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Abstract
Searching over large code corpora can be a powerful pro-
ductivity tool for both beginner and experienced developers
because it helps them quickly find examples of code related
to their intent. Code search becomes even more attractive
if developers could express their intent in natural language,
similar to the interaction that Stack Overflow supports.
In this paper, we investigate the use of natural language

processing and information retrieval techniques to carry
out natural language search directly over source code, i.e.
without having a curated Q&A forum such as Stack Overflow
at hand.
Our experiments using a benchmark suite derived from

Stack Overflow and GitHub repositories show promising
results. We find that while a basic word–embedding based
search procedure works acceptably, better results can be
obtained by adding a layer of supervision, as well as by a
customized ranking strategy.

CCS Concepts • Software and its engineering → Soft-
ware development techniques; Software post-development is-
sues;

Keywords code search, word–embedding, TF–IDF
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1 Introduction
The availability of immense — and rapidly growing — open–
source code repositories have opened up the possibility of
a new class of developer productivity tools that leverage
statistical properties of code. The statistical knowledge em-
bedded in these repositories has recently been harnessed for
powerful tools for code completion, anomaly checking, type
analysis, code synthesis, and so on.

In this paper, we focus on another kind of developer pro-
ductivity tool: code search. Developers often search for ex-
amples of how to accomplish a certain coding task. Code
search is a legitimate productivity booster, as it is much more
efficient than working from the original documentation of
the various APIs; the developer may not even know exactly
which APIs to look for.

This is the reason Stack Overflow is so popular. While it
caters to beginner programmers who may have questions
on a programming language’s syntax or semantics, a lot of
usage of Stack Overflow is about looking for example usage
of APIs. For example, an Android developer might want to
quickly look up how to programmatically close or hide the
Android soft keyboard, and indeed, the very same question
has been asked and answered before on Stack Overflow1.
However, as resourceful as Stack Overflow is, it does not

contain an answer to every question. Additionally, questions
specific to code and APIs proprietary to a company are not
discussed in Stack Overflow, and comparable alternate Q&A
forums may not be available.
Our premise is that with the availability of very large

codebases, code fragments related to a developer’s query are
likely to already exist somewhere in those codebases. The
challenge is whether these related code fragments can be
retrieved without the availability of a curated Q&A forum.
Searching over a curated Q&A corpus such as Stack Overflow
is easy with well–known search techniques, but ability to
search over raw, unannotated source code is not obvious.

1https://stackoverflow.com/questions/1109022/
close-hide-the-android-soft-keyboard
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To this end, we have been investigating how well basic
natural language processing and information retrieval tech-
niques applied to source code text directly can result in an
effective code search system.

In this paper, we give a status report on our effort to build
a search tool that works for large codebases — which we
call NCS (for Neural Code Search) — that accepts natural
language queries and shows related code fragments retrieved
directly from code corpus. Our contributions are the follow-
ing:

• We introduce a technique for building code search us-
ing a combination of word embedding [4], TF–IDF [14]
weighting, and efficient higher–dimensional vector
similarity search [9]. We discuss some of the relevant
design tradeoffs involved in this process.

• We evaluate the effectiveness of NCS on open–source
corpora, using a novel methodology that eliminates
the need for a user study. Specifically, we collected
a benchmark of 100 Android–specific queries from
Stack Overflow, along with their correct code snippets
from the post. As one of the criteria for selecting these
questions, we ensured that those (or substantially sim-
ilar) code snippets exist among the top 1000 Android
projects on GitHub. We then measured how well NCS,
when asked each of those Stack Overflow questions,
was able to retrieve the corresponding code snippet
from a clone of those GitHub repositories.

• Our results shows that this simple technique can work
surprisingly well in the domain of source code. With
our current model, we are able to answer almost 43%
of the Stack Overflow questions we collected directly
from code (including the question “close/hide the An-
droid soft keyboard”.

• We discuss some of the limitations that we observed
in the basic word–embedding based search. We pro-
pose two ways to mitigate the limitations: adding a
layer of supervision, and a better, custom ranking of
the results. These improvements further improve the
search quality to be able to answer 68% of the questions
correctly.

• Finally, we present a larger, automated evaluation on
over 500 questions to compare the basicNCS, enhanced
NCS as well as a couple of IR techniques: Elasticsearch
and BM25.

