
Making Heads or Tails: Towards Semantically
Consistent Visual Counterfactuals

Simon Vandenhende Dhruv Mahajan
Filip Radenovic⋆ Deepti Ghadiyaram⋆

Meta AI

Abstract. A visual counterfactual explanation replaces image regions
in a query image with regions from a distractor image such that the
system’s decision on the transformed image changes to the distractor
class. In this work, we present a novel framework for computing visual
counterfactual explanations based on two key ideas. First, we enforce
that the replaced and replacer regions contain the same semantic part,
resulting in more semantically consistent explanations. Second, we use
multiple distractor images in a computationally efficient way and obtain
more discriminative explanations with fewer region replacements. Our
approach is 27% more semantically consistent and an order of magnitude
faster than a competing method on three fine-grained image recognition
datasets. We highlight the utility of our counterfactuals over existing
works through machine teaching experiments where we teach humans to
classify different bird species. We also complement our explanations with
the vocabulary of parts and attributes that contributed the most to the
system’s decision. In this task as well, we obtain state-of-the-art results
when using our counterfactual explanations relative to existing works, re-
inforcing the importance of semantically consistent explanations. Source
code is available at github.com/facebookresearch/visual-counterfactuals.

1 Introduction

Explainable AI (XAI) research aims to develop tools that allow lay-users to
comprehend the reasoning behind an AI system’s decisions [34,61]. XAI tools are
critical given the pervasiveness of computer vision technologies in various human-
centric applications such as self-driving vehicles, healthcare systems, and facial
recognition tools. These tools serve several purposes [2,57]: (i) they help users
understand why a decision was reached thereby making systems more transpar-
ent, (ii) they allow system developers to improve their system, and (iii) they
offer agency to users affected by the system’s decision to change the outcome.

One intuitive way to explain a system’s decision is through counterfactual
explanations [56,57] which describe in what way a data instance would need to
be different in order for the system to reach an alternate conclusion. In this work,
we study counterfactual explanations for fine-grained image recognition tasks,

⋆ Equal contribution.

https://github.com/facebookresearch/visual-counterfactuals

2 Vandenhende et al.

Goyal et al. [22] Wang et al. [59] OursOurs

c
=

A
m

er
ic

an
 G

ol
df

in
ch

c'
 =

 W
ils

on
 W

ar
bl

er

c
=

A
ffe

np
in

sc
he

r
c'

 =
 Ir

is
h

W
ol

fh
ou

nd

(a) Problem setup.

c'
 =

 S
to

rk
-b

ill
ed

 K
in

gf
is

he
r

c
=

Sa
cr

ed
 K

in
gf

is
he

r

Q
ue

ry
 Im

ag
e
I

D
is

tr
ac

to
r

Im
ag

e(
s)

 I'
 Attribute Information :
"Changing the color of the
bird's beak from black
to red is most important to
change the prediction to
Stork-billed Kingfisher"

(b) Counterfactual explanations from different methods.

Q
ue

ry
 Im

ag
e
I

D
is

tr
ac

to
r

Im
ag

e(
s)

 I'

Fig. 1: Paper overview. (a) Given a query image I (top row) from class c, we provide
counterfactual explanations relative to a distractor image I ′ (bottom row) from class
c′. The explanations highlight what regions in I should be replaced from I ′ for the
transformed image to be classified as c′. We also use attribute information to identify
the region attributes that contributed the most for a counterfactual. (b) Unlike [22,59],
our explanations identify regions that are both discriminative and semantically similar.

where the most confusing classes are often hard to distinguish. The difficulty
of this problem makes it a particularly well suited setting to study intuitive
and human-understandable explanations. Figure 1-a presents a query image I
and a distractor image I ′ belonging to the categories Sacred Kingfisher (c) and
Stork-billed Kingfisher (c′), respectively. Given a black-box classification model,
a counterfactual explanation aims to answer: “how should the query image I
change for the model to predict c′ instead of c?” To do this, we utilize the
distractor image I ′ (or a set of distractor images) and identify which regions in
I should be replaced with regions from I ′ for the model’s prediction to be c′.

Counterfactual visual explanations are under-explored [22,59], and most pop-
ular XAI methods use saliency maps [17,21,38,44,63] or feature importance
scores [18,29,33,41,42,51,65] to highlight what image regions or features most
contribute to a model’s decision. Unlike counterfactual explanations, these meth-
ods do not consider alternate scenarios which yield a different result. Addition-
ally, some of these methods [33,41,42] extract explanations via a local model
approximation, leading to explanations that are unfaithful [3,50], i.e., they mis-
represent the model’s behavior. By contrast, current counterfactual explanations
are faithful by design as they operate on the original model’s output to generate
explanations. Further, counterfactuals share similarities with how children learn
about a concept – by contrasting with other related concepts [9,11]. As stud-
ied in [35,56,57], an ideal counterfactual should have the following properties:
(i) the highlighted regions in the images I, I ′ should be discriminative of their
respective classes; (ii) the counterfactual should be sensible in that the replaced
regions should be semantically consistent, i.e., they correspond to the same ob-
ject parts; and, (iii) the counterfactual should make as few changes as possible
to the query image I as humans find sparse explanations easier to understand.

Prior works [22,59] proposed ways to identify the most discriminative im-
age regions to generate counterfactual explanations. However, naively applying
this principle can yield degenerate solutions that are semantically inconsistent.
Figure 1-b visualizes such scenarios, where prior works [22,59] replace image re-

Making heads or tails 3

gions corresponding to different object parts (e.g., [22] replaces bird’s wing in I
with a head in I ′). Further, these methods rely on a single distractor image I ′,
which often limits the variety of discriminative regions to choose from, leading
to explanations that are sometimes less discriminative hence uninformative.

This paper addresses these shortcomings. Specifically, we propose a novel and
computationally efficient framework that produces both discriminative and se-
mantically consistent counterfactuals. Our method builds on two key ideas. First,
we constrain the identified class-specific image regions that alter a model’s deci-
sion to allude to the same semantic parts, yielding more semantically consistent
explanations. Since we only have access to object category labels, we impose
this as a soft constraint in a separate auxiliary feature space learned in a self-
supervised way. Second, contrary to prior works, we expand the search space by
using multiple distractor images from a given class leading to more discrimina-
tive explanations with fewer regions to replace. However, naively extending to
multiple distractor images poses a computational bottleneck. We address this
by constraining the processing to only the most similar regions by once again
leveraging the soft constraint, resulting in an order of magnitude speedup.

Our approach significantly outperforms the s-o-t-a [22,59] across several met-
rics on three datasets – CUB [58], Stanford-Dogs [28], and iNaturalist-2021 [55]
and yields more semantically consistent counterfactuals (Fig. 1-b). While prior
work [22] suffers computationally when increasing the number of distractor im-
ages, the optimization improvements introduced in our method make it notably
efficient. We also study the properties of the auxiliary feature space and jus-
tify our design choices. Further, we show the importance of generating seman-
tically consistent counterfactuals via a machine teaching task where we teach
lay-humans to recognize bird species. We find that humans perform better when
provided with our semantically consistent explanations relative to others [22,59].

We further reinforce the importance of semantically consistent counterfactu-
als by proposing a method to complement our explanations with the vocabulary
of parts and attributes. Consider Fig. 1-a, where the counterfactual changes both
the color of the beak and forehead. Under this setup, we provide nameable parts
and attributes corresponding to the selected image regions and inform what at-
tributes contributed the most to the model’s decision. For example, in Fig. 1-a,
our explanation highlights that the beak’s color mattered the most. We find that
our explanations identify class discriminative attributes – those that belong to
class c but not to c′, or vice versa – and are more interpretable.

In summary, our contributions are: (i) we present a framework to compute
semantically consistent and faithful counterfactual explanations by enforcing the
model to only replace semantically matching image regions (Sec. 3.2), (ii) we
leverage multiple distractor images in a computationally efficient way, achieve
an order of magnitude speedup, and generate more discriminative and sparse ex-
planations (Sec. 3.3), (iii) we highlight the utility of our framework through ex-
tensive experiments (Sec. 4.2 - 4.3) and a human-in-the-loop evaluation through
machine teaching (Sec. 4.4), (iv) we augment visual counterfactuals with name-
able part and attribute information (Sec. 5).

4 Vandenhende et al.

2 Related Work

Feature attribution methods [6] rely on the back propagation algorithm
[8,40,44,45,46,62,63] or input perturbations [15,17,20,21,38,65] to identify the
image regions that are most important to a model’s decision. However, none of
these methods can tell how the image should change to get a different outcome.
Counterfactual explanations [36,39,56,57] transform a query image I of class
c such that the model predicts class c′ on the transformed image. In computer vi-
sion, several works [5,25,26,31,32,43,48,49] used a generative model to synthesize
counterfactual examples. However, the difficulties of realistic image synthesis can
limit these methods [25,32,43,48] to small-scale problems. A few works [5,26,49]
guided the image generation process via pixel-level supervision to tackle more
complex scenes. StyleEx [31] uses the latent space of a StyleGAN [27] to identify
the visual attributes that underlie the classifier’s decision. Despite these efforts, it
remains challenging to synthesize realistic counterfactual examples. Our method
does not use a generative model but is more related to the works discussed next.

