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Abstract

In many application domains (e.g., recom-
mender systems, intelligent tutoring systems),
the rewards associated to the actions tend to
decrease over time. This decay is either caused
by the actions executed in the past (e.g., a
user may get bored when songs of the same
genre are recommended over and over) or by
an external factor (e.g., content becomes out-
dated). These two situations can be modeled
as specific instances of the rested and rest-
less bandit settings, where arms are rotting
(i.e., their value decrease over time). These
problems were thought to be significantly dif-
ferent, since Levine et al. (2017) showed that
state-of-the-art algorithms for restless bandit
perform poorly in the rested rotting setting.
In this paper, we introduce a novel algorithm,
Rotting Adaptive Window UCB (RAW-UCB),
that achieves near-optimal regret in both rot-
ting rested and restless bandit, without any
prior knowledge of the setting (rested or rest-
less) and the type of non-stationarity (e.g.,
piece-wise constant, bounded variation). This
is in striking contrast with previous negative
results showing that no algorithm can achieve
similar results as soon as rewards are allowed
to increase. We confirm our theoretical find-
ings on a number of synthetic and dataset-
based experiments.

1 Introduction

When we design sequential learner, we would like them
to be as adaptive to environment as possible. This
becomes a challenge when the environment only pro-
vides limited feedback, as in the bandit setting (Lai
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and Robbins, 1985; Lattimore and Szepesvári, 2020),
where the learner receives only the feedback associ-
ated to the action it executed. Since the early stages
of the research in bandits (Thompson, 1933; Whit-
tle, 1980), one of the most desirable properties for
a learners would be to adapt to actions whose value
changes over time (Whittle, 1988), as it happens in
non-stationary environments. In fact, from applica-
tions in medical trials (where the patient can become
more resistant to antibiotics) to a modern applications
in recommender systems (Chapelle and Li, 2011; Tracà
and Rudin, 2015), assuming that the environment is
stationary is very limiting.

However, modeling and managing non-stationary en-
vironments is obviously way more difficult (Lattimore
and Szepesvári, 2020). That is why Auer et al. (2003)
went as far as to consider the worst-case scenario, re-
ferred to as the adversarial bandit setting, where the
learner should try to shield from the worst possible vari-
ation in rewards. Nonetheless, real-world environments
are rarely adversarial and algorithms for adversarial
bandits turn out to be too conservative for practi-
cal use. On the one hand, in order to manage such
general family of environments, the performance of a
learner is compared to the best fixed action in hindsight.
This is arguably a weaker objective w.r.t. competing
against the optimal strategy, as it is the case in sta-
tionary bandits. On the other hand, state-of-the-art
adversarial algorithms (Audibert and Bubeck, 2009),
which are proved to recover near-optimal regret rates
on stationary problems, still under-perform in practice
against optimal stationary algorithm (Zimmert and
Seldin, 2019). In order to address these issues, prior
work identified specific types of non-stationary environ-
ments, for which specifically designed algorithms can
be used.

There are two main classes of non-stationary environ-
ments, depending on whether the change of rewards
is triggered by the actions of the learner, the rested
bandits, or it happens over time independently from the
learner, the restless bandits. In this paper, we consider
the specific case where the changes in the rewards are
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arbitrary non-increasing functions of time and/or num-
ber of pulls (in contrast with typical restless bandit
models, where the evolution of rewards was regulated
by Markov chain processes). For instance, Warlop et al.
(2018) model boredom effects in recommender systems
as a rested bandit problem, but need to resort to a more
general reinforcement learning framework to address
the fact that rewards are decreasing while an action
is repeatedly selected but may increase back if enough
time has passed since the last time is chosen. Immorlica
and Kleinberg (2018) and Pike-Burke and Grunewalder
(2019) have recently modeled these recharging effects
as a bandits problem. In the restless setting, Louëdec
et al. (2016) models obsolescence of appearing arms
(e.g. piece of news) with a known exponential rate.
Komiyama and Qin (2014) study a parametric decay in
restless bandits where rewards are linear combination
of known decaying function. In the following, we briefly
review the most relevant results available for restless
bandit (where no rotting assumption has been studied
before) and the rested rotting bandit settings.

Restless stochastic bandits Garivier and
Moulines (2011) study the restless bandits case, where
rewards are piece-wise stationary. If the number of
stationary pieces ΥT at the horizon T is known, the
optimal strategy is included in a set of TΥT switching
experts. Hence one can use Exp3.S, an adversarial
algorithm designed for this specific set of experts
(Auer et al., 2003). Moreover, Garivier and Moulines
(2011) show that two upper-confidence bound index
algorithms with passive forgetting parameters, SW-UCB
and D-UCB, are also able to reach nearly-minimax
performance when they know in advance ΥT and
T . Recent research (Cao et al., 2019; Liu et al.,
2018; Besson and Kaufmann, 2019) has focused on
integrating change-detection algorithms with standard
bandit learners (e.g. UCB) to actively forget past
rewards whenever a significant variation in the reward
distribution is detected. Among them, we mention
GLR-klUCB (Besson and Kaufmann, 2019) which uses
a parameter-free change-point detector. These algo-
rithms actively explore sub-optimal actions to track
potential increase in their value. Yet, their analysis
assume that change-points are always big enough
to be detectable with high-probability. Auer et al.
(2019) introduce AdSwitch, a filtering algorithm with
a planned active exploration scheme for sub-optimal
actions. AdSwitch achieves the minimax rate while
being agnostic to ΥT without any extra assumption.