The paper is organized in the following sections. In Sec-
tion 2, we describe the NCS search model. Section 3 carries
out a micro–benchmark–based evaluation, primarily for the
purpose of evaluating design choices. Section 4 presents
the Stack Overflow case study. Section 5 reflects the im-
provements to the search model based on the study results,
and their effectiveness is tested on an automated evalua-
tion framework, elaborated in Section 6. Finally, Section 7
presents related work.

2 Model
In this section we describe the details of NCS model. The
main idea is to capture program semantics, or rather “in-
tent”, informally, using continuous vector representations
[13]. Continuous vector representations, when computed
appropriately, have the desirable property that vector rep-
resentations of two semantically similar entities are close
in terms of vector distance. We caution readers that these
vector representations capture program intent in an infor-
mal way and are not designed to capture the mathematical
meaning of a program.

In NCS, we create a continuous vector embedding of each
code fragment at method–level granularity. Given a natural
language query, we map the query to the same vector space.
Then we use vector distance to simulate relevance of code
fragments to a given query.
This overall process is fairly standard in NLP and doc-

ument retrieval [17], but the details for code retrieval are
sometimes significantly different, as we point out where rele-
vant. We first describe how we extract “natural” information
from source code, and then describe how we compute vector
representations.

2.1 Extracting Information from Source Code
Our hypothesis is that tokens in source code contain enough
natural language information to make retrieval possible. In
this step we create a natural language “document” for a piece
of code — at the granularity of a method or function — by
extracting such information.
The simplest approach is to use a simple tokenizer to ex-

tract all words from source code by removing non–alphanum-
eric tokens. Being language–agnostic, this method is ideal
for processing codebases composed of multiple program-
ming languages, but on the other hand, it lacks the ability to
leverage the syntax of any specific language; it is unable to
differentiate whether a word comes from a variable name or
a method call. We use a parser–based approach instead, in
which we traverse through the parse tree for each method,
and extract information from the following syntactic cate-
gories (here we assume a Java–like language, but one with
optional types):

• Method name: We extract the method name and com-
bine it with the class name in which the method is
contained.

• Method invocations: Method invocations are arguably
the most important information inside a code block
because they give hints about what is happening in the
code. Other features like control flow are also impor-
tant but cannot be easily expressed in natural language.

• Enums: Unlike local variables, these constants are care-
fully named, containing meaningful information about
the state of program.
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• String literals: They usually include human–facing
text and documentation, both containing useful words
which we extract.

• Comments: They contain very useful information as
they are already natural language descriptions of code.

We follow the common practice of not extracting variable
names, as variable names would vary by developers, and
moreover, their signal tends to be captured by surrounding
method name already [15].

After extracting the aforementioned information, we pro-
cess the source code words to transform the information
to a natural language document. We split the camel–case
(camelCase) or snake–case (snake_case) concatenated strings
into separate lower–case words, remove non–alphanumeric
characters, and filter out for various things including strings
containing backslash (as they are usually escape characters),
string longer than 300 characters, etc. Finally, we obtain a
flat list of words extracted from source code that resemble a
natural language document.
Figure 1 shows an example of the data preparation: the

comments, method definitions, and method invocations from
this example are scraped and cleaned for the model genera-
tion.

Figure 1. Words extracted from a Java method 2

2.2 Building Vector Representations
We first create continuous vector representations of words
such that if the cosine distance between their vector repre-
sentations is small, then those words tend to have related
meanings (Section 2.2.1). We then use these word vectors
to represent intents of source code as “document” vectors
(Section 2.2.2), using which we retrieve results (Section 2.3).

2.2.1 Building Word Embeddings
Word embedding has become a popular concept since the
Word2vec paper [13]. Word2vec computes vector represen-
tation of words using a two–layer dense neural network
2From https://github.com/sockewqe/mosby (slightly abridged)

that can be trained unsupervised on a large corpus, such that
words that share common contexts are located close together
in the vector space. We use the converse of this statement to
help define semantic relatedness: words with vectors that are
closer together should have related meanings; this is called
the distributional hypothesis in the NLP literature [7]. The
Word2vec algorithm essentially produces a lossy encoding
of words in a lower–dimensional vector space than the size
of the vocabulary. With proper dimensionality and training,
these embedding vectors retain the meaning of each word,
in the sense described above.
Notice that word embedding models are originally de-

signed for processing natural language corpus; our extracted
corpus from source code is different from natural language
text. Nevertheless, we rely on the assumption that the distri-
butional hypothesis also holds for source code text, i.e. words
that occur in the same context (in source code) also have
related meanings. Table 1 shows examples of clustered word
embeddings trained from our corpus, which supports this
claim empirically. The work by Allamanis [2] also suggests
that the hypothesis holds for source code.
In our implementation, we use a variant of Word2vec

model, called FastText [4]. We employ the continuous skip–
gram model with a window size of 5, i.e. all pairs of words
within distance 5 are considered nearby words.