A second group of works [4,22,59] finds the regions or concepts in I that
should be changed to get a different outcome. CoCoX [4] identifies visual con-
cepts to add or remove to change the prediction. Still, the most popular meth-
ods [22,59] use a distractor image I ′ from class c′ to find and replace the regions
in I that change the model’s prediction to c′. SCOUT [59] finds these regions via
attribute maps. Goyal et al. [22] use spatial features of the images to construct
counterfactuals. These methods have two key advantages. First, the distractor
images are often readily available and thus inexpensive to obtain compared to
pixel-level annotations [5,26,49]. Second, these methods fit well with fine-grained
recognition tasks, as they can easily identify the distinguishing elements between
classes. Our framework follows a similar strategy but differs in two crucial com-
ponents. First, we enforce that the replaced regions are semantically consistent.
Second, our method leverages multiple distractor images in an efficient way.

3 Method

Our key goal is to: (i) generate a counterfactual that selects discriminative and
semantically consistent regions in I and I ′ without using additional annotations,
(ii) leverage multiple distractor images efficiently. We first review the founda-
tional method [22] for counterfactual generation that our framework builds on
and then introduce our approach, illustrated in Fig. 2.

3.1 Counterfactual problem formulation: preliminaries

Consider a deep neural network with two components: a spatial feature extractor
f and a decision network g. Note that any neural network can be divided into
such components by selecting an arbitrary layer to split at. In our setup, we split
a network after the final down-sampling layer. The spatial feature extractor
f : I → Rhw×d maps the image to a h × w × d dimensional spatial feature,

Making heads or tails 5

Classi�er
Spatial Features

Extractor
f

Classi�cation loss
(hw x hw permutations)

Query I

c = House Sparrow

Counterfactual

Auxiliary
Model

u

Classi�er Head
g h x w x d

Spatial Embedding
(h x w x d')

Non-parametric
Softmax

s

Semantic consistency loss
(hw x hw permutations)

Distractor I'

c' = Tree Sparrow

Fig. 2: Our counterfactual explanation identifies regions in a query image I from
class c and a distractor image I ′ from class c′ such that replacing the regions in I with
the regions in I ′ changes the model’s outcome to c′. Instead of considering actual image
regions, we operate on h × w cells in the spatial feature maps. The cells are selected
based upon: (i) a classification loss that increases the predicted probability gc′ of class
c′ and (ii) a semantic consistency loss that selects cells containing the same semantic
parts. We use a self-supervised auxiliary model to compute the semantic loss.

reshaped to a hw × d spatial cell matrix, where h and w denote the spatial
dimensions and d the number of channels. The decision network g : Rhw×d → R|C|

takes the spatial cells and predicts probabilities over the output space C. Further,
let query and distractor image I, I ′ ∈ I with class predictions c, c′ ∈ C.

Following [22], we construct a counterfactual I∗ in the feature space f(.)
by replacing spatial cells in f(I) with cells from f(I ′) such that the classifier
predicts c′ for I∗. This is done by first rearranging the cells in f(I ′) to align with
f(I) using a permutation matrix P ∈ Rhw×hw, then selectively replacing entries
in f(I) according to a sparse binary gating vector a ∈ Rhw. Let ◦ denote the
Hadamard product. The transformed image I∗ can be written as:

f(I∗) = (1 − a) ◦ f(I) + a ◦ Pf(I ′) (1)

Classification loss: Recall that our first goal is to identify class-specific image
regions in I and I ′ such that replacing the regions in I with those in I ′ increases
the predicted probability gc′(.) of class c

′ for I∗. To avoid a trivial solution where
all cells of I are replaced, a sparsity constraint is applied on a to minimize the
number of cell edits (m). Following the greedy approach from [22], we iteratively
replace spatial cells in I by repeatedly solving Eq. 2 that maximizes the predicted
probability gc′(·) until the model’s decision changes.

max
P,a

gc′((1 − a) ◦ f(I) + a ◦ Pf(I ′)) with ||a||1 = 1 and ai ∈ {0, 1} (2)

We evaluate gc′ for each of the h2w2 permutations constructed by replacing a
single cell in f(I) with an arbitrary cell in f(I ′). The computational complexity
is 2 ·Cf +mh2w2 ·Cg, where Cf and Cg denote the cost of f and g respectively.

Eq. 2 does not guarantee that the replaced cells are semantically similar. For
example, in the task of bird classification, the counterfactual could replace the
wing in I with head in I ′ (e.g., Fig. 1-b) leading to nonsensical explanations. We
address this problem via a semantic consistency constraint, described next.

6 Vandenhende et al.

3.2 Counterfactuals with a semantic consistency constraint

Consider an embedding model u : I → Rhw×d′
that brings together spatial cells

belonging to the same semantic parts and separates dissimilar cells. Let u(I)i
denote the feature of the i-th cell in I. We estimate the likelihood that cell i of
I semantically matches with cell j of I ′ by:

Ls(u(I)i, u(I
′)j) =

exp(u(I)i · u(I ′)j/τ)∑
j′∈u(I′) exp(u(I)i · u(I ′)j′/τ)

, (3)

where τ is a temperature hyper-parameter that relaxes the dot product. Eq. 3
estimates a probability distribution of a given query cell i over all distractor
cells j′ using a non-parametric softmax function and indicates what distractor
cells are most likely to contain semantically similar regions as the query cell i.
Like the classification loss (Eq. 2), we compute the semantic loss for all h2w2 cell
permutations. Thus, the complexity is 2 ·Cu+h2w2 ·Cdot, where Cu, Cdot denote
the cost of the auxiliary model u and the dot-product operation respectively.
Empirically, we observe that dot-products are very fast to compute and the
semantic loss adds a tiny overhead to the overall computation time. Note that
unlike the classification loss which is computed for each edit, Ls is computed
only once in practice, i.e., the cost gets amortized for multiple edits.

Total loss: We combine both losses to find the single best cell edit:

max
P,a

log gc′((1 − a) ◦ f(I) + a ◦ Pf(I ′))︸ ︷︷ ︸
Classification loss Lc

+ λ · log Ls(a
Tu(I),aTPu(I ′))︸ ︷︷ ︸

Semantic consistency loss Ls

with P ∈ Rhw×hw, ||a||1 = 1 and ai ∈ {0, 1} , and λ balances Lc and Ls.

(4)

We reiterate that Lc optimizes to find class-specific regions while Ls ensures
that these regions semantically match. We also stress that our explanations are
faithful with respect to the underlying deep neural network, since, the proposed
auxiliary model, irrespective of the value of λ, only acts as a regularizer and does
not affect the class predictions of the transformed images.

Choice of auxiliary model: An obvious choice is to use the spatial feature
extractor f as the auxiliary model u. We empirically found that since f is op-
timized for an object classification task, it results in an embedding space that
often separates instances of similar semantic parts and is thus unfit to model
region similarity. We found that self-supervised models are more appropriate as
auxiliary models for two reasons: a) they eliminate the need for part location
information, b) several recent studies [14,52,54] showed that self-supervised mod-
els based on contrastive learning [16,23,60] or clustering [7,12,13,53] learn richer
representations that capture the semantic similarity between local image regions
as opposed to task-related similarity in a supervised setup. Such representations
have been valuable for tasks such as semantic segment retrieval [52]. Thus, the
resulting embedding space inherently brings together spatial cells belonging to
the same semantic parts and separates dissimilar cells (see Table 4).

Making heads or tails 7

3.3 Using multiple distractor images through a semantic constraint

Recall, the method uses spatial cells from f(I ′) to iteratively construct f(I∗).
Thus, the quality of the counterfactual is sensitive to the chosen distractor image
I ′. Having to select regions from a single distractor image can limit the variety of
discriminative parts to choose from due to factors like pose, scale, and occlusions.
We address this limitation by leveraging multiple distractor images from class
c′. In this way, we expand our search space in Eq. 4, allowing us to find highly
discriminative regions that semantically match, while requiring fewer edits.

However, leveraging (n) multiple distractor images efficiently is not straight-
forward as it poses a significant computational overhead. This is because, in this
new setup, for each edit we can pick any of n × hw cells from the n distractor
images. This makes the spatial cell matrix of the distractor images of shape
nhw×d, the matrix P hw×nhw, and a ∈ Rhw. Lc (Eq. 2) with a single distractor
image is already expensive to evaluate due to: (i) its quadratic dependence on
hw making the cell edits memory intensive and, (ii) the relatively high cost of
evaluating g, involving at least one fully-connected plus zero or more conv layers.
This computation gets amplified by a factor n with multiple distractor images.

On the other hand, Ls (Eq. 3) is computationally efficient as: (i) it does not
involve replacing cells and (ii) the dot-product is inexpensive to evaluate. Thus,
we first compute Ls (Eq. 3) to select the top-k% cell permutations with the low-
est loss, excluding the ones that are likely to replace semantically dissimilar cells.
Next, we compute Lc (Eq. 2) only on these selected top-k% permutations. With
this simple trick, we get a significant overall speedup by a factor k (detailed
analysis in suppl.). Thus, our overall framework leverages richer information,
produces semantically consistent counterfactuals, and is about an order of mag-
nitude faster than [22]. Note that the multi-distractor setup can be extended
to [22] but not to SCOUT [59], as the latter was designed for image pairs.