Besbes et al. (2014) introduced a restless bandits frame-
work where the environment has a variation budget
of VT to change the rewards’ values. In this setup,
the best arm can change at each round and thus the
optimal strategy is not necessary included in a "small"

set of switching experts. Yet, they show that the best
strategy with O

(
T 1/3

)
switches suffers low regret com-

pared to the optimal strategy. Hence, Exp3.S matches
the minimax rate O

(
T 2/3

)
with the knowledge of VT .

Cheung et al. (2019) and Russac et al. (2019) extended
SW-UCB and D-UCB to show that they also match the
minimax rate of the variation budget setting even in
the more general linear bandits framework. Chen et al.
(2019) show that AdSwitch also matches the minimax
rate without the knowledge of VT . They also analyse
ADA-ILTCB+, an algorithm which achieves similar guar-
antee in the more general linear setting. Wei et al.
(2016) extended these results to a non-stationary en-
vironment where both the means and the variances of
the rewards may change.

Rested rotting bandits Finally, Heidari et al.
(2016); Levine et al. (2017) and Seznec et al. (2019)
studied rested rotting bandits, when the reward of an
action decreases every time it is pulled. Seznec et al.
(2019) recently proposed a nearly-optimal algorithm
for this setting. Interestingly, the algorithm does not
execute an index policy (defined later) which is a preva-
lent choice in bandit. Actually, a previous attempt of
using an index policy by Levine et al. (2017) resulted
in a sub-optimal performance.

Our contribution is threefold:

• We show that no learning strategy can achieve o(T )
worst case rate when we allow for both rested and
restless decay (Section 2).
• We introduce a novel index policy RAW-UCB (Sec-
tion 3) and prove that it achieves minimax rate
regret for either restless (Section 4) or rested (Sec-
tion 5) settings without any prior knowledge of
the type of decay, the amount of change, or the
horizon.
• RAW-UCB also recovers problem-dependent
O (log T ) bounds in both setups. In the restless
case1, such bounds cannot be achieved when
the reward can increase. Hence, it shows that
the decreasing assumption do help the learner
compared to the well-studied general case.

Also, we provide a rested simulated (Appendix G.1) and
restless real-world (Section 6) benchmarks on which
RAW-UCB gives the most consistent results in both se-
tups.

1In the rested case, Heidari et al. (2016) shows that
increasing reward is a much harder problem, even in the
absence of noise.
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2 Decreasing multi-armed bandits

At each round t, an agent chooses an arm it ∈ K ,
{1, ...,K} and receives a noisy reward ot. The sample
associated to each arm i is a σ2-sub-Gaussian r.v. with
expected value of µi(t, n) which depends on the number
of times n it was pulled before and on the time t.

Let Ht , {{i(s), os} ,∀s ≤ t} be the sequence of arms
pulled and rewards observed until round t, then

ot , µit(t,Nit,t−1) + εt ,

with E [εt|Ht−1] = 0 and ∀λ ∈ R, E
[
eλεt

]
≤ e

σλ2

2 ,
where Ni,t ,

∑t
s=1 1 (is = i) is the number of pulls of

arm i at time t. We call µ , {µi}i∈K the set of reward
functions.

Decreasing rewards Throughout all the paper, we
consider the following assumption.
Assumption 1. For each arm i, any number of pulls
n, and time t, the functions µi(t, ·) and µi(·, n) are
non-increasing.

We will use interchangeably the terms decreasing, de-
caying and rotting to refer to this Assumption. If
µi(t,Ni,t) = µi(Ni,t), then i is called a rested arm. If
µi(t,Ni,t) = µi(t), then i is called a restless arm.

Learning problem A (deterministic) learning pol-
icy π is a function that maps history of observations
to arms, i.e., π(Ht) ∈ K. In the following, we often
use π(t) , π(Ht−1) to denote the arm pulled at time
t. The performance of a policy π is measured by the
(expected) rewards accumulated over time,

JT (π, µ) ,
T∑
t=1

µπ(t)

(
t,Nπ(t),t−1

)
.

A (deterministic) oracle policy is a function which maps
the set of reward functions and a round to an arm, i.e.,
π(t, µ) ∈ K. Thus, these oracles have access to the true
(without noise) value of the rewards, including future
value. Notice that at the horizon T , there are KT

distinct deterministic policies. Therefore, we call an
optimal (oracle) policy, one which, at a given horizon
T , maximizes the reward

π∗T (t, µ) ∈ arg max
π∈KT

JT (π, µ) .

We define the regret as
RT (π, µ) , JT (π?T , µ)− JT (π, µ).

Notice that this definition is more challenging than
the regret w.r.t. the best fixed-arm policy commonly
used as comparator in adversarial bandits. In the
following, we often use shorter notation π∗T (t), JT (π),
RT (π) where the considered problem µ is implicit.