Table 1. Examples of word embedding synonyms trained
from Java Android GitHub repositories

Word Words with closest vector representations

button click, offlinepopup, buttons, dismissible, clicked
keyboard softkey, softkeyboard, emojicons, soft, IME

2.2.2 Building Document Embeddings
We express the intent of source code text in the same high–
dimensional vector space as the word embeddings, by ag-
gregating representation of all the words extracted from the
source text as described in Section 2.1.
It turns out that the manner in which word embeddings

are aggregated to obtain a document–level vector representa-
tion (or embedding) makes a significant difference. Whereas
previous work [14] has suggested simply averaging word
embeddings, we found this does not work well for our pur-
poses.

We tried three variants of the combination method:
1. Average over all the words;
2. Average over the unique words in each document;
3. Weighted average of all unique words in a document

according to Equation 1.

vd = u

(∑
w ∈d

u(vw ) · tfidf(w,d,C)

)
(1)

https://github.com/sockewqe/mosby
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where d is a multiset of words representing a document;
C is the corpus containing all documents; u is a normalizing
functionwhereu(v) = v

|v |
. TF–IDF, short for term frequency–

inverse document frequency, is defined in Equation 2. It
assigns a weight for a given word in a given document [14].
A word has a higher weight if it appears frequently in the
document but is also penalized if it appears in too many
documents in the corpus.

tfidf(w,d,C) =
1 + log tf(w,d)
df(w,C)/log |C |

(2)

Experiments reported in Section 3.2.2 show that theweighted
average method works significantly better than the other
ones.

2.3 Retrieval
The search query is expressed as natural language sentences,
such as “close/hide soft keyboard”, “how to create a dialog
without title”. We simply average the vector representations
of constituent words to create a document embedding for
the query sentence; Words in query that never appeared in
our code corpora are dropped from consideration.

We then use a standard similarity search algorithm to find
the document vectors with closest cosine distance. FAISS
is an implementation of various efficient similarity search
algorithms, including a scalable nearest neighbor graph–
based search [9]. We use this library in our implementation.

3 Evaluation
In this section, we evaluate the effectiveness of aforemen-
tioned approach at different design points. The purpose of
this evaluation is to help us choose from several possible
design points.

3.1 Evaluation Methodology
We use a subset words retrieval metric to evaluate search re-
trieval. The basic idea is that we take a subset of words from
a given document to create (or rather, simulate) a query and
feed the query to the system to see whether the given docu-
ment can be retrieved given that subset of words. Some meth-
ods in the GitHub corpus are very short with not enough
signal; for this reason, we limited these tests to methods that
have at least five extracted words.

We have two kinds of “micro” benchmark tests to evaluate
our system:

• Random Benchmark Test: use 20% randomly selected
words in each document to create the query, with min-
imum of five words per query;

• TF–IDF Benchmark Test: use 20% highest TF–IDF val-
ued words in each document to create the query, with
minimum of five words per query.

Evaluation Metric: We evaluate the system by the per-
centage of documents that are retrieved back at first place,

as well as within the top–9 places, using the subset words
retrieval metric.

Evaluation Data: The evaluation data for the micro–
benchmark is all 704,229 methods in the 1,000 Android repos-
itories we cloned from GitHub. Table 2 shows promising re-
sults, as we were able to return the correct method in the top
nine results for 74.4% and 94.6% of the queries for the random
and TF–IDF benchmark tests, respectively. (It is expected
for the random benchmark test to perform worse than the
TF–IDF.)

Table 2. “Micro” benchmark test results for the two types
of test. The document vectors were built with embedding
dimension 500 with TF–IDF weighting.

Benchmark Test Top 1 Within Top 9

Random 46.1% 74.4%
TF–IDF 68.9% 94.6%

3.2 Experiments
We report on three experiments using the preceding micro–
benchmarking methodology. First, we investigate the impact
of embedding dimension. Next, we compare three ways of
combining word embeddings to document embeddings. Fi-
nally, we also compare the NCS pipeline with an alternative
pipeline based on information retrieval alone, and that does
not use embeddings.