4 Experiments

4.1 Implementation details and evaluation setup

Implementation details: We evaluate our approach on top of two backbones –
VGG-16 [46] for fair comparison with [22] and ResNet-50 [24] for generalizability.
As mentioned in Sec. 3.1, we split both networks into components f and g after
the final down-sampling layer max pooling2d 5 in VGG-16 and at conv5 1 in
ResNet-50. The input images are of size 224×224 pixels and the output features
of f have spatial dimensions 7 × 7. We examine counterfactual examples for
query-distractor class pairs obtained via the confusion matrix – for a query class
c, we select the distractor class c′ as the class with which images from c are
most often confused. This procedure differs from the approach in [22] which uses
attribute annotations to select the classes c, c′. Our setup is more generic as it
does not use extra annotations. Distractor images are picked randomly from c′.
Auxiliary model: We adopt the pre-trained ResNet-50 [24] model from Deep-
Cluster [13] to measure the semantic similarity of the spatial cells. We remove

8 Vandenhende et al.

the final pooling layer and apply up- or down-sampling to match the 7×7 spatial
dimensions of features from f . As in [13], we use τ = 0.1 in the non-parametric
softmax (Eq. 3). The weight λ = 0.4 (Eq. 4) is found through grid search. We
set k = 10 and select top-10% most similar cell pairs to pre-filter.
Evaluation metrics: We follow the evaluation procedure from [22] and report
the following metrics using keypoint part annotations.

– Near-KP: measures if the image regions contain object keypoints (KP).
This is a proxy for how often we select discriminative cells, i.e., spatial cells
that can explain the class differences.

– Same-KP: measures how often we select the same keypoints in the query
and distractor image, thus measures semantic consistency of counterfactuals.

– #Edits: the average number of edits until the classification model predicts
the distractor class c′ on the transformed image I∗.

Table 1: Datasets overview.

Dataset Statistics Top-1

#Class #Train #Val VGG-16 Res-50

CUB 200 5,994 5,794 81.5 82.0
iNat. (Birds) 1,486 414 k 14,860 78.6 78.8
Stanf. Dogs 120 12 k 8,580 86.7 88.4

Datasets: We evaluate the counter-
factuals on three datasets for fine-
grained image classification (see Ta-
ble 1). The CUB dataset [58] consists
of images of 200 bird classes. All im-
ages are annotated with keypoint lo-

cations of 15 bird parts. The iNaturalist-2021 birds dataset [55] contains 1,486
bird classes and more challenging scenes compared to CUB, but lacks keypoint
annotations. So we hired raters to annotate bird keypoint locations for 2,060 ran-
dom val images from iNaturalist-2021 birds and evaluate on this subset. Stanford
Dogs [28] contains images of dogs annotated with keypoint locations [10] of 24
parts. The explanations are computed on the validation splits of these datasets.

4.2 State-of-the-art comparison

Table 2 compares our method to other competing methods. We report the results
for both (i) the single edit found by solving Eq. 4 once and (ii) all edits found
by repeatedly solving Eq. 4 until the model’s decision changes. Our results are
directly comparable with [22]. By contrast, SCOUT [59] returns heatmaps that
require post-processing. We follow the post-processing from [59] where from the
heatmaps, select those regions in I and I ′ that match the area of a single cell
edit to compute the metrics. From Table 2, we observe that our method consis-
tently outperforms prior works across all metrics and datasets. As an example,
consider the all edits rows for the CUB dataset in Table 2a. The Near-KP met-
ric improved by 13.9% over [22], indicating that our explanations select more
discriminative image regions. More importantly, the Same-KP metric improved
by 27% compared to [22], demonstrating that our explanations are significantly
more semantically consistent. The average number of edits have also reduced
from 5.5 in [22] to 3.9, meaning that our explanations require fewer changes to
I and are thus sparser, which is a desirable property of counterfactuals [35,57].
Similar performance trends hold on the other two datasets and architectures (Ta-
ble 2b) indicating the generalizability of the proposed approach. Figure 3 shows

Making heads or tails 9

Table 2: State-of-the-art comparison against our full proposed pipeline.

(a) Comparison of visual counterfactuals using a VGG-16 model.

Method
CUB-200-2011 INaturalist-2021 Birds Stanford Dogs Extra

Near-KP Same-KP # Edits Near-KP Same-KP # Edits Near-KP Same-KP # Edits

Single

Edit

SCOUT [59] 68.1 18.1 - 74.3 23.1 - 41.7 5.5 -
Goyal et al. [22] 67.8 17.2 - 78.3 29.4 - 42.6 6.8 -
Ours 73.5 39.6 - 83.6 51.0 - 49.8 23.5 -

All
Edits

Goyal et al. [22] 54.6 8.3 5.5 55.2 11.5 5.5 35.7 3.7 6.3
Ours 68.5 35.3 3.9 70.4 36.9 4.3 37.5 16.4 6.6

(b) Comparison of visual counterfactuals using a ResNet-50 model.

Method
CUB-200-2011 INaturalist-2021 Birds Stanford Dogs Extra

Near-KP Same-KP # Edits Near-KP Same-KP # Edits Near-KP Same-KP # Edits

Single

Edit

SCOUT [59] 43.0 4.4 - 53.9 8.8 - 35.3 3.1 -
Goyal et al. [22] 61.4 11.5 - 70.5 17.1 - 42.7 6.4 -
Ours 71.7 36.1 - 79.2 33.3 - 51.2 22.6 -

All
Edits

Goyal et al. [22] 50.9 6.8 3.6 56.3 10.4 3.3 34.9 3.6 4.3
Ours 60.3 30.2 3.2 70.9 32.1 2.6 37.2 16.7 4.8

S
C
O
U
T

[5
9
]

Wing → Neck Leg → Wing Head/Tail → Head/Wing Leg → Back/Tail/Beak Eye → Background Mouth/Nose → Forehad

G
o
y
a
l
e
t
a
l.

[2
2
] Head → Breast Leg → Wing Belly → Head Leg → Beak Eye → Nose Top Leg → Head

O
u
rs

Neck → Neck Leg → Leg Belly → Belly Belly/Legs → Belly/Legs Nose → Nose Neck → Neck

CUB [58] iNaturalist-2021 Birds [55] Stanford Dogs [28]

Fig. 3: State-of-the-art comparison of counterfactual explanations (Single Edit -
VGG-16). Part labels are included only for better visualization. Image credit: [1]

a few qualitative examples where we note that our method consistently iden-
tifies semantically matched and class-specific image regions, while explanations
from [22] and [59] often select regions belonging to different parts.

4.3 Ablation studies

We now study the different design choices of our framework with [22] as our
baseline and use a VGG-16 model for consistent evaluation on CUB.
Analysis of different components. Table 3 reports different variants as we
add or remove the following components: semantic loss (Sec. 3.2), multiple dis-
tractor images (Sec. 3.3), and pre-filtering cells (Sec. 3.3). Our baseline [22]
(row 1) establishes a performance limit for the Near-KP and number of edits
under the single-distractor setup as the image regions are selected solely based
on the predicted class probabilities gc′(·). First, we observe that the semantic
loss improves the semantic meaningfulness of the replacements (row 2), i.e., the
Same-KP metric increases by 13.7%. However, the Near-KP slightly decreases
by 2.5% and the number of edits increases by 1.3. This may be due to the fact
that row 2 considers both the class probabilities gc′ and semantic consistency,
thereby potentially favoring semantically similar cells over dissimilar cells that

10 Vandenhende et al.

Table 3: Effect of different components of our method: Row 1 is our baseline
from [22]. Our method (row 5) uses multiple distractor images combined pre-filtering
irrelevant cells and semantic consistency loss. Time measured on a single V-100 GPU.

Row # Semantic
Loss

Multi
Distractor

Filters
Cells

Near-KP Same-KP Time (s) #Edits

1 ✗ ✗ ✗ 54.6 8.3 0.81 5.5
2 ✓ ✗ ✗ 52.1 (−2.5) 22.0 (+13.7) 1.02 6.8
3 ✗ ✓ ✗ 65.6 (+11.0) 13.8 (+5.5) 9.98 3.5
4 ✓ ✓ ✗ 69.2 (+14.6) 36.0 (+23.7) 10.82 3.8
5 ✓ ✓ ✓ 68.5 (+13.9) 35.3 (+23.0) 1.15 3.9

yield a larger increase in gc′ . Second, from rows 1 and 3, we find that allowing
multiple distractor images enlarges the search space when solving Eq. 4, resulting
in better solutions that are more discriminative (Near-KP ↑), more semantically
consistent (Same-KP ↑) and sparser (fewer edits). Combining the semantic loss
with multiple distractor images (row 4) further boosts the metrics. However, us-
ing multiple distractor images comes at a significant increase in runtime (almost
by 10X). We address this by filtering out semantically dissimilar cell pairs. In-
deed, comparing rows 4 and 5, we note that the runtime improves significantly
while maintaining the performance. Putting everything together, our method
outperforms [22] across all metrics (row 1 vs. row 5) and generates explanations
that are sparser, more discriminative, and more semantically consistent.

Auxiliary model: Recall from Sec. 3.2 that representations from self-supervised
models efficiently capture richer semantic similarity between local image regions
compared to those from supervised models. We empirically verify this by using
different pre-training tasks to instantiate the auxiliary model: (i) supervised pre-
training with class labels, (ii) self-supervised (SSL) pre-training [12,13,23] with
no labels, and (iii) supervised parts detection with keypoint annotations. We
train the parts detector to predict keypoint presence in the h × w spatial cell
matrix using keypoint annotations. We stress that the parts detector is used only
as an upperbound as it uses part ground-truth to model the semantic constraint.