Greedy oracle policy It is still unclear if 1) we
can compute π?T in a tractable way; 2) if a learn-
ing policy can suffer low regret compared to this
policy. We call πO the oracle policy which selects
greedily at each round t the largest available reward
it ∈ arg maxi∈K µi(t,Ni,t−1).2 We notice that this pol-
icy is optimal at any time in any restless non-stationary
bandit problem µ(t). Heidari et al. (2016) show that it
is also optimal in the rested rotting bandits problem.
Thus, πO answers positively to the first question for
either rested or restless decay. In the next proposition,
we show that the greedy oracle suffers linear worst-case
regret when we allow for both restless and rested decay
at the same time. Worse, we show that no learning
policy can approach the performance of the optimal
oracle at a o(T ) rate

Proposition 1. In the no noise setting (σ = 0), there
exists a rotting 2-arms bandits problem (satisfying As-
sumption 1) with reward value in [0, 1], with one rested
arm and one restless arm, and with at most one change-
point before T each, such that the greedy oracle strategy
πO suffers a regret

RT (πO) ≥
⌊
T

4

⌋
.

Moreover, for any learning strategy πS, there exists
a rotting 2-arms bandits problem (satisfying Assump-
tion 1) with reward value in [0, 1], with one rested arm
and one restless arm, and with at most one change-
point before T each, such that

RT (πS) ≥
⌊
T

8

⌋
.

Notice that the two reward functions of the constructed
difficult problems are simple: either rested or restless,
bounded and with at most one break-point. If we
consider a 2-arm setup with one rested arm and one
restless arm, a good strategy may be to select the
restless arm even when its current value is the worst.
Indeed, this value is only available now, while the good
value of the rested arm will still be available in the
future. Whether the restless rewards are interesting
to the learner depends on the future behavior of the
(currently best) rested arm. On the first hand, if it
decays below the current value of the restless arm before
the horizon T , then the learner should profit from the
restless reward available right now. On the other hand,
if the rested arm stays optimal until the end of the
game then the learner should ignore the restless arm
and follows the greedy oracle strategy. However, the
learner does not know in advance if (and how much)
an arm will decay and any anticipation she makes will

2We break the ties arbitrarily, for instance by selecting
the smallest index in argmaxi∈K µi (t,Ht)
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turn to be bad in the worst case. We formalize these
ideas in the proof in Appendix B and show that any
strategy suffers linear regret in the worst case.

While learning with rested and restless rotting reward
is impossible, we show in the next sections that a
single policy reaches near-optimal guarantee in both
separated setups.

3 The RAW-UCB algorithm

Notation For policy π, we define the average of the
last h observations of arm i at time t as

µ̂hi (t, π) ,
1

h

t−1∑
s=1

1(π(s)= i ∧Ni,s>Ni,t−1−h) os (1)

and the average of the associated means as

µhi (t,π),
1

h

t−1∑
s=1

1(π(s)= i∧Ni,s>Ni,t−1−h)µi(s,Ni,s−1) .

A favorable event We use a similar high probability
analysis than UCB1. We design a favorable event and
we show in Prop. 2 that it holds with high probability.

Proposition 2. For any round t and confidence δt ,
2t−α, let

ξαt ,
{
∀i ∈K, ∀n≤ t−1, ∀h≤n,

|µ̂hi (t, π)− µhi (t, π)| ≤ c(h, δt)
} (2)

be the event under which the estimates at round t are all
accurate up to c(h, δt) ,

√
2σ2 log(2/δt)/h. Then, for

a policy π which pulls each arms once at the beginning,
and for all t > K,

P
[
ξαt

]
≤ Kt2δt

2
= Kt2−α ·

Rotting Adaptive Window Upper Confidence
Bound (RAW-UCB or πR). At each round, RAW-UCB
selects the arm with the largest following index,

ind(i, t, δt) , min
h≤Ni,t−1

µ̂hi (t, πR) + c(h, δt), (3)

with δt , 2
tα . There is a bias-variance trade-off for

the window choice: more variance for smaller size of
the window h and more bias for larger h. The goal
of RAW-UCB is to adaptively select the right window to
compute the tightest UCB. RAW-UCB uses the indexes of
UCB1 computed on all the slices of each arm’s history
which include the last pull. When the rewards are
rotting, all these indexes are upper confidence bounds
on the next value. Thus, RAW-UCB simply selects the
tightest (minimum) one as index of the arm: it is a pure

Algorithm 1 RAW-UCB

Input: K, σ, α
1: for t← 1, 2, . . . ,K do . Pull each arm once
2: Pull it ← t; Receive ot ; Nit ← 1
3:

{
µ̂hit
}
h
← UPDATE(

{
µ̂hit
}
h
, ot) . cf. (1)

4: end for
5: for t← K + 1,K + 2, . . . do
6: Pull it∈arg maxi minh≤Ni µ̂

h
i +c(h,δt) . cf. (3)

7: Receive ot ; Nit ← Nit + 1
8:

{
µ̂hit
}
h
← UPDATE(

{
µ̂hit
}
h
, ot) . cf. (1)

9: end for

UCB-index algorithm. By contrast, when reward can
increase, the learner can only derive upper-confidence
bound on past values which are loosely related to the
next value. Hence, all the UCB-index algorithms in the
restless non-stationary literature need to add change-
detection sub-routine, active random exploration or
passive forgetting mechanism. In Lemma 1, we show a
guarantee of RAW-UCB on the favorable event.