3.2.1 Choosing Word Embedding Dimension
One challenge is to choose the optimal word embedding
dimension size. We believed that the default dimension for
fastText, 100, may be too small to capture the full intent of
each vocabulary in our corpus. Thus, we experimented with
four dimensions: 100, 250, 500, 750. The next table shows
the results for the TF–IDF benchmark test, building the doc-
ument vectors using TF–IDF weighting. The results, cited
in Table 3, show that the benchmark tests for the higher
dimensions performed better. This can be explained by our
large corpus of documents and vocabulary. Because there
was no significant difference between the results for 500 and
750 embedding size, we decided to use size of 500 for the
model, as it optimizes both accuracy and speed.

3.2.2 Choosing Document Vector Building
To build the document vectors, we use TF–IDF weighting for
all the unique words in the document. This approach was the
result of experiment to compare several different methods
to build the document vector. The three that we tried were:

• Sum all words in the document: this is the most prim-
itive version, where we add all the word embedding
vectors for each word in the document. This fails in the
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Table 3. TF–IDF benchmark test results for different em-
bedding dimensions. The document vectors were built with
TF–IDF weighting.

Embedding Dimension Top 1 Within Top 9

100 63.1% 91%
250 66.9% 93.6%
500 68.9% 94.6%
750 69.9% 94.6%

case where a method is heavily skewed by common or
unimportant words.

• Sum unique words in the document: this method is to
correct the problem stated in the previous method.
Here, we only add the unique set of words in the doc-
ument. While this solves the problem with methods
containing a large number of unimportant words, an-
other problem arises. If there are important, or “key”
words that highlight the intent of the document, this
method does not reflect the importance.

• TF–IDF weighting: this method aims to solve the issues
presented by the methods above. This method takes
the unique set of words in the document andmultiplies
each word by its corresponding TF–IDF score. This
way, each word is accounted for by its importance.

Table 4 shows the results of this experiment. This model
was built with embedding dimension 500 and tested on the
TF–IDF benchmark test (see Section 3.1). It can be seen that
the TF–IDF weighting outperforms the other two methods
and is quite important for NCS effectiveness.

Table 4. TF–IDF benchmark test results for different ways
of building the document vector. The document vectors were
built with embedding dimension 500 with TF–IDFweighting.

Document Vector Method Top 1 Within Top 9

Sum all 0.54 0.848
Sum over unique 0.518 0.822
TF–IDF weighted sum 0.689 0.946

3.2.3 Comparing against Information Retrieval
Using embeddings for retrieval can also be problematic be-
cause of the lossy representation, which loses the ability of
supporting exact word matches. For this reason, we wanted
to compare embeddings with a more traditional information
retrieval technique.
We put together an alternate processing pipeline similar

to NCS, but one that uses only a BM25–based [14] document
similarity to serve queries. BM25 is similar to TF–IDF, with
a slightly different score computation, as shown in Equation

3:

BM25(D,Q) =
∑
q∈Q

IDF(q) ·
tf(q,D) · (k + 1)

tf(q,D) + k · (1 − b + b ·
|D |

avgdl )
.

(3)
where k,b are tunable parameters, |D | is the length of a
document, and avgdl is average document length.
In this pipeline, the information extraction from source

code is the same as in NCS, but document vectors are com-
puted in a different way, without using embeddings. We
compute BM25 values for each word in each document for
the entire corpus. The document vector is then just a sparse
vector of these BM25 values for words that exist in the doc-
ument, and zeros for words that do not. Query matching
is done by a simple dot product between each document
vector and a one–hot encoding of the query over the same
vocabulary.

The evaluation result on the micro benchmark is displayed
in Table 5. The performance of NCS is in the vicinity of BM25,
which assuages our concern with the lossy representation
used in NCS.

Table 5. TF–IDF benchmark test results for NCS vs BM25.
The document vectors were built with embedding dimension
500 with TF–IDF weighting.

Search Method Top 1 Within Top 9

NCS 68.9% 94.6%
BM25 73.6% 96.8%

4 Case Study: Stack Overflow Evaluation
We want to evaluate the effectiveness of Neural Code Search.
In production, we can track developer behaviors on a search
platform and IDEs to get click–through rates, but they are
only proxy–metrics, and we do not know if they found what
they were looking for.

