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GNN details. The object feature descriptor is mapped to
a 256-dimensional embedding using the 3-layer MLP en-
coder, the output dimensions of which are 64, 256, and 256,
before being processed by the GNN. After the encoding,
every node in the graph is described by a 256-dimensional
feature vector. An attention layer of the GNN takes as in-
put node features of the last layer and outputs the updated
node features by aggregating information from other nodes.
Specifically, the message passing among nodes is achieved
by self-attention or cross-attention depending on the con-
nection type among the nodes (lines 281-285 in the main
text).

The update of each node feature in an attention layer is
proceeded as follows: (1) For each node in the graph, we
employ a 4-head attention mechanism to aggregate infor-
mation from other nodes; (2) The aggregated feature is then
concatenated with the node feature; (3) The concatenated
feature is passed to a 3-layer MLP (with dimensions of 512,
512, 256) to update the node feature. In the second part
of the GNN for frame-to-model association, we we use the
optimal matching layer [1] to obtain the assignment matrix.
We train the GNN in a supervised fashion using the ground-
truth assignments by minimizing the negative log likelihood
the correct assignment:

L =−
∑

(i,j)∈S

logM̂i,j −
∑
i∈S0

logM̂i,n+1

−
∑
j∈S1

logM̂m+1,j ,
(1)

where M̂ ∈ Rm+1,n+1 (the extra one dimension for the
dustbin [1]) is the assignment prediction, S is the ground-
truth matching pairs, and S0 and S1 are the objects or de-
tections that are not matchable due to occlusion or out-of-
frame, which should be assigned to the dustbin.
The effect of the prior term. Besides reporting the overall
performance gain due to the prior term in the optimization
(see Table 3 in the main text), we demonstrate the perfor-
mance difference between optimization w/ prior and wo/

Figure 1. Comparison of 3D IoU between optimization w/ the prior
term (in green) and wo/ the prior term (in red) against the 2D ob-
servation errors. Optimization with the prior term is less affected
by the errors in the 2D observations.

prior in different levels of 2D observation errors in this sec-
tion. We rank the predicted 3D objects using the mean
2D IoU between the associated 2D bounding boxes and the
ground-truth bounding boxes in descending order, and plot
the mean 3D detection performance measured by 3D IoU at
different levels of 2D observation errors. Fig. 1 shows that
as the error in 2D observations increase, the performance of
optimization wo/ prior drops significantly whereas the op-
timization w/ prior is less affected, which further validates
that the prior term can increase robustness of the multi-view
optimization to error in 2D observations.
Representation comparison.

Fig. 2 shows some examples demonstrating the limita-
tion of cuboid or quadric representation. Although cuboid
seems to be more favorable than ellipsoid as reported in
Table 3 in the main text, one should note that most ob-
ject classes in the Scan2CAD annotations for evaluation
are box-like furniture. Ellipsoid would be advantageous for
round or cylinder objects, such as cups, fruits, and balls.
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Figure 2. Visualization of cuboid, quadric, and super-quadric representation. The super-quadric representation can adapt to different object
shapes while cuboid or quadric can only fit box-like and round objects well respectively.
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Figure 3. Visualization of object fusion attention. Each line represents a previously associated detection of an object. The attention score of
a detection used for fusion is represented by the intensity of the color. The network learns to attend to detections from various viewpoints.

Super-quadric, as a unified representation for shapes includ-
ing but not limited to cuboids, cylinders, and ellipsoids, is
a more flexible representation for generic object shapes, as
shown in Fig. 2 and Table 3 in the main text.

Self-attention visualization. Fig. 3 visualizes the attention
weights of the object fusion block in the GNN (as described
in the main text). Note that the network focuses on a subset
of observations with a large viewpoint difference.

More qualitative results and failure case analysis. More

qualitative results including failure cases are shown in the
supplementary video.
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