Lemma 1. At round t on favorable event ξαt , if arm it
is selected, for any h ≤ Ni,t−1, the average of its h last
pulls cannot deviate significantly from the best available
arm at that round, i.e.,

µhit(t, π) ≥ max
i∈K

µi(t,Ni,t−1)− 2c(h, δt).

Seznec et al. (2019) show a slightly worse guarantee
about the algorithm FEWA (πF) for the rested rotting
bandits. In Appendix C (see Lemma 2), we restate
their result using only Assumption 1. FEWA uses the
same statistics than RAW-UCB but in a rather complex
expanding filtering mechanism which leads to a guar-
antee of only 4 confidence bounds. Lemma 1 is the
only characterization we need for our analysis. There-
fore, all our upper bounds will hold for both FEWA and
RAW-UCB with their associated constant,

CπR , 2
√

2α CπF , 4
√

2α. (4)

Algorithmic complexity FEWA and RAW-UCB have
O(Kt) per round time and space complexity. In
Appendix D, we describe EFF-RAW-UCB (πER) and
EFF-FEWA (πEF), two algorithms which reduces the
complexities to O (K logm(t)). It is a refinement of the
trick of Seznec et al. (2019) where we add a parameter
m > 1 to trade-off between complexity and efficiency3.
For m = 2, we prove Lemma 3 and Prop. 11, which
are comparable with Lemma 1 and Prop. 2. Therefore,
our analysis also holds for these algorithms with,

CπER ,
4
√
α√

2− 1
CπEF ,

8
√
α√

2− 1
· (5)

3When m < 1 + 1
T
, EFF-RAW-UCB behave as RAW-UCB.
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The efficient algorithms use less statistics than the
original ones. Thus, the probability of the unfavorable
event is bounded by O

(
t1−α

)
(see Prop. 11) which is

smaller than O
(
t2−α

)
in Prop. 2. Hence, our theory

holds for a wider range of α for the efficient algorithms.

4 Restless rotting bandits

In this section, the reward decreases independently of
the user actions. Hence, we have that µi (t, n) = µi (t).

Variation budget bandits

Setup. Besbes et al. (2014) introduce the limited
variation budget bandits, a restless setting where at
each round Nature can modify the reward value of
any arm but with a limited total variation budget
VT at round T. We combine this assumption with
Assumption 1,
Assumption 2. µi : N? → [−VT , 0] are decreasing
functions of the time t with VT a positive constant.
Moreover, we have that,

T−1∑
t=1

sup
i∈K

(µi(t)− µi(t+ 1)) ≤ VT . (6)

Remark 1. In the rotting scenario, the budget assump-
tion is very similar to the bounded assumption. Indeed,
any set of decreasing functions µi : N? → [−V, 0] satis-
fies Equation 6 with VT = KV . Reciprocally, any set
of functions satisfying Equation 6 with µi(1) ∈ [−VT , 0]
are bounded in [−2VT , 0].

Lower bound. We show that our additional decreas-
ing assumption does not change the minimax rate for
budget bandits. This is an adaptation of the proof of
Besbes et al. (2014) where we only use rotting function.
Proposition 3. For any strategy π, there exists a
rotting variation budget bandit scenario with means
{µi(t)}i,t satisfying Assumption 2 with a budget VT ≥

σ
√

K
8T such that,

E [RT (π)] ≥ 1

16
√

2

(
σ2VTKT

2
)1/3

.

Upper bound. RAW-UCB matches this lower bound
up to poly-logarithmic factors without any knowledge
of the horizon T nor the budget VT .
Theorem 1. Let π ∈ {πF, πR} tuned with α ≥ 4 or
π ∈ {πEF, πER} tuned with α ≥ 3 and m = 2. For any
variation budget bandit scenario with means {µi(t)}i,t
satisfying Assumptions 2 with variation budget VT , π
suffers an expected regret,

E [RT (π)]≤ 4
(
C2
πσ

2VTKT
2 logT

)1/3
+Õ

((
σV 2

TK
2T
)1/3)

.

The remaining terms are of second order when KVT ≤
O(T ), which is a necessary condition for the problem
to be learnable (see Proposition 3).

Piece-wise stationary bandits.

Setup. In this section, we also consider bounded
functions. Hence, they also satisfy Assumption 2 (see
Remark 1). However, we further restrained them to be
piece-wise stationary,

Assumption 3. Let V be a positive constant and ΥT

a positive integer. µi : N? → [−V, 0] are piece-wise
stationary non-increasing functions of the time t with
at most ΥT − 1 breakpoints.

Formally,
∑T−1
t=1 1 (∃i∈K, µi(t) 6=µi(t+1)) ≤ ΥT −1.

We call {tk}k≤Υ−1 the set of breakpoints with t0 = 0,
µki the value of µi(t) for t ∈ {tk + 1, . . . , tk+1}. We call
i?k ∈ arg maxi∈K µ

k
i (one of) the best arm in batch k and

∆i,k , µki?k−µ
k
i the gap to the best arm for arm i during

batch k. Note that we relax all the assumptions related
to the distance between consecutive breakpoints (e.g.
Besson and Kaufmann (2019) and their Assumption 4
and 7; Liu et al. (2018) and their Assumption 1 and 2;
Cao et al. (2019) and their Assumption 1).