We leverage Stack Overflow to work around this problem.
Stack Overflow contains a large number of queries, as well
as up voted answers that can be treated as the correct answer
for that query, or in other words, the ground truth.
For this case study, we decided to measure the effective-

ness of NCS on Android Java code, for which there are a lot
of queries and answers on Stack Overflow, as well as a lot of
large code repositories on GitHub. Given a Stack Overflow
question as a query, NCS will retrieve a list of method from
the corpus of Android projects from GitHub, and we consider
a search successful if at least one of the methods in the top
10 search results match the Stack Overflow code snippet.

4.1 Data Preparation
To evaluate NCS, we need a set of Stack Overflow question
and corresponding code snippet from the answers, and a
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corpus of Android projects from GitHub in which the Stack
Overflow code snippets exist. The latter is collected from the
most popular 1,000 Android projects on GitHub.

We need to select the Stack Overflow questions and code
snippets in an unbiased manner. To do this, we created a
heuristics–based filtering pipeline where we discarded open–
ended, discussion–style questions. We started with the top
17,000 frequently asked questions for Android on Stack Over-
flow and used numerous filtering techniques to reduce to
2,000 question and code snippet pairs.
Next, we need to verify these code snippets exist in the

code corpus so that NCS can possibly retrieve them. This is
done by searching the code snippets directly using Elastic-
search, with a custom tokenizer to split up camel case tokens.
Since Elasticsearch is a fuzzy text search tool, we get many
false positives in the results. We then manually chose 100
questions for which the correct code snippets exist in the
GitHub corpus. This became our final data set for evaluating
NCS.
We built a NCS model on the corpus of 1,000 Android

projects from GitHub, and directly used the Stack Overflow
question as the query to NCS. Then we manually evaluated
each method retrieved by NCS to decide whether it is similar
to the code snippet in the Stack Overflow answer, primarily
based on whether it invokes the correct APIs and used the
correct constants.

4.2 Results
The results are as follows:

• For 43 out of 100 questions, NCS found a similar or
acceptable method to Stack Overflow that correctly
answered the Stack Overflow question.

• For 8 out of 100 questions, NCS almost found a sim-
ilar answer. These are the cases where the retrieved
function calls another function that does the expected
job.

• For the rest of the questions (49/100), NCS did not find
a good enough answer. See analysis below.

The results show that NCS is able to answer succinct ques-
tions that have keywords similar to those that can be found
in the function body. Here are some examples of queriesNCS
successfully answers correctly:

• How to convert a Bitmap to Drawable in android?
• How to find MAC address of an Android device program-
matically?

• How to handle back button in activity?
• Close/hide the Android Soft Keyboard.

Interestingly, we found occasional (though not frequent)
cases of synonyms coming in useful. For the question How
to turn on the GPS on Android, the intended code fragment
does not contain the word GPS but does contain the word
location. NCS was able to retrieve it because of the use of

Figure 2. NCS evaluation results

embeddings. This is a potential advantage of the embeddings–
based search, though on thewhole BM25worked comparably
on this data set (47 questions answered correctly and 1 almost
correctly).

There are three broad categories of reasons why NCS did
not perform up to expectations:

• For 25 of the 49 failed questions, there were insufficient
similarities between the information manifest in the
source code and the words in the question. An example
of this type of question is “How to hide status bar in
Android.” Here, hiding the status bar is akin to making
the app full screen. However, NCS Is not aware of
the association between full screen implying that the
status bar is hidden; even word embeddings did not
help in this case.

• For 15 of the 49 failed questions, there are query in-
terpretation issues. NCS prioritized the wrong query
words during search and reformulating the querywould
often lead to the correct answer. An example of this
type of question in “Remove underline from links in
TextView.” Here, NCS finds great matches for the key-
words “underline” and “textview” but not for “remove”.
If we reformulate the query as, “Underline textview” or
“Delete underline textview,” we get the right results.

• 9 of the 49 failed questions were either too complex (re-
quiring multiple different files) or not well formulated.
These are questions whose title does not necessarily
represent the actual question being asked. The fourth
question in the list below gives an example.

Here are some questions that NCS did not answer well:

• How to hide status bar in Android?
• Remove underline from links in TextView.
• Android: How to create a Dialog without a title?
• How to get the result of OnPostExecute() to main
activity because AsyncTask is a separate class?
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5 Improvements
After analyzing the questions which NCS did not answer
well, we made two improvements to NCS that increase its
performance significantly.