We evaluate each auxiliary model by: (i) measuring the Same-KP metric to
study if this model improves the semantic matching, and (ii) measuring cluster-
ing accuracy to capture the extent of semantic part disentanglement. To measure
the clustering accuracy, we first cluster the d-dimensional cells in a 7× 7 spatial
matrix from u(·) of all images via K-Means and assign each spatial cell to a
cluster. Then, we apply majority voting and associate each cluster with a se-
mantic part using the keypoint annotations. The clustering accuracy measures
how often the cells contain the assigned part. From Table 4, we observe that
better part disentanglement (high clustering accuracy) correlates with improved
semantic matching in the counterfactuals (high Same-KP). Thus, embeddings
that disentangle parts are better suited for the semantic consistency constraint
via the non-parametric softmax in Eq. 3. The CUB classifier fails to model our
constraint because it distinguishes between different types of beaks, wings, etc.,

Making heads or tails 11

Table 4: Comparison of auxiliary models on CUB:We study the Same-KP metric
of the counterfactuals (single distractor) and whether the aux. features can be clustered
into parts. †Parts detector establishes an upperbound as it uses parts ground-truth.

Auxiliary Model Annotations Counterfactuals Clustering (K-Means Acc.)

(Same-KP) K=15 K=50 K=250

CUB Classifier Class labels 10.1 18.0 19.3 21.6
IN-1k Classifier Class labels 19.3 42.0 49.5 57.1

IN-1k MoCo [23] None (SSL) 18.1 33.8 44.1 52.2
IN-1k SWAV [13] None (SSL) 22.1 45.3 54.2 62.6
IN-1k DeepCluster [12] None (SSL) 22.0 45.3 54.9 63.5

CUB Parts Detector† Keypoints 22.2 46.0 59.2 75.4

to optimize for the classification task (Same-KP drops by 12.1% vs. the upper-
bound). Differently, the SSL features are more generic, making them suitable for
our method (Same-KP using DeepCluster drops only 0.2% vs. the upperbound).

0 0.2 0.4 0.6 0.8 1
0

10

20

30

λ

S
am

e-
K
P
[%

]

τ = 0.07 CUB
τ = 0.10 Dogs
τ = 0.20

0 0.2 0.4 0.6 0.8 1

4

6

8

10

12

14

λ

A
ve
ra
ge

n
u
m
b
er

of
ed
it
s

τ = 0.07 CUB
τ = 0.10 Dogs
τ = 0.20

Fig. 4: Influence of temperature τ and weight λ.

Influence of τ and λ: We study
how the temperature τ in Eq. 3
and the weight λ parameter in
Eq. 4 influence different metrics.
Recall that high values of λ favor
the semantic loss over the clas-
sification loss. Selecting semanti-
cally similar cells over dissimilar

ones directly improves the Same-KP metric (Fig. 4 (left)), but that comes at a
cost of an increased number of edits until the model’s decision changes (Fig. 4
(right)). We observe that λ = 0.4 is a saturation point, after which the Same-KP
metric does not notably change. Further, lower values of τ sharpen the softmax
distribution making it closer to one-hot, while higher τ yield a distribution closer
to a uniform. This has an effect on the number of edits, as a sharper distribution
is more selective. We found that for a fixed λ = 0.4, τ = 0.1 as in [13] is a sweet
spot between good Same-KP performance and a small increase in the number
of edits. We verified values via 5-fold cross-validation across multiple datasets.

4.4 Online evaluation through machine teaching

To further demonstrate the utility of high-quality visual counterfactuals, we
setup a machine teaching experiment, where humans learn to discern between
bird species with the help of counterfactual explanations. Through the experi-
ment detailed below, we verify our hypothesis that humans perform better at
this task with more informative and accurate counterfactual explanations.
Study setup: We follow the setup from [59], but differ in two crucial ways: (i)
ours is a larger study on 155 query-distractor class pairs, while [59] was done
only on one class pair; (ii) we obfuscate the bird class names and replace them
with “class A” and “class B”. We do this because some class names contain
identifiable descriptions (e.g., Red Headed Woodpecker) without needing visual

12 Vandenhende et al.

Query Image (Class A) Distractor Image (Class B)

Learning PhasePre-Learning Phase

Bird belongs to class A.
Bird belongs to class B.
Don't know.

Test Phase

Bird belongs to class A.
Bird belongs to class B.

Fig. 5: Machine teaching task phases.

ResNet
Backbone

f

Pooling
Linear

Classifier Head g

Class
probability

Attribute Classifiers A

Linear

Attributes
probabilities

H x W x D D
ecom

pose classifier w
eights

into attribute classifiers

Pooling
Fig. 6: Attribute-based decomposition.

cues. The study comprises three phases (simplified visualization in Fig. 5). The
pre-learning phase gives AMT raters 10 test image examples of 2 bird classes.
The raters need to choose one of three options: ‘Bird belongs to class A’, ‘Bird
belongs to class B,’ or ‘Don’t know’. The purpose of this stage is for the raters
to get familiarized with the user interface, and as in [59] all raters chose ‘Don’t
know’ for each example in this stage. Next, during the learning phase, we
show counterfactual explanations of 10 train image pairs where the query image
belongs to class A and the distractor image to class B. We highlight the im-
age content from the counterfactual region, with all other content being blurred
(Fig. 5). This ensures that the humans do not perform the classification task
based on any other visual cues except the ones identified by a given counter-
factual method. Finally, the test phase presents to raters 10 test image pairs
(same as in the pre-learning stage), and asks to classify them into either class A
or B. This time, the option ‘Don’t know’ is not provided. Once the task is done,
a different set of bird class pair is selected, and the three stages are repeated.
Task details: We hired 25 AMT raters, use images from CUB, and compare
counterfactuals produced from our method with two baselines: [22] and [59].
For all three methods, we mine query-distractor classes via the approach men-
tioned in Sec. 4.1, resulting in 155 unique binary classification tasks. The learn-
ing phase visualizes the counterfactual generated from the first edit. To ensure
a fair comparison across all methods, we do not use multiple distractor images
for generating counterfactuals, use the exact same set of images across all the
compared methods, and use the same backbone (VGG-16 [47]) throughout. This
controlled setup ensures that any difference in the human study performance
can be only due to the underlying counterfactual method. We report results
under two setups, which differ in how we select the image pairs (I, I ′): 1. ran-
dom: we generate explanations from random images using different methods.
This is a fair comparison between all methods. 2. semantically-consistent:

Table 5:Machine teaching task. The learning
phase selects random image pairs (†), or pairs
that show the largest improvement in terms of
being semantically consistent (∗).
Method Test Acc. (%)

(Random)† (Semantically-acc.)∗

SCOUT [59] 77.4 62.8
Goyal et al. [22] 76.7 64.3
Ours 80.5 82.1

Table 6: Attribute-based coun-
terfactuals. We evaluate whether
the top-1 attributes are discrimi-
native of the classes.

Method Test Acc. (%)

SCOUT [59] 46.7
Goyal et al. [22] 67.0
Ours 74.5

Making heads or tails 13

we study whether semantically consistent explanations lead to better human
teaching. Hence, we exaggerate the differences in Same-KP between our method
and [22,59] by selecting images where our approach has a higher Same-KP metric.
If semantic consistency is important in machine teaching, our approach should
do much better than ‘random’, and the baselines should do worse than ‘random’.
Results: Table 5 shows that the raters perform better when shown explanations
from our method under the ‘random’ setup. Further, the differences in test ac-
curacy are more pronounced (82.1% vs. 64.3%) when the raters were presented
with semantically consistent explanations. This result highlights the importance
of semantically consistent visual counterfactuals for teaching humans.

5 Towards language-based counterfactual explanations

In this section, we propose a novel method to augment visual counterfactual
explanations with natural language via the vocabulary of parts and attributes.
Parts and attributes bring notable benefits as they enrich the explanations and
make them more interpretable [29]. Through this experiment, we further empha-
size the importance of semantically consistent counterfactuals and prove them
to be a key ingredient towards generating natural-language-based explanations.

Our proof-of-concept experiment uses a ResNet-50 model, where f(·) com-
putes the h × w × d spatial feature output of the last conv layer, and g(·) per-
forms a global average pooling operation followed by a linear classifier. We use
the CUB [58] dataset with 15 bird parts, where each part (e.g., beak, wing, belly,
etc.) is associated with a keypoint location. Additionally, this dataset contains
part-attribute annotations (e.g., hooked beak, striped wing, yellow belly, etc.).
We perform our analysis on a subset of 77 subsequently denoised part-attributes.
Following [30], denoising is performed by majority voting, e.g., if more than 50%
of crows have black wings in the data, then all crows are set to have black wings.