Lower bound. We show that our additional Assump-
tion 1 does not decrease the minimax rate of Garivier
and Moulines (2011).

Proposition 4. For any strategy π, there exists
a rotting piece-wise stationary bandit scenario with
means {µi(t)}i,t satisfying Assumption 3 with ΥT ≤(

32V 2T
Kσ2

)1/3

such that,

E [RT (π)] ≥ σ

32

√
ΥTKT .

The condition on ΥT in Proposition 4 follows from
Remark 1: if V is too small compared to ΥT , then we
have a budget constraint (with associated lower bound
in Proposition 3) rather than a break-point constraint.

Upper bound. RAW-UCB matches the lower bound
from Proposition 4 up to poly-logarithmic factors with-
out any knowledge of the horizon T nor the number of
breakpoints ΥT − 1.

Theorem 2. Let π ∈ {πF, πR} tuned with α ≥ 4 or
π ∈ {πEF, πER} tuned with α ≥ 3 and m = 2. For
any piece-wise stationary bandit scenario with means
{µi(t)}i,t satisfying Assumption 3 with ΥT − 1 change-
points, π suffers an expected regret,

E [RT (π)] ≤ Cπσ
√

log T
(√

ΥTKT + ΥTK
)

+ 6KV.
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Are rotting restless bandits easier? Learning at
the minimax rate without knowing ΥT or VT was
achieved in the non-rotting setup by significantly more
complex algorithms. For instance, Auer et al. (2019)
use a combination of filtering on the set of potentially
good arms, forced exploration planning on identified
bad arms, and full restart of the algorithm when a
change is detected. This algorithmic complexity has a
performance cost, as AdSwitch is guaranteed to achieve
56 times the leading term in Theorem 2. Moreover,
these algorithms rely on doubling trick when the hori-
zon is unknown, which also has a regret cost compared
to intrinsically anytime algorithms (Besson and Kauf-
mann, 2018).

Yet, Proposition 3 and 4 show that the rotting as-
sumption do not improve the minimax rate for the
two considered setups. Interestingly both these lower
bounds are matched by (tuned) Exp3.S (Auer et al.,
2003), an algorithm originally designed for switching
best arm in adversarial sequence of rewards. This is
comparable to the fixed best arm world: adversarial and
stochastic bandits share the same minimax rate which
is matched in both setups by Exp3. The main interest
of the stochastic assumption is to allow for problem de-
pendent analysis. For the stochastic stationary bandits,
it leads to a stronger O(log (T )) bounds. In the piece-
wise stationary setting, Garivier and Moulines (2011)
show that such bounds cannot be achieved without
sacrificing the minimax optimality.

Proposition 5 (Theorem 31.2, Lattimore and
Szepesvári (2020)). If a policy π performs a regret
RT (π, µ) on a 2-arm stationary instance µ, one can
find a piece-wise stationary instance µ′ with only two
breakpoints such that, for a sufficiently long horizon T ,
the regret is lower bounded by

E [RT (π, µ′)] ≥ T

22RT (π, µ)
·

Corollary 1. Let π a minimax policy on the (non-
rotting) piece-wise stationary setups. Then, for a suffi-
ciently large horizon T , there exists a universal constant
C such that for all the 2-arm stationary problems µ,

E [RT (π, µ)] ≥ C
√
T .

The proof of Proposition 5 is instructive. It builds a
problem µ′ on which the reward function equals the
reward of the stationary problem µ except on a time
span τ . During this time span, the best arm of µ keeps
its value while the worst arm increases to become
optimal. The size of τ is chosen inversely proportional
to the average pulling rate of the bad arm in µ. Indeed,
the lower the pulling rate of the bad arm, the longer
the adversary can increase its value in µ′ without being
noticeable by the learner. Since the pulling rate of the

bad arm in µ is proportional to RT (µ), we get a lower
bound proportional to τ ∼ T

RT (µ) .

The decreasing Assumption 1 excludes this µ′ from
the set of possible problems. Theorem 3 shows that
not only RAW-UCB is able to recover the O (log (T )) on
stationary problems but also recovers the same rate on
each batch of a rotting piece-wise stationary problem.
Theorem 3. Let π ∈ {πF, πR} tuned with α ≥ 4 or
π ∈ {πEF, πER} tuned with α ≥ 3 and m = 2. For
any piece-wise stationary bandit scenario with means
{µi(t)}i,t satisfying Assumption 3 with ΥT − 1 change-
points, π suffers an expected regret

E [RT (π)] ≤
ΥT−1∑
k=0

∑
i∈K

C2
πσ

2 log T

∆i,k
+O

(
σΥTK

√
log T

)
.