5.1 Query Enhancement
NCS assumes that the words in the query come from the
same domain as the words in extracted from source code.
As the next experiment shows, this is not always the case:
From a dataset of 14,005 Stack Overflow posts, we took all
pairs of questions and answers with positive scores, where
the answer contains a code snippet. From this dataset of
235,989 natural language query and source code pairs, we
extracted all unique words (for source code we use the same
procedure as in Section 2.1). Figure 3 shows a Venn diagram
of the two vocabularies from query domain and from source
code domain. Out of 13,972 unique words in the queries,
less than half (6,072 words) also exist in the source code
domain. This means that if a query contains words that do
not exist in source code, our model is not going to be effective
in retrieving the correct method; such a word would have
no presence in the embedding vector for the query. This
observation motivates the need for a supervised learning to
map words in the query into words in source code.

Figure 3. Overlap of words from queries and source code

We implemented a basic supervision to learn the trans-
lation from words in queries to words in code, using the
dataset of 235,989 pairs of queries and code snippets. We
lemmatize the query (natural language) words to remove
variance due to inflectional endings; from the code snip-
pets, we extract the method calls (by anything that has a
left parenthesis immediately after it). The goal is to produce
the highest co–occurring code word given a query word.
Due to the noisy nature of Stack Overflow data, the initial
step is to extract the most representative code words from
each code snippet to obtain a cleaner dataset. To this end,
we retain the highest 50% TF–IDF–scoring code words from
each code snippet. Then we create a co–occurrence matrix
C of size 14,005 by 17,292 (number of words in queries times
the number of words in code), whereCi j is the count of Stack
Overflow posts in which query word i and code word j ap-
pear together, with normalization. The normalizing factor
ensures the row sum of this matrix is always 1.

The query is then enhanced in the following way: for
each word wi in the query, we pick the (code) word from
matrix C with the highest co–occurrence value in row i ,
and only append that code word to the query if the value is
significant enough (Ci j ≥ 0.05). This threshold ensures that
the code words added into the query are meaningful and
highly–correlated with the original words. We can think of
co–occurring words as a different kind of synonym. Table 6
shows examples of co–occurring words.

Table 6. Examples of co–occurring words from queries and
from source code

Natural language word Co–occurring code word

GPS location
keyboard soft
Internet network
base64 encode
iterate next

An example of co–occurring words helping retrieve the
correct code snippet is the Stack Overflow query “Android
WebView: handling orientation changes.” There is no over-
lap between the words in the query and words in the code,
but the co–occurrence matrix added the word “orientation”,
which is correlated with “configuration”. With the addition
of this new word, NCS is now able to retrieve the correct
method, which is named onConfigurationChanged.
We re–ran the evaluation in Section 4 with this query

enhancement technique—adding co–occurring words as well
as removing common stop words from the query—and found
that NCS can correctly answer 55 questions (an increase of
12). We note that this method is not a complete translation
from natural language query words to code words, since
we are not replacing the natural language query words with
source code words; we are simply adding words. In the future,
we hope to train a single neural network using supervised
learning to produce embeddings for words in both domains,
such that natural language word embeddings are directly
mapped into source code domain.

5.2 Ranking
We noticed during evaluating NCS results is that, while only
43 questions are correctly answered in the top 10 results, if
we consider the top 20 results, NCS gets 59 questions correct.
This inspired us to run an analysis on the search rank at
which the first correct answer appears. The result is shown
in Figure 4. (This data is obtained on a larger dataset of
Stack Overflow questions, using the automated evaluation
framework described in Section 6.)
From this distribution, we find more than half of the cor-

rect answers (224 out of 349 retrieved) within the top 500
rank are not in the top 10 results. This spread in the ranks is
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Figure 4. Histogram of ranks of first correct answers. There
are only a few correct results beyond the top 500 rank so we
decided to cut off at 500.

a limitation of embedding–based search algorithm, because
continuous vector representations do not exactly capture the
intent of either a query or a document.

Since most users would not browse beyond the first 10 re-
sults in a search session, this observation warrants a ranking
strategy to bump up the correct answers to top. We first re-
trieve the initial 500 results with the highest cosine similarity,
and then apply the following rules to rank the results:

• Up rank methods that are at least three lines long.
• Up rank methods containing at least 10 tokens.
• Up rank methods that match at least n−1 query words,
where n is the number of words in the pre–processed
query.

• Up rank methods that contain all n query words.
• Up rank methods that match at leastm − 1 original
query tokens, wherem is the number of tokens in the
original query (without splitting).