In the first step, given a query I from class c and a distractor I ′ from c′,
we construct a counterfactual I∗, following our approach from Sec. 3. For fair
comparison with [22,59], we limit to single best cell edits. Next, we identify the
part corresponding to this best-edit cell in I. We train a parts detector that
predicts the top-3 parts for each cell location in the h×w spatial grid. Note that
if the corresponding cell in I ′ is not semantically consistent with I, the detected
parts will not match, and the attribute explanations will be nonsensical. Finally,
we find the most important attribute for the best-edit via the procedure below.
Finding the best attribute: We train a part-attribute model A that per-
forms global average pooling followed on the output of f(.) by a linear classifier,
thus operating on the same feature space as g. We then use an interpretable
basis decomposition [63] to decompose the object classifier weights from g(·)
into a weighted sum of part-attribute classifier weights from A(·). A simplified
visualization is presented in Fig. 6, see [63] for details. The interpretable basis
decomposition yields an importance score st for each part-attribute t, and we
additionally constrain the part-attributes to only the detected parts in the best-
edit cells. E.g., if the detected part is a beak, we only consider the {hooked,

14 Vandenhende et al.

Add striped pattern to the wing.
(Success)

Query Image Distractor Image

Remove brown color from the crown.
(Success)

Query Image Distractor Image

Add color blue to forehead.
(Failure)

Query Image Distractor Image

Fig. 7: Augmenting counterfactuals with part-attributes. We identify the at-
tribute that is most important for changing the model’s decision. Best viewed in color.

long, orange, ...}-beak attribute classifiers. Similarly, we compute an importance
score s′t for the best-edit cell in I ′. Finally, we compute the differences of impor-
tance scores s′t − st, where a positive difference indicates that part-attribute t
contributed more to the model’s decision being c′ compared to c. We select the
top-k such part-attributes. Again, note that the difference s′t − st makes sense
only if the selected parts are semantically same in I and I ′ (details in suppl.).
Evaluation: For each class pair (c, c′), we use the available annotations to define
part-attributes that belong to class c but not to class c′, and vice-versa, as proxy
counterfactual ground-truth. Our final explanations are evaluated by measuring
how often the top-1 part-attribute, identified via the difference between the
estimated importance scores, belongs to the set of ground-truth part-attributes.
Results: Table 6 shows the results using visual counterfactuals from our method
and from [22,59]. We observe that our method is significantly better compared
to prior work in correctly identifying discriminative part-attributes. Given that
all other factors were controlled across the three methods, we argue that this
improvement is due to our counterfactuals being semantically consistent. Fig-
ure 7 shows the qualitative results. Notice that both the wing’s color and pattern
are visually distinct in Fig. 7 (left), but the part-attribute explanation points
out that the wing’s pattern mattered the most to the model while generating
the counterfactual. Similarly in Fig. 7 (middle), the part-attribute explanation
tells us that the crown color is most important. In both cases, the part-attribute
information helps disambiguate the visual explanation. Figure 7 (right) shows a
failure case caused by a wrongful prediction from the part-attribute classifiers.

6 Conclusion and future work

We presented a novel framework to generate semantically consistent visual coun-
terfactuals. Our evaluation shows that (i) our counterfactuals consistently match
semantically similar and class-specific regions, (ii) our proposed method is com-
putationally efficient, and (iii) our explanations significantly outperform the s-o-
t-a. Further, we demonstrated the importance of semantically consistent visual
counterfactuals via: (i) a machine teaching task on fine-grained bird recognition,
and (ii) an approach to augment our counterfactuals with a human interpretable
part and attribute vocabulary. Currently, our method greedily searches for one
cell replacement at a time. Relaxing this constraint to explore multiple regions in
parallel is a fruitful future research problem. Finally, we only scratched the sur-
face in augmenting visual counterfactuals with attribute information. We hope
that our work will spark more interest in this worthy topic by the community.

Making heads or tails 15

References

1. Authors: Copyright for Figure 3 images from inaturalist-2021, employed for il-
lustration of research work. iNaturalist people: longhairedlizzy: CC BY-NC 4.0,
Volker Heinrich: CC BY-NC 4.0, Lee: CC BY-NC 4.0, Jonny Chung: CC BY-NC
4.0, romanvrbicek: CC BY-NC 4.0, poloyellow23: CC BY-NC 4.0, note = Accessed:
2022-03-02

2. Adadi, A., Berrada, M.: Peeking inside the black-box: a survey on explainable
artificial intelligence (xai). IEEE access (2018)

3. Adebayo, J., Gilmer, J., Muelly, M., Goodfellow, I., Hardt, M., Kim, B.: Sanity
checks for saliency maps. NeurIPS (2018)

4. Akula, A., Wang, S., Zhu, S.C.: Cocox: Generating conceptual and counterfactual
explanations via fault-lines. In: AAAI (2020)

5. Alipour, K., Ray, A., Lin, X., Cogswell, M., Schulze, J.P., Yao, Y., Burachas,
G.T.: Improving users’ mental model with attention-directed counterfactual edits.
Applied AI Letters (2021)

6. Ancona, M., Ceolini, E., Öztireli, C., Gross, M.: Towards better understanding of
gradient-based attribution methods for deep neural networks. In: ICLR (2018)

7. Asano, Y., Rupprecht, C., Vedaldi, A.: Self-labelling via simultaneous clustering
and representation learning. In: ICLR (2019)

8. Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.R., Samek, W.: On
pixel-wise explanations for non-linear classifier decisions by layer-wise relevance
propagation. PloS one (2015)

9. Beck, S.R., Riggs, K.J., Gorniak, S.L.: Relating developments in children’s coun-
terfactual thinking and executive functions. Thinking & reasoning (2009)

10. Biggs, B., Boyne, O., Charles, J., Fitzgibbon, A., Cipolla, R.: Who left the dogs
out?: 3D animal reconstruction with expectation maximization in the loop. In:
ECCV (2020)

11. Buchsbaum, D., Bridgers, S., Skolnick Weisberg, D., Gopnik, A.: The power of pos-
sibility: Causal learning, counterfactual reasoning, and pretend play. Philosophical
Transactions of the Royal Society B: Biological Sciences (2012)

12. Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised
learning of visual features. In: ECCV (2018)

13. Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., Joulin, A.: Unsupervised
learning of visual features by contrasting cluster assignments. In: NeurIPS (2020)

14. Caron, M., Touvron, H., Misra, I., Jégou, H., Mairal, J., Bojanowski, P., Joulin,
A.: Emerging properties in self-supervised vision transformers. In: ICCV (2021)

15. Chang, C.H., Creager, E., Goldenberg, A., Duvenaud, D.: Explaining image clas-
sifiers by counterfactual generation. In: ICLR (2018)

16. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for con-
trastive learning of visual representations. In: ICML (2020)

17. Dabkowski, P., Gal, Y.: Real time image saliency for black box classifiers. In:
NeurIPS (2017)

18. Datta, A., Sen, S., Zick, Y.: Algorithmic transparency via quantitative input in-
fluence: Theory and experiments with learning systems. In: IEEE SSP (2016)

19. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-scale
hierarchical image database. In: CVPR (2009)

20. Dhurandhar, A., Chen, P.Y., Luss, R., Tu, C.C., Ting, P., Shanmugam, K., Das, P.:
Explanations based on the missing: towards contrastive explanations with pertinent
negatives. In: NeurIPS (2018)

https://www.inaturalist.org/people/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/

16 Vandenhende et al.

21. Fong, R.C., Vedaldi, A.: Interpretable explanations of black boxes by meaningful
perturbation. In: ICCV (2017)

22. Goyal, Y., Wu, Z., Ernst, J., Batra, D., Parikh, D., Lee, S.: Counterfactual visual
explanations. In: ICML (2019)

23. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised
visual representation learning. In: CVPR (2020)

24. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR (2016)

25. Hvilshøj, F., Iosifidis, A., Assent, I.: Ecinn: Efficient counterfactuals from invertible
neural networks. In: BMVC (2021)

26. Jacob, P., Zablocki, É., Ben-Younes, H., Chen, M., Pérez, P., Cord, M.: Steex:
Steering counterfactual explanations with semantics. arXiv:2111.09094 (2021)

27. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing
and improving the image quality of stylegan. In: CVPR (2020)

28. Khosla, A., Jayadevaprakash, N., Yao, B., Fei-Fei, L.: Novel dataset for fine-grained
image categorization. In: CVPR Workshop (2011)

29. Kim, B., Wattenberg, M., Gilmer, J., Cai, C., Wexler, J., Viegas, F., et al.: Inter-
pretability beyond feature attribution: Quantitative testing with concept activation
vectors (tcav). In: ICML (2018)

30. Koh, P.W., Nguyen, T., Tang, Y.S., Mussmann, S., Pierson, E., Kim, B., Liang,
P.: Concept bottleneck models. In: ICML (2020)

31. Lang, O., Gandelsman, Y., Yarom, M., Wald, Y., Elidan, G., Hassidim, A., Free-
man, W.T., Isola, P., Globerson, A., Irani, M., et al.: Explaining in style: Training
a gan to explain a classifier in stylespace. In: ICCV (2021)

32. Liu, S., Kailkhura, B., Loveland, D., Han, Y.: Generative counterfactual introspec-
tion for explainable deep learning. In: GlobalSIP (2019)

33. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions.
In: NeurIPS (2017)

34. Markus, A.F., Kors, J.A., Rijnbeek, P.R.: The role of explainability in creating
trustworthy artificial intelligence for health care: a comprehensive survey of the
terminology, design choices, and evaluation strategies. JBI (2021)

35. Miller, T.: Explanation in artificial intelligence: Insights from the social sciences.
Artificial intelligence (2019)

36. Mothilal, R.K., Sharma, A., Tan, C.: Explaining machine learning classifiers
through diverse counterfactual explanations. In: ACM FAccT (2020)

37. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,
T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-
performance deep learning library. NeurIPS (2019)

38. Petsiuk, V., Das, A., Saenko, K.: Rise: Randomized input sampling for explanation
of black-box models. In: BMVC (2018)

