the
following four conditions are regarded as valid and are used for DOA estimation:

1. The frequency f lies within the effective operating frequency range: f ∈ [ flow, fhigh].

2. The time t lies within the selected block. Denote T as the middle time of the block then t ∈ [T −
∆T/2,T +∆T/2] belongs to block T .



3. Voice activity was detected at time t.

4. The DPD test value χ(t, f ) exceeds a threshold λ . For the purpose of this study, the threshold was
determined from the percentage p of bins which satisfy the first three conditions with the highest value
χ . Note that λ is computed independently for each block T .

The mean value of ε(t, f ) is computed over valid (t, f ) bins, i.e. bins which satisfy the above four conditions.
By definition, this is the mean absolute DOA estimation error E(p,T,∆T ) for the block T . Similarly, the mean
hit ratio H(p,T,∆T ) was computed on valid (t, f ) bins by dividing the number of valid bins labelled "hit" by
the total number of valid bins. Finally the mean absolute error, Ē(p,∆T ), and the mean hit ratio, H̄(p,∆T ), for
the entire experiment was computed by averaging E(p,T,∆T ) and H(p,T,∆T ) over all blocks T .

4.3 Effective operating Frequency Band
The EasyCom dataset involves speech sound which naturally limit the frequency range of interest [8]. This
frequency band is reduced in practice by aliasing effects which arise from the microphone array. For a specific
steering vector v( f ,Θh) (corresponding to a frequency f and direction Θh), the similarity between v( f ,Θh)
and the set of steering vectors v( f ,Θl), l ∈ {1,2, ...,L} is computed using Eqn. (4). This is repeated for all
frequencies f leading to the following measure

Λ( f ,Θl) = d(v( f ,Θh),v( f ,Θl)) . (13)

Figure 2 shows Λ for Θh = 0◦. Visual inspection shows that the preferred frequency band is about 1100−2000
Hz, where at lower frequency the directivity may be too wide, while at higher frequencies significant side lobes
may degrade spatial processing. While this is a relatively narrow band of frequencies, in this work it led to
best performance. Extending the range of operation for both lower and higher frequencies is proposed for future
work.

Figure 2. The similarity matrix Λ for Θh = 0◦

4.4 DOA Error and Frequency Smoothing
The spectrum S(t, f ) plays a key role in the DOA/DPD algorithms. In particular, the authors in [1] have
shown that it is beneficial to smooth S(t, f ) in frequency. We investigated the effect of smoothing S(t, f ) over
frequency using a moving average filter of length (2R+1). Let S̄(t, f ) = [S̄1(t, f ), S̄2(t, f ), . . . , S̄L(t, f )]T denote
the smoothed spectrum, which is computed by

S̄l(t, f ) =
R

∑
r=−R

Sl(t, f + r∆ f )/(2R+1) , (14)



where ∆ f is the STFT frequency bin width and Sl(t, f ) is defined in Eqn. (2).
DOA estimation experiments were carried out on several 1-minute segments extracted from the EasyCom

dataset. Altogether S(t, f ) was frequency smoothed using (i) a 9-element filter, (ii) a 3-element filter and (iii)
no smoothing. In this experiment, ∆T was fixed to 200 msec. The corresponding results are shown in Fig. 3.

0 5 10
20

30

40

LSDD

LSDDe

dSDDe

(a)

0 5 10
20

30

40

(b)

0 5 10
20

30

40

(c)

0 5 10
25

30

35

40

45

50

(d)

0 5 10
25

30

35

40

45

50

(e)

0 5 10
25

30

35

40

45

50

(f)

Figure 3. The mean absolute error Ē(p,∆T ) and the mean hit ratio H̄(p,∆T ) as a function of p when averaged
over ten 1-minute data segments. The time interval was ∆T = 200 msec. (a)-(c) Shows, respectively, Ē(p,∆T )
with a 9-element smoothing filter, a 3-element smoothing filter and no smoothing. (d)-(f) Show the correspond-
ing H̄(p,∆T ) curves.

Figure 3 shows that best overall performance in terms of both Ē(p,∆T ) and H̄(p,∆T ), for the original
LSDD algorithm as described in Sec. 2.2 is obtained with the 9-element filter. On the other hand, for both
LSDDe as in Sect. 2.3 and dSDDe as in Sect. 3, the best overall performance is obtained when no smoothing
is used. Moreover, for both algorithms the change in performance with respect to smoothing is relatively small.

Finally, we compare the results obtained with the variation of the LSDD algorithm (i.e with a 9-element
smoothing filter) and the best variations of the LSDDe and dSDDe algorithms (i.e. no smoothing). At low
percentages p the mean absolute error Ē(p,∆T ) obtained with the dSDDe algorithm is approximately 9◦ lower
than that obtained with the LSDD algorithm. Similarly, the mean hit ratio obtained with the dSDDe algorithm
is approximately 5% higher than that obtained with the LSDD algorithm.

4.5 DOA Error and Time Interval ∆T
The choice of time interval ∆T may be directly related to the dynamic nature of the dataset. In general, we
would like to use a value of ∆T which is small enough such that the environment can be considered spatially
stationary within the interval. However if the chosen value of ∆T is too small, DOA performance may degrade.
In this experiment, three different values of ∆T were investigated: (a) ∆T = 200 msec; (b) ∆T = 300 msec and
(c) ∆T = 500 msec. The DOA/DPD algorithms used the best frequency smoothing as presented in the previous
section. Figure 4 shows Ē(p,∆T ) averaged over ten 1-minute segments for three ∆T values. The figure shows
a consistent and significant improvement in performance as ∆T increases. At ∆T = 500 msec. and p = 1%,
dSDDe gave a mean absolute DOA error Ē ≈ 20◦. Similar to Fig. 3, dSDDe achieved the best performance,
and LSDD the worst.
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Figure 4. Ē(p,∆T ) as a function of percentage p for the LSDD, LSDDe and dSDDe algorithms for three
different ∆T values, averaged over ten 1-minute segments. (a) ∆T = 200 msec; (b) ∆T = 300 msec; (c) ∆T = 500
msec. Best Frequency smoothing was applied as in Sec. 4.4.

4.6 Summary
Figure 5 illustrates the performance of the dSDDe algorithm together with a timeline of several experimental
data values, for an example taken from the EasyCom dataset. In this example there are two active speakers.
The time interval ∆T used in the figure is 200 msec.
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Figure 5. Ground-truth and estimated DOAs for a 1-minute long segment taken from the EasyCom
dataset,including two speakers. Ground-truth direction are presented using dashed thick lines. The orientation
of the microphone array is marked using thick red line. The DOA estimates θ̂(t, f ) provided by the dSDDe
algorithm with p = 1% and ∆T = 200 msec. are shown as colored circles.

The figure illustrates the dynamic nature of the environment. While much of the DOA estimates fall close
to active speakers, some fall very much away from a true DOA. There is also a clear bias in the estimation
toward a preferred direction. These findings raise the need for further research to better understand the dataset
and the algorithms, and propose improved solutions.



5 CONCLUSION
This work presented three experiments for DOA estimation based on the EasyCom dataset. These preliminary
experiments showed:

1. Baseline performance using the original LSDD algorithm showed limited performance.

2. dSDD improved performance by incorporating more detailed spatial information.

3. Energy weighting DPD test values were found to be useful.

4. Both the LSDDe and the dSDDe DOA algorithms do not require frequency smoothing.
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