• Up rank methods that contain allm query tokens.
The first two criteria prevent retrieving very short meth-

ods with no substance (in principle, we could have excluded
these documents from consideration in the first place.) The
rest of the rules reward those methods that most closely
match the intent expressed in the query. Furthermore, these
ranking rules are applied in the order of ascending impor-
tance. For example, it is more important for a method to
contain all unsplit query tokens (perhaps a long camel–case
class name), than that it contains all query words after pre–
processing (perhaps scattered words).
We re–ran the automated evaluation after implementing

the ranking heuristics on those questions that were originally
in the top 500 rank, and found that the results improved
significantly.

In Figure 5, the first box plot shows the same distribution
as in Figure 4, where a right–skewed distribution indicates
many correct answers are “buried” in the top 500 results.
The second box plot shows the distribution of results after

Figure 5. Comparison of distributions of ranks of first cor-
rect answers

we enhance the search query with co–occurring words. The
result is better, but a long tail is still present. The last box plot
shows the distribution of results after query enhancement
and ranking heuristics. Nowmore than 50% of the retrievable
results are in the top 10 range.
With these two additions, we re–evaluated NCS on the

original 100 questions dataset using manual evaluation, and
found thatNCS can now correctly answer 68 questions, show-
ing a 58% increase in accuracy.

6 Automated Evaluation
Manually evaluating NCS on these Stack Overflow ques-
tions does not scale. It is also difficult to measure iterative
improvements to our search algorithm. Therefore, we devel-
oped a framework to automate the evaluation process using
a similar code detection tool.

6.1 Evaluation Framework
We found that a large subset of correct code snippets re-
trieved by NCS contain (or are) almost the identical code
snippet as in the Stack Overflow answer. Thus we developed
a similar code detector that is capable of detecting near–
clones of a given code snippet. In our case, we intend to
find near–clones of the code snippet in the true answer from
within a method body retrieved by NCS.

The automated evaluation pipeline works by first taking
the top 10 results retrieved by NCS, and for each retrieved
method, getting a similarity score between the ground–truth
code snippet and the method. This detector automatically ac-
commodates for the case that the ground–truth code snippet
might be only a part of the retrieved method. If at least one
of the top 10 NCS results contains a code fragment whose
similarity score is above the threshold, we mark this ques-
tion correctly answered by NCS. The similarity threshold we
chose seeks to minimize false positives during evaluation.
This approach does permit false negatives, but we get a lower
bound on NCS retrieval without time–consuming manual
analysis.
We first cross-checked the automated evaluation suite

with our manual inspection on the original 100 questions;
the result is shown in Figure 6. The automated similarity
detection has a very low false positive rate, but has a non-
trivial false negative rate. It tends to miss those methods



Retrieval on Source Code: A Neural Code Search MAPL’18, June 18, 2018, Philadelphia, PA, USA

Figure 6. False positives and false negatives in automated
evaluation

that invoke the same APIs but look different syntactically; in
other words, the automated evaluation gives a lower bound
on the actual search performance.
Using the similar code search tool we were also able to

increase the size of our evaluation dataset in an automated
fashion. Previously (see Section 4.1) we were not able to scale
the filtering process because Elasticsearch is not intended
for code search, and is therefore unreliable in determining
whether a code snippet appears in the GitHub corpus. We
replaced Elasticsearch with the similar code detector men-
tioned above, which is capable of finding a code snippet from
a large corpus with high accuracy. This allows us to expand
the evaluation dataset from 100 to 518 questions, on which
we can apply the automated evaluation.

6.2 Comparison Results
Using the automated evaluation framework we compared
the performance of NCS with various information retrieval
techniques:

• Elasticsearch: a traditional information retrieval text
search system. We tokenized the code from GitHub
corpus and created an Elasticsearch index.

• BM25: we also built our own BM25 search using the
same word splitting and preprocessing techniques.

• NCS: pure vector similarity search without the im-
provements described in Section 5.

• NCS (Section 5.1): in this version we enhance the query
with co–occurring code words.

• NCS (Section 5.2): in this version we enhance the query
and employ the ranking heuristics on the top 500 re-
trieved results.

Note that percentage-wise the numbers here (e.g. 176/518)
look worse than those in Section 5 (e.g. 68/100), in part be-
cause the automation evaluation significantly under-reports
the actual search performance. Yet, this is meaningful for
comparing across techniques in a scalable way.