Like in UCB1 ’s analysis, Proposition 2 uses a union-
bound with Hoeffding inequality. This technique leads
to conservative theoretical tuning of confidence levels
and to a suboptimal constant factor C2

π/2. One can get
the asymptotic optimal tuning for UCB on stationary
gaussian bandits with a refined analysis which uses a
specific concentration result on the deviation of the in-
dex (e.g. Lemma 8.2, Lattimore and Szepesvári (2020)).
Yet, extending this result to our more complex meta-
index and to our several setups is not straightforward
and we leave it as future work. Interestingly, the exper-
imental tuning α = 1.4 is very close to the asymptotic
tuning of UCB (see Section 6). It suggests that, besides
our union bound considers more events than UCB in
the theory, we do not have to be significantly more
conservative on the confidence levels in practice.

Notice that Mukherjee and Maillard (2019) use a dif-
ferent assumption to get a similar problem-dependent
bound. Indeed, they assume that all the arms change
at the same time which also excludes µ′ from the set
of possible problems.

Proofs sketch (full proofs in Appendix E)

Lower bounds. Our proof technique make a strong
connection between Proposition 3 and 4. Yet, we
adapt existing proofs to the decreasing case (Garivier
and Moulines, 2011; Besbes et al., 2014). Hence, we
defer the full proof and its sketch to Appendix E.

Upper bounds. We start by separating the regret on
the bad events ξαt from the good events ξαt . According
to Proposition 2, the bad events ξαt have low probability
for appropriate α. For α = 4, they weigh at most
O(KV ) in the expected regret. On the good events,
we write:

RT (π) =

T∑
t=1

µi?t (t)−µhtit (t, π)+µhtit (t, π)−µit(t) . (7)
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Notice that Lemma 1 can bound the first difference for
any ht. When the reward is piece-wise stationary, we
can select ht such that we include all the pulls of arm
it from the current stationary batch. If there is none,
then it is the first pull of arm it in this batch. We
handle these O(KΥT ) rounds separately (see Lemma 6
in Appendix E). In the other cases, we note that the
second difference is null because µhtit (t, π) = µit(t) = µki
by the piece-wise stationary assumption. The remain-
ing of the proofs of Theorem 2 and 3 are then very
similar to the analysis of Auer et al. (2002) on each
stationary batch. Indeed, the two confidence bounds
guarantee of Lemma 1 is similar to UCB1’s guarantee.

In the variation budget setting, there is no stationary
batches. Hence, we cannot choose an ht which cancels
the second difference in Equation 7. Yet, we still de-
compose the rounds in Υ batches of equal length for
the analysis. We choose ht such that we include all the
pulls of arm it from the current batch. For the sum of
the first differences in Equation 7, there is no difference
with the piece-wise stationary case and we can bound

T∑
t=1

µi?t (t)− µhtit (t, π) ≤ Õ
(√

KΥT
)
. (8)

We call ∆k
i , µi(tk)− µi(tk+1), the total variation of

arm i in batch k. The sum of second differences in
Equation 7 can be bounded as follows: on each batch
of TΥ−1 rounds, each second difference is bounded by
maxi∈K∆k

i . When we sum over the batches, we get
T∑
t=1

µhtit (t, π)− µit(t) ≤
T

Υ

Υ−1∑
k=0

max
i∈K

∆k
i ≤

TVT
Υ

. (9)

Indeed, in the middle term, we have a maximum on the
summed variation of arm i in batch k. On the right-
hand side, we have VT which bounds the sum over the
rounds of maximal variation of the arms (see Equa-
tion 6). Thus, the right-hand side is larger because
the maximum of sums is smaller than the sum of max-
imums. We can then choose Υ = Õ

(
T 1/3V

2/3
T K−1/3

)
to minimise the sum of Equation 8 and 9. It leads to
the leading term of our Theorem 1. Notice that we still
have to handle the first pull of each arm in each batch.
If we bound roughly each first pull by VT , we would get
KΥVT ∼ Õ

(
V

5/3
T

)
which would be the leading term

for large VT . Our Lemma 6 is more careful such that
it leads to a second order term when KVT ≤ o (T ).

5 Rested rotting bandits

Setup We use the rotting setup of Seznec et al.
(2019), which extends the one of Levine et al. (2017).
This setup is rested non-stationary bandits: the change
in arm’s reward is triggered by the pulls. Hence, we

have µi(t, n) = µi(n). Thus, we note that µhi (t, π) =

µhi (Ni, t−1) = 1
h

∑h−1
s=0 µi(Ni, t−1 − s). With a slight

abuse of notations, we will also use µ̂hi (Ni, t−1) ,
µ̂hi (t, π)4. Let

L , max
i∈K

max
n∈{0,...,T−1}

µi(n)− µi(n− 1),

with µi(−1) , max
j∈K

µj(0). (10)

Hence, L bounds both the variation of µis between
two consecutive pulls and the gaps between arms at
the first pulls. This is an important quantity for the
rested rotting analysis because the minimax rate for
the noise-free case is O(KL) (Heidari et al., 2016).

Theoretical guarantees The analysis of RAW-UCB
is straightforward from the analysis of FEWA due to their
similarity. Thus, we recover the problem independent
and dependent bounds (see Seznec et al. (2019) for a
sketch of the proof, and App. F for a detailed analysis).
Proposition 6 (gap-free bound). Let π ∈ {πF, πR}
tuned with α ≥ 5 or π ∈ {πEF, πER} tuned with α ≥ 4
and m = 2. For any rotting bandit scenario with means
{µi}i satisfying Assumption 1 with bounded decay L
and any time horizon T , π suffers an expected regret,

E [RT (π)] ≤ Cπσ
√

log (T )
(√

KT +K
)

+ 6KL.