39. Poyiadzi, R., Sokol, K., Santos-Rodriguez, R., De Bie, T., Flach, P.: Face: Feasible
and actionable counterfactual explanations. In: AAAI/ACM AIES (2020)

40. Rebuffi, S.A., Fong, R., Ji, X., Vedaldi, A.: There and back again: Revisiting back-
propagation saliency methods. In: CVPR (2020)

41. Ribeiro, M.T., Singh, S., Guestrin, C.: ”why should i trust you?” explaining the
predictions of any classifier. In: SIGKDD (2016)

42. Ribeiro, M.T., Singh, S., Guestrin, C.: Anchors: High-precision model-agnostic
explanations. In: AAAI (2018)

43. Rodriguez, P., Caccia, M., Lacoste, A., Zamparo, L., Laradji, I., Charlin, L.,
Vazquez, D.: Beyond trivial counterfactual explanations with diverse valuable ex-
planations. In: ICCV (2021)

Making heads or tails 17

44. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-
cam: Visual explanations from deep networks via gradient-based localization. In:
ICCV (2017)

45. Shrikumar, A., Greenside, P., Shcherbina, A., Kundaje, A.: Not just a black
box: Learning important features through propagating activation differences.
arXiv:1605.01713 (2016)

46. Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks:
Visualising image classification models and saliency maps. arXiv:1312.6034 (2013)

47. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv:1409.1556 (2014)

48. Singla, S., Pollack, B., Chen, J., Batmanghelich, K.: Explanation by progressive
exaggeration. In: ICLR (2019)

49. Singla, S., Pollack, B., Wallace, S., Batmanghelich, K.: Explaining the black-box
smoothly-a counterfactual approach. arXiv:2101.04230 (2021)

50. Slack, D., Hilgard, S., Jia, E., Singh, S., Lakkaraju, H.: Fooling lime and shap:
Adversarial attacks on post hoc explanation methods. In: AAAI (2020)

51. Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep networks. In:
ICML (2017)

52. Van Gansbeke, W., Vandenhende, S., Georgoulis, S., Gool, L.V.: Revisiting con-
trastive methods for unsupervised learning of visual representations. NeurIPS
(2021)

53. Van Gansbeke, W., Vandenhende, S., Georgoulis, S., Proesmans, M., Van Gool,
L.: Scan: Learning to classify images without labels. In: ECCV (2020)

54. Van Gansbeke, W., Vandenhende, S., Georgoulis, S., Van Gool, L.: Unsupervised
semantic segmentation by contrasting object mask proposals. In: ICCV (2021)

55. Van Horn, G., Cole, E., Beery, S., Wilber, K., Belongie, S., Mac Aodha, O.: Bench-
marking representation learning for natural world image collections. In: CVPR
(2021)

56. Verma, S., Dickerson, J., Hines, K.: Counterfactual explanations for machine learn-
ing: A review. arXiv:2010.10596 (2020)

57. Wachter, S., Mittelstadt, B., Russell, C.: Counterfactual explanations without
opening the black box: automated decisions and the gdpr. Harvard Journal of
Law and Technology (2018)

58. Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The Caltech-UCSD
Birds-200-2011 Dataset. Tech. rep., California Institute of Technology (2011)

59. Wang, P., Vasconcelos, N.: Scout: Self-aware discriminant counterfactual explana-
tions. In: CVPR (2020)

60. Wu, Z., Xiong, Y., Yu, S.X., Lin, D.: Unsupervised feature learning via non-
parametric instance discrimination. In: CVPR (2018)

61. Zablocki, É., Ben-Younes, H., Pérez, P., Cord, M.: Explainability of vision-based
autonomous driving systems: Review and challenges. arXiv:2101.05307 (2021)

62. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks.
In: ECCV (2014)

63. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features
for discriminative localization. In: CVPR (2016)

64. Zhou, B., Sun, Y., Bau, D., Torralba, A.: Interpretable basis decomposition for
visual explanation. In: ECCV (2018)

65. Zintgraf, L.M., Cohen, T.S., Adel, T., Welling, M.: Visualizing deep neural network
decisions: Prediction difference analysis. In: ICLR (2017)

18 Vandenhende et al.

A Implementation details

This section discusses additional implementation details of our experiments in
Sec. 4 and Sec. 5.

Data. We use the following publicly available datasets for fine-grained image
recognition: CUB [58], iNaturalist-2021 [55], and StanfordDogs [28]. The image
classifier implementation follows the typical implementation in PyTorch and
uses standard image augmentations (i.e., random resized cropping and random
horizontal flipping). We provide additional details for each dataset below:

– CUB: The CUB dataset consists of images of 200 bird species annotated
with keypoint locations of 15 bird parts, e.g., crown, beak, etc. Some of the
keypoint annotations distinguish between the left-right instances of parts:
‘left wing’ / ‘right wing’, ‘left leg’ / ‘right leg’, and ‘left eye’ / ‘right eye’.
We treat these as a single part during the evaluation of the Near-KP and
Same-KP metrics, i.e., ‘left wing’ and ‘right wing’ as ‘wing’.

– iNaturalist-2021: The iNaturalist-2021 dataset consists of various super-
categories (e.g., plants, insects, birds, etc.), covering 10,000 species in total.
The dataset contains a larger number of classes and more complex scenes
compared to other fine-grained image recognition datasets. Therefore, the
iNaturalist-2021 dataset can be considered as a more challenging testbed for
our approach. However, this dataset lacks keypoint annotations. We used
the bird supercategory for our quantitative evaluation in Sec. 4, and re-
quested human annotators to provide part keypoint information for 2,060
validation images. The keypoint definitions from the CUB dataset are used.
We did not perform a quantitative evaluation of other supercategories, as
these are considerably more challenging to annotate. Specifically, we identi-
fied the following challenges: (i) some supercategories do not have identifiable
parts (e.g., fungi), and (ii) some supercategories are too diverse, and do not
support common keypoint definitions across all sub-categories (e.g., plants,
mammals, insects, etc.). We do provide qualitative results on several of these
supercategories in Sec. C.

– StanfordDogs: The StanfordDogs dataset contains images of 120 dog breeds
taken from the ImageNet [19] dataset. The keypoint annotations are provided
by [10]. Again, we treat left-right instances of parts as the same part, i.e.,
left ear and right ear as just ear.

Classifier. The training follows the typical VGG-16 and ResNet-50 implemen-
tation in PyTorch [37] with 100 epochs. All models use pre-trained ImageNet [19]
weights. The training uses stochastic gradient descent with momentum 0.9 and
weight decay of 0.0001. We use batches of size 32 for the CUB and Stanford
Dogs datasets, and batches of size 256 for the iNaturalist-2021 dataset. The ini-
tial learning rate is selected via grid search and decreased by 10 at the 70-th and
90-th percentile of training.

Making heads or tails 19

Self-supervised models. We used the publicly available weights that were
provided by the authors of the respective works [13,23]. For DeepCluster and
SWAV, we adopt the models trained via the multi-crop augmentation from [13].
We pre-trained all models on ImageNet. Different pre-training schemes could be
used when considering more specialized domains like medical images.

Parts detector. We trained a parts detector on CUB. The parts detector
consists of a ResNet-50 backbone followed by a 1 × 1 convolutional layer. The
input images are 224× 224 pixels and the output has spatial dimensions 7× 7.
We project the ground-truth bird keypoint annotations onto a grid of shape 7×7
and train the parts detector to predict keypoint presence via a multi-class cross-
entropy loss. The loss is only applied to cells that contain at least one keypoint.
Training follows the classifier implementation but we decrease the number of
epochs to 50. The initial learning rate is 0.001. We evaluate the predictions via
the mean AP metric (excluding cells that contain no keypoints). The best model
obtains a mean AP of 92.3 on the validation set.

B Additional results

We report additional results that complement the ablation studies in the main
paper.

Selection of query-distractor classes. The experiments in Sec. 4 examine
counterfactual examples for query-distractor classes obtained via the confusion
matrix - for a query class c, we select the distractor class c′ as the class with
which images from c are most often confused. This procedure differs from the
approach in [22] which uses attribute annotations to select the most confusing
classes. In particular, the authors select c′ as the nearest neighbor class of c in
terms of the average attribute annotations provided with the dataset. We argue
that our setup is more generic as it does not use additional annotations. For
completeness, we provide results with both selection procedures in Table S1. We
observe that there are no significant differences in the results when adjusting the
selection procedure. In practice, the two selection procedures often generate the
same query-distractor class pairs. In conclusion, our selection procedure provides
a viable and more generic alternative to the method from [22].

Background as a metric. The CUB dataset contains mask annotations that
segment the foreground object. Prior work [22] used the object segmentation to
measure how often the counterfactuals select cells belonging to the foreground
object. Like the Same-KP metric, this foreground metric is a proxy for how
often the counterfactuals select discriminative cells, i.e., cells that explain the
class differences. For completeness, we report the results of the foreground metric
in Table S2. Our method outperforms the baseline [22] in terms of the foreground
metric, which indicates that we select more discriminative cells in the image. This

20 Vandenhende et al.

Table S1: Comparison of different methods to select the query-distractor
classes. We select the distractor class as the most confusing class in the confusion
matrix, or as the nearest neighbor class in terms of the average attribute annotations.
The results are reported for a VGG-16 classifier on CUB.