Figure 7. Comparison using automated evaluation on 518
questions

The results show that while the basicNCS achieves similar
performance as the traditional information retrieval systems,
by exploiting the mapping between query (natural language)
vocabulary and source code vocabulary, together with rank-
ing heuristics, NCS is able to retrieve significant number
of additional correct code snippets than Elasticsearch and
BM25.

7 Related Work
In the interest of space, we focus only on the most closely
related work in code search.
SNIFF [6] is a code search engine that works by inlining

API documentation in client code. SNIFF then indexes the
annotated code for the purpose of code search. SNIFF also in-
tersects and ranks search results to recommendmost relevant
and concise code snippets. SNIFF uses conventional indexing
techniques to perform code search. Moreover, SNIFF depends
on the availability of comments in the user code.
Given a natural language query, Portfolio [12] retrieves

and visualizes functions and their usage chains that performs
the task specified in the query. The motivation behind Port-
folio is based on the observation that programmers are often
more interested in finding definitions and usage of functions
instead of relevant code snippets.

CodeHow [10] is a recent code search technique that first
uses code documentation to retrieve possible API calls that
could be use in the target code. CodeHow then augments
the query with the retrieved APIs and performs search using
the augmented query. This results in more accurate search
results.
Sourcerer [3] is a framework for performing code search

over open–source projects available on the Internet. Sourcerer
works by extracting fine–grained structural features from
source code. Keywords and features extracted from source
code are then searched using the text search engine Lucene.
Chan et al. [5] proposed an approach where code can be

searched using short text phrases as query. Their system
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returns code represented as a graph whose nodes represent
classes or methods matching the query keywords and whose
edges denote the invocation relationship between the nodes.
SWIM [16] is a code synthesis technique which goes be-

yond simple code search. SWIM converts user queries into
relevant APIs using click–through data from the Bing search
engine. It then synthesizes code snippets containing these
APIs.

Several recent work [2, 11, 15, 18] have shown how to
generate code snippets given a natural language query. Al-
lamanis et al. [2] uses probabilistic models to jointly model
short natural language queries and code snippets. They show
how to use the models to synthesize3 a program snippet from
a natural language query. Their technique requires training
data that contains code snippets and their corresponding
natural language descriptions. Murali et al. [15] proposes a
deep–neural network based technique to synthesize a target
program given a label specifying a small amount of informa-
tion about the target program. For the purpose of training,
their technique automatically extracts labels from code snip-
pets. Their technique uses TreeLSTM to generate programs.
Seq2SQL [18] uses a deep–neural network model to syn-
thesize SQL queries from natural language questions. All
of these technique create new code snippets given a query
instead of returning a code snippet from an existing code
repository.

Recently a number of models [1, 8] have been proposed to
create high–quality natural language summaries of code snip-
pets. CODE-NN [8] uses Long Short Term Memory (LSTM)
networks with attention to produce sentences that describe
C# code snippets and SQL programs. Allamanis et al. [1]
uses convolutional–neural networks (CNNs) to summarize
code snippets. Such techniques can be used for code search
as follows. One first creates summaries of the method bodies
of all the methods present in a code repository. The sum-
maries are indexed and searched given a natural language
query. Alternatively, using the trained model one computes
the probability of the query sentence for each code snippet
in the corpus and returns the snippet with the highest prob-
ability. CODE-NN implements the latter approach for code
retrieval. NCS, by contrast, carries out search based only
on words present in a code snippet manifestly, or added as
described in Section 5.1. In future work we plan to evaluate
the extent to which learned summaries, as created using the
techniques mentioned in these papers, further increase the
search quality.

8 Conclusion
Given the availability of large amounts of code, both in open
source, as well as inside companies, an exciting possibility
is to automatically answer Stack Overflow–like questions

3The paper [2] refers to this as retrieval, but this is not retrieval of existing
code.

directly from code. We presented Neural Code Search (NCS),
an end–to–end code search system that supports natural
language queries.

The basic NCS relies on distance between continuous vec-
tor representations of code as well as queries to carry out
search. We found that this model can be significantly en-
hanced by adding a layer of supervision to better map query
words to words appearing in source code. We also found that
a custom ranking approach can compensate for the scattering
of results caused by a vector similarity based search.
We presented a case study of using NCS for answering

questions from Stack Overflow on a code corpus downloaded
from GitHub. NCS, which enhancements, is able to answer
two-thirds of the questions in the curated Stack Overflow
dataset correctly.
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