Proposition 7 (gap-dependent bound). π ∈ {πF, πR}
tuned with α ≥ 5 (or π ∈ {πEF, πER} tuned with α ≥ 4
and m = 2) suffers an expected regret,

E [RT (π)] ≤
∑
i∈K

(
C2
πσ

2 log (T )

∆i,h+
i, T−1

+ Cπσ
√

log (T ) + 6L

)

with h+
i,T ,max

{
h≤1+

C2
πσ

2log T

∆2
i,h−1

}
, and the pseudo-gap

∆i,h , min
j∈K

µj
(
N?
j,T − 1

)
− µhi

(
N?
i,T + h

)
.

RAW-UCB matches the minimax rate (Prop. 6) up to
poly-logarithmic factors. RAW-UCB improves over FEWA’s
problem-dependent guarantee by a factor 4 (Prop. 7).
Following Remark 1 of Seznec et al. (2019), one can
identify ∆i,h = ∆i in the stationary setting. It gives
almost the same guarantee than in Theorem 3 when
ΥT = 1 (stationary case). The difference comes from
the increased α for the rested case. Indeed, in the
rested case, the regret at each round t can be as bad as
Lt. Hence, we reduce the probability of the bad event
ξαt (see Prop. 2). When the reward means are bounded
(e.g. for Bernoullis), we can decrease the lower bound
on α by one in Propositions 6 and 7.

4The average of the observations depends on the realiza-
tion of the noise εt at time t. Yet, these h samples of noise
are i.i.d. and thus do not perturb the analysis (see Prop. 2).
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6 Real-word data experiment on
Yahoo! Front Page

R6A - Yahoo! Front page today module user
click log dataset This dataset was used for the Ex-
ploration and Exploitation Challenge5 at ICML 2012
and inspired new algorithms. Among them we mention
the work of Tracà and Rudin (2015) who noticed the
non-stationary trend and took advantage of it. Since
then the dataset continues to be a benchmark6 for non-
stationary bandits (Liu et al., 2018; Cao et al., 2019).
It contains the history of clicks on news articles of 45
millions users in the first ten days of May 2009. We
use three features in this dataset: timestamp (rounded
every 5 minutes), article_id, and click.

A real decaying scenario Every day, between 6pm
and 6am EST (12 hours), we notice a decreasing trend
in click probability. It suggests that people in the US
read less and less news during the evening and night.
For every day, we keep all the articles which have been
recommended at every timestamp during the 12 hours.
For these articles, we use a rolling average window
of 30000 in order to estimate the probability of click
for each article at each timestamp 7. We use the real
total traffic for each timestamp. We highlight that
we do not enforce any of our assumptions to create
reward functions to be aligned with our setup. In
particular, we do not enforce them to be piecewise
constant nor to be decreasing. At each round, the
learner receives 10 reward samples in order to reduce
the cost of computation.

Algorithms and Parameters. We compare
RAW-UCB, FEWA, Exp3.S and GLR-UCB. We refer to
Appendix G for a discussion about missing algorithms
and tuning. Note that our goal is to compare
algorithms with the same tuning in the rested and
restless benchmark.

Results We display the results for two different days.
On day 2, there are several switches of optimal arms
with many near-optimal ones: tracking the best arm
is an "hard" problem. On day 7, one arm consistently
dominates the others by far. Hence, it is an "easy"
case where good algorithms should have a logarithmic
regret rate. We show the six other days and running
time in App. G.2.

5http://explochallenge.inria.fr/
6As it allows for offline evaluations as the actions were

samples uniformly.
7For each timestamp, we average the values given by

rolling average. These values are close to each other because
the number of click opportunity per article in the same
timestamp is small compared to 30000.
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Figure 1: Left: rewards from the Yahoo! dataset for
two days. Right: average regret over 500 runs.

RAW-UCB vs FEWA. The two algorithms compute the
same statistics and share most of their analysis. Yet,
RAW-UCB consistently outperforms FEWA on the full
(rested and restless) benchmark. The difference be-
tween the two is even more significant in the restless
case. Moreover, RAW-UCB is also simpler to implement
and faster to run. Its theoretical tuning α = 4 gets
reasonable result, while theoretical FEWA is impracti-
cal. Finally, its empirical tuning αR = 1.4 is similar
to the asymptotic optimal tuning of UCB and shows
good performance on both rested and restless problems.
By contrast, FEWA with αF = 0.06 shows worse perfor-
mance with larger deviation on the restless benchmark.

RAW-UCB vs Exp3.S. In Appendix G.1, we show that
random exploration of Exp3.S leads to high regret
rate in rested rotting bandits. Unsurprisingly, Exp3.S
recover more reasonable performance on the restless
benchmark, on which it has theoretical guarantees. Yet,
it is consistently outperformed by RAW-UCB when we
tune the confidence bounds. It is particularly true on
easy instance, e.g. on day 7. Indeed, on these cases,
we expect logarithmic regret rate for RAW-UCB.