Method Selection Procedure Near KP Same KP #Edits

Goyal et al. [22]
Confusion Matrix 54.6 8.3 5.5
Attributes 55.0 8.6 5.4

Ours
Confusion Matrix 68.5 35.3 3.9
Attributes 68.6 35.6 3.9

Table S2: Ablation study of the foreground metric. The results are with VGG-16
on CUB. We compare the baseline [22] against our method.

Foreground Near KP Same KP #Edits

Goyal et al. [22] 94.2 54.6 8.3 5.5
Ours 99.1 (+4.9) 68.5 (+13.9) 35.3 (+23.0) 3.9

observation aligns with our conclusions in the paper based upon the Near-KP
metric. Note that the other metrics were discussed in Section 4.3.

Soft versus hard semantic constraint. We have modeled the semantic con-
sistency constraint in a soft way (see Eq. 4). That is, we select replacements that
balance the increase of gc′(·) with the semantic similarity of the image regions.
Alternatively, the constraint could be implemented in a hard way. That is, we
cluster the auxiliary spatial features first, e.g., K=50, and only replace query
cells with distractor cells from the same cluster. Table S3 compares the two
mechanisms. The hard constraint selects considerably less discriminative cells
(lower Near-KP and more edits) as it’s more restrictive of the cells that can be
replaced. In contrast, the soft constraint achieves better results, as it balances
the Ls and Lc losses in Eq. 4.

Table S3: Comparison of the hard and soft constraint mechanism. Results are
obtained with a VGG-16 classifier on CUB. We use a single distractor image.

Constraint Near KP Same KP #Edits

Hard 40.1 13.3 9.3
Soft 52.1 22.0 6.8

Clustering. We studied the part clustering accuracy via different auxiliary
models in Table 4. In this way, we verified whether the spatial feature represen-

Making heads or tails 21

tations of the auxiliary models are capable of disentangling parts. In this section,
we provide qualitative results of this experiment. Figure S1 visualizes clusters
found via a CUB classifier and DeepCluster model. We select several clusters
and highlight cells assigned to the same cluster. The DeepCluster features bet-
ter disentangle parts, i.e., cells assigned to the same cluster refer to the same
part.

D
e
e
p
C
lu
st
e
r

Beak Wing Tail Leg

C
U
B

C
la
ss
ifi
e
r

Background, Crown, Wing Nape, Tail, Throat, Wing Background, Nape, Wing Background, Legs, Nape, Tail

Fig. S1: Clustering visualizations. We study part disentanglement when clustering
the spatial features obtained with different auxiliary models. We highlight image regions
assigned to the same cluster (best viewed in color digitally). We indicate the parts found
in each cluster for the purpose of visualization.

Ablation of pre-filtering operation. We study the influence of the pre-
filtering step from Sec. 3.3 in Table S4. Namely, we vary k in the selected top-k%
permutations to be used in the multi-distractor setup. As it can be observed,
our method is very robust to the choice of the value k, so we selected k in order
to achieve around x10 speedup over the vanilla multi-distractor approach.

Effect of receptive field. We discuss how the receptive field size of the classi-
fication network effects the quality of the counterfactuals. Large receptive fields
can lead to poorer localization and reduce the counterfactual’s quality. For ex-
ample, the ResNet-50 models with receptive field size 299 yield lower numbers
in Table 2 compared to their VGG-16 counterparts with receptive field size 212.
We tried to mitigate this behavior by using features from the earlier conv5 1

layer instead of conv5 3 for ResNet and found it improves results. For example,
on CUB, this change led to a reduction in the number of edits from 8.0 to 3.2.

22 Vandenhende et al.

Table S4: Ablation of pre-filtering operation that selects k% of permutations via
the semantic similarity loss. We study the influence of varying k%.

k% Near KP Same KP #Edits Time (s)

0.01 61.2 34.1 4.8 0.18
0.05 66.8 34.9 4.2 0.64
0.10 68.5 35.3 3.9 1.15
0.15 68.9 35.5 3.9 1.71
0.20 69.1 35.9 3.8 2.20
1.00 (no-prefiltering) 69.2 36.0 3.8 10.82

In the future, we could further address this issue by using features from earlier
layers with better localization. Alternatively, we could explore techniques which
control the receptive field size of the network.

Interpretation of Same-KP. Visualization of our counterfactual explanations
shows that we consistently identify class-specific and semantically matched parts
(see Figure 3). However, the absolute values of the Same-KP metric in Table 2
might still seem low (< 40%). There are two main reasons for this. First, we
project the keypoint annotations from the query and distractor images onto
the discrete spatial cells during evaluation, associating each cell with a set of
keypoints. Now, keypoints lying near the cell boundaries are assigned to only
one cell. At the time of evaluation, for such a keypoint, even if a neighboring cell
is chosen for replacement, Same-KP metric is penalized. Secondly, a keypoint
represents just a near center point of a semantic part, rather than the whole
part. Hence, a wing of the bird may actually belong to two adjoining spatial
cells, but the keypoint is only in one cell. Thus we also report Near-KP metric
which does not suffer form these issues. In conclusion, our counterfactuals are
faithful, which is also reflected in our qualitative results.

C Qualitative results

Additional qualitative examples. Figures S2-S3 show counterfactual ex-
amples generated with different methods on the CUB [58], iNaturalist-2021
Birds [55] and StanfordDogs [28] datasets. The model is ResNet-50. In each
case, we highlight the single best edit. We observe that our counterfactual ex-
planations consistently identify class-specific and semantically consistent image
regions. This is opposed to other counterfactual explanations [22,59] which often
replace regions of different parts.

Qualitative examples for other iNaturalist-2021 supercategories. The
paper only studied the birds supercategory on iNaturalist-2021, as other super-
categories are considerably harder to annotate with keypoint information (see
discussion in Sec. A). In this subsection, we demonstrate that our method can

Making heads or tails 23

be applied to other supercategories too via qualitative results. We train separate
image classifiers on the supercategories of ‘Mammals’, ‘Insects’, and ‘Ray-finned
Fishes’, and generate counterfactual explanations using our approach. The im-
age classifiers use a ResNet-50 model, and training follows the iNaturalist-2021
implementation detailed in Sec. A. Figure S5 shows the results for the single best
edit. Again, we find that our counterfactual explanations highlight class-specific
and semantically consistent image regions in the query and distractor images.
In conclusion, our method applies to a broad variety of fine-grained image clas-
sification tasks.

Visualization of multiple edits. Recall that our method iteratively replaces
cells between the query image and distractor image(s) until the model’s decision
changes. So far, we have only showed visualizations of the first cell edit. Fig-
ure S6 shows counterfactual explanations where we visualize all edits until the
model’s decision changes. For the purpose of visualization, we randomly selected
counterfactual explanations that require three cell replacements. In each case,
we observe that all edits select class-specific and semantically consistent image
regions. In conclusion, our method achieves the desired result, not only for the
first edit, but across all edits.

Visualization of failure cases. Figure S7 shows three failure cases, where our
counterfactual explanations replace regions referring to different bird parts. The
examples were generated for a ResNet-50 classifier trained on the CUB dataset.
We make the following observations. First, the failure cases seem to occur for (i)
odd looking birds; e.g., the query bird in Example 1 looks quite different from
other birds in the CUB dataset, and (ii) for query images where certain bird
parts fall outside the image; e.g., the discriminative parts of the query bird in
Example 2 and Example 3 fall outside the image. Second, we observe that other
methods make similar mistakes. In conclusion, the failure cases seem caused by
the challenging nature of the examples, rather than being a pitfall in our method.

24 Vandenhende et al.

S
C
O
U
T

[5
9
]

Example 1 Example 2 Example 3

G
o
y
a
l
e
t
a
l.

[2
2
]

O
u
rs

S
C
O
U
T

[5
9
]

Example 4 Example 5 Example 6

G
o
y
a
l
e
t
a
l.

[2
2
]

O
u
rs

Fig. S2: Additional qualitative results on CUB [58]. We highlight the best
edit in the query image (left) and distractor image (right).

Making heads or tails 25

S
C
O
U
T

[5
9
]

Example 1 Example 2 Example 3

G
o
y
a
l
e
t
a
l.

[2
2
]

O
u
rs

S
C
O
U
T

[5
9
]

Example 4 Example 5 Example 6

G
o
y
a
l
e
t
a
l.

[2
2
]

O
u
rs

Fig. S3: Additional qualitative results on iNaturalist-2021 Birds [55].
We highlight the best edit in the query image (left) and distractor image (right).

26 Vandenhende et al.

S
C
O
U
T

[5
9
]

Example 1 Example 2 Example 3

G
o
y
a
l
e
t
a
l.

[2
2
]

O
u
rs

S
C
O
U
T

[5
9
]

Example 4 Example 5 Example 6

G
o
y
a
l
e
t
a
l.

[2
2
]

O
u
rs

Fig. S4:Additional qualitative results on StanfordDogs [28].We highlight
the best edit in the query image (left) and distractor image (right).

Making heads or tails 27

Example 1 Example 2 Example 3

Example 4 Example 5 Example 6

Example 7 Example 8 Example 9

Example 10 Example 11 Example 12

Example 13 Example 14 Example 15

Fig. S5: Qualitative results on other iNaturalist-2021 supercategories.
We show counterfactual explanations from our method on the following
iNaturalist-2021 supercategories: ‘Mammals’, ‘Ray-finned Fishes’ and ‘Insects’.
We highlight the best edit in the query image (left) and distractor image (right).

28 Vandenhende et al.

Q
u
e
ry

D
is
tr
a
ct
o
r

Q
u
e
ry

D
is
tr
a
ct
o
r

Q
u
e
ry

D
is
tr
a
ct
o
r

Example 1

Edit 1 Edit 2 Edit 3

Example 2

Edit 1 Edit 2 Edit 3

Example 3

Edit 1 Edit 2 Edit 3

Example 4

Edit 1 Edit 2 Edit 3

Example 5

Edit 1 Edit 2 Edit 3

Example 6

Edit 1 Edit 2 Edit 3

Fig. S6: Visualization of consecutive edits on CUB. Our counterfactual
explanations iteratively replace single cells until the model’s decision changes.
The figure highlights these consecutive edits in the query image and distractor
image(s). To generate the figure, we select counterfactual explanation that use
three edits.

Making heads or tails 29

S
C
O
U
T

[5
9
]

Example 1 Example 2 Example 3

G
o
y
a
l
e
t
a
l.

[2
2
]

O
u
rs

Fig. S7: Failure cases. We show some failure cases, where our counterfactual
explanations replace regions referring to different parts.

30 Vandenhende et al.

D Computational cost analysis

In this section, we perform a complexity analysis of our approach. Additionally,
we include a compute time analysis under the multi-distractor setup.

Computational complexity. We perform a back-of-the-envelope calculation
of the number of multiply-add computations (MACs) in our framework. To sim-
plify the analysis, we consider the computational cost of performing a single edit.
Recall from Sec. 3 that the computational complexity of the classification loss
(Lc in Eq. 2) and semantic loss (Ls in Eq. 3) can be summarized as:

CLc
= 2 · Cf + h2w2 · Cg (5)

CLs
= 2 · Cu + h2w2 · Cdot. (6)

We compute counterfactual explanations using the 7×7×512 spatial features
of the max pooling2d 5 layer in VGG-16 [47]. The evaluation of the classification
loss Lc uses 318.8× 109 MACs (≈ 2 · 15.4× 109 for f + h2w2 · 1.2× 108 for g),
while the semantic loss Ls computation uses 8.2× 109 MACs (≈ 2 · 4.1× 109 for
u + h2w2 · 2.0 × 103 for the dot-product in the softmax s). We conclude that
the classification loss is expensive to compute due to it’s quadratic dependence
on the number of cells hw and the relatively high cost of evaluating the decision
network g(·). In contrast, the semantic loss does not suffer from it’s quadratic
term because the dot-product operation is inexpensive to compute. In conclusion,
Ls can be computed more efficiently compared to Lc.

The pre-filtering operation from Sec. 3.3 relies on the fast computation of
the semantic similarity loss to realize a speed-up. For example, we select the
top-10% most similar cells (k = 0.1) according to the semantic loss, and then
only consider the classification loss for this subset of cells. This reduces the
complexity of Lc to 59.6× 109 MACs (≈ 2 · 15.4× 109 for f + kh2w2 · 1.2× 108

for g). As a result, the overall computational cost is reduced from 327× 109 to
67×109 MACs, meaning our framework holds a significant speed advantage over
methods that compute Lc exhaustively [22].

This analysis does not consider the memory aspect of computing Lc and
Ls. It’s worth noting that the similarity loss also holds an advantage in terms
of memory usage compared to the classification loss. Specifically, in order to
compute the classification loss for all h2w2 permutations, we need to construct
all permutations in memory. This involves the allocation of h2w2 spatial cell
matrices by replacing cells in f(I) with cells from f(I ′). In contrast, computing
the similarity loss does not require to allocate O(h2w2) extra memory as it does
not involve replacing cells. Instead, the semantic loss operates directly on the
spatial feature matrices of the auxiliary model, i.e., u(I) and u(I ′).
Compute time analysis in a multi-distractor setup: Figure S8 reports
the average computation time per edit (on a single V-100 GPU) as a function
of the number of distractor images. We note that our method which includes
a pre-filtering operation (Sec. 3.3) scales linearly with the number of distractor
images and is about an order of magnitude faster compared to [22].

Making heads or tails 31

1 5 10 15 20
0

0.5

1

1.5

2

2.5

Number of distractor images

T
im

e
/
E
d
it
[s
]

Goyal et al. [22]
Ours

Fig. S8: Time analysis of multi-distractor setup.

E Attributes

E.1 Implementation details

We provide additional implementation details of how we add natural language
attribute information to the visual counterfactual explanations in Sec. 5. Recall,
the classifier is a ResNet-50 model trained to identify bird species on CUB. The
spatial feature extractor f computes the h × w × d spatial feature output of
the last convolutional layer, and g performs a global average pooling operation
followed by a linear classifier.

Parts detector. We reuse the CUB parts detector from Sec. A. The parts
predictor is used to select the top-3 parts for the spatial cells that are being
replaced in the counterfactual.

Attribute classifiers. We train linear classifiers to predict part-attributes on
top of the average-pooled features from f(·). The part-attributes are derived
from the attribute annotations used by [30]. Specifically, we only use attributes
that refer to parts for which we have keypoint locations. This results in 77
attributes in total. We train linear classifiers to predict the part-attributes via a
multi-class cross-entropy loss. The training uses SGD with momentum 0.9 and
initial learning rate 0.04. We use batches of size 64 and train for 100 epochs.
The learning rate is decayed by 10 after 70 and 90 epochs. We use weight decay
1e-6.

Interpretable basis decomposition. We perform the interpretable basis de-
composition as follows. Consider a counterfactual that replaces a cell i in f(I)
with a cell i′ from f(I ′). First, we determine the attributes that should be used for
the decomposition. To this end, we take the union of detected parts in cell i and
i′ first, and then select the attributes that are associated with the detected parts,
e.g., if one of the parts is ‘wing’ we select attributes like ‘has wing color::blue’.
We then apply the algorithm from [64] to decompose the weights of the linear

32 Vandenhende et al.

layer in g in terms of the selected attribute classifiers. The decomposition is
performed for the query f(I) and counterfactual f(I∗).

Additional examples. Figure 7 shows additional examples, where our method
succeeds in adding attribute information to our visual counterfactual explana-
tions. In each case, the returned attribute belongs to class c but not to class c′,
or vice-versa. Thus, the returned attributes are discriminative of the classes c
and c′.

Example 1

Remove black color from the throat.

Example 2

Add multi-color pattern to the wing.

Example 3

Add buff color to the throat.

Example 4

Add grey color to the wing.

Example 5

Remove black color from the nape.

Example 6

Remove black color from the forehead.

Example 7

Remove cone shape from the beak.

Example 8

Remove black color from the belly.

Example 9

Add black color to the legs.

Fig. S9: Language-based counterfactuals. We identify the attribute that is
most important for chaenging the model’s decision.

Making heads or tails 33

F Licenses

We include the licenses for images from iNaturalist used in our visualizations.

Table S5: Authors and Creative Commons Copyright notice for images in Figure S3.
lauriekoepke: CC BY-NC 4.0, walterflocke: CC BY-NC 4.0, leo v: CC
BY-NC 4.0, Herbert Herbinia: CC BY-NC 4.0, leptim: CC BY-NC
4.0, leptim: CC BY-NC 4.0, nanorca13: CC BY-NC 4.0, toucan55: CC
BY-NC 4.0, Jim Brighton: CC BY-NC 4.0, wildmouse3: CC BY-NC
4.0, Will Richardson: CC BY-NC 4.0, Amado: CC BY-NC 4.0, Este-
ban Munguia: CC BY-NC 4.0, jamesbeat: CC BY-NC 4.0, jamesbeat:
CC BY-NC 4.0, N. Mahathi: CC BY-NC 4.0, ddun: CC BY-NC 4.0,
John G. Phillips: CC BY-NC 4.0.

Table S6: Author and Creative Commons Copyright notice for images in Figure S5.
Daniel George: CC BY-NC 4.0, thehaplesshiker: CC BY-NC 4.0,
tiyumq: CC BY-NC 4.0, Rohit Chakravarty: CC BY-NC 4.0, unger-
lord: CC BY-NC 4.0, dushenkov: CC BY-NC 4.0, jenhenlo: CC BY-
NC 4.0, amniotasmarinos6: CC BY-NC 4.0, Lawrence Troup: CC BY-
NC 4.0, Andrew Deacon: CC BY-NC 4.0, Torbjorn von Strokirch: CC
BY-NC 4.0, 金翼白眉: CC BY-NC 4.0, Andrés Matos: CC BY-NC
4.0, Christoph Moning: CC BY-NC 4.0, asandlermd: CC BY-NC 4.0,
Eric Giles: CC BY-NC 4.0, Paul Cools: CC BY-NC 4.0, Laura Kim-
berly: CC BY-NC 4.0, sterling: CC BY 4.0, elisabraz: CC BY-NC
4.0, Tom Warnert: CC BY-NC 4.0, Don Loarie: CC BY 4.0, Marlo
Perdicas: CC BY 4.0, luca tringali: CC BY-NC 4.0, pmmullins: CC
BY-NC 4.0, Erik Schlogl: CC BY-NC 4.0, sea-kangaroo: CC BY-NC-
ND 4.0, Jason Grant: CC BY-NC 4.0, Donald Hobern: CC BY 4.0,
Richard Ling: CC BY-NC-ND 4.0, BeachBumAgg: CC BY-NC 4.0,
Tony Strazzari: CC BY-NC 4.0.

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/

	Making Heads or Tails: Towards Semantically Consistent Visual Counterfactuals