RAW-UCB vs GLR-UCB (no active exploration).
GLR-UCB shows good results on the rested benchmark
though it is less consistent than RAW-UCB. On the rest-
less benchmark, GLR-UCB shows similar result than
RAW-UCB. Yet, we highlight that 1) GLR-UCB needs the
knowledge of the horizon to tune its change-detector; 2)
we use an efficient version of RAW-UCB which runs ∼ 10
times faster than GLR-UCB. In fact, the two algorithms
are similar: they are UCB index policies, they recover
logarithmic rate on easy restless rotting bandits prob-
lems and hence they would both suffer near-linear worst
case regret rate in the general restless setting (when
active exploration is turned off for GLR-UCB). The main
difference is that RAW-UCB scans its history to select its
rotting UCB’s window, while GLR-UCB scans its history
to detect significant changes and restart.

http://explochallenge.inria.fr/
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A Outline

The appendix of this paper is organized as follow:

� Appendix B is dedicated to the unlearnability of the general decreasing setup.
� Appendix C is dedicated to Proposition 2 and Lemma 1. For completion, we also restate a similar Lemma

about algorithm FEWA (Seznec et al., 2019) in the rested and restless rotting framework.
� Appendix D is dedicated to an efficient version of RAW-UCB.
� Appendix E provides the analysis of RAW-UCB for restless rotting bandits.
� Appendix F provides the analysis of RAW-UCB for rested rotting bandits.
� Appendix G provides all the experiments.

B The general decreasing setup is unlearnable

Proposition 1. In the no noise setting (σ = 0), there exists a rotting 2-arms bandits problem (satisfying
Assumption 1) with reward value in [0, 1], with one rested arm and one restless arm, and with at most one
change-point before T each, such that the greedy oracle strategy πO suffers a regret

RT (πO) ≥
⌊
T

4

⌋
.

Moreover, for any learning strategy πS, there exists a rotting 2-arms bandits problem (satisfying Assumption 1)
with reward value in [0, 1], with one rested arm and one restless arm, and with at most one change-point before T
each, such that

RT (πS) ≥
⌊
T

8

⌋
.

Proof. Let µ0 and µ1, two decreasing 2-arms bandits problems such that:

µ0
1(t, n) = µ1(n) = 1 if n <

T

2
else 0 ,

µ1
1(t, n) = 1 ,

µ0
2(t, n) = µ1

2(t, n) = µ2(t) = 1/2 if t <
T

2
else 0.

Problem µ1 only evolves according to time. Hence, the oracle greedy policy πO is optimal for this problem and
collects

JT
(
πO, µ

1
)

= T. (11)

On µ0, πO selects arm 1 during
⌊
T
2

⌋
rounds and then both arms yield 0 reward. Thus, πO collects

JT
(
πO, µ

0
)

=

⌊
T

2

⌋
.

However, let π0 the policy which selects arm 2 for
⌊
T
2

⌋
rounds and arm 1 afterwards. Thus, π0 collects

JT
(
π0, µ

0
)

= (3/2)

⌊
T

2

⌋
. (12)

Hence, we conclude the first part of our proposition,

RT
(
πO, µ

0
)

= JT
(
π?T , µ

0
)
− JT

(
πO, µ

0
)
≥ JT

(
π0, µ

0
)
− JT

(
πO, µ

0
)
≥
⌊
T

4

⌋
.

Now, we consider any learning policy πS and we call Ej [Ni,t(πS)] the (expected, if the policy is random) number
of pulls of arm i at round t by πS on problem j. Note that the leaner will receive the same rewards for both
problems until at least

⌊
T
2

⌋
. Therefore, we have that

∀t ≤
⌊
T

2

⌋
, π(Ht

(
µ0
)

) = π(Ht
(
µ1
)

) =⇒ E0

[
N2,bT2 c(πS)

]
= E1

[
N2,bT2 c(πS)

]
, n2.
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On problem µ1, πS collects a reward of at most,

JT
(
πS , µ

1
)

= E1[N1,T (πS)] +
n2

2
= T − E1[N2,T (πS)] +

n2

2
≤ T − n2

2
, (13)

because n2 = E1

[
N2,bT2 c(πS)

]
≤ E1[N2,T (πS)]. Using Equations 11 and 13, we can lower bound the regret of πS ,

RT
(
πS , µ

1
)

= JT
(
πO, µ

1
)
− JT

(
πS , µ

1
)
≥ n2

2
·

On problem µ0, πS collects a reward of at most,

JT
(
πS , µ

0
)

= min

(
E1[N1,T (πS)],

⌊
T

2

⌋)
+
n2

2
≤
⌊
T

2

⌋
+
n2

2
· (14)

Using Equations 12 and 14, we can lower bound the regret of πS ,

RT
(
πS , µ

0
)

= JT
(
πO, µ

0
)
− JT

(
πS , µ

0
)
≥ bT/2c − n2

2
·

Hence, the worst case regret on the two setups is bounded by

RT (πS) ≥ max

(
n2

2
,

⌊
T
2

⌋
− n2

2

)
≥
⌊
T

8

⌋
·

C Statistical guarantees: Proposition 2 and Lemma 1

Proposition 2. For any round t and confidence δt , 2t−α, let

ξαt ,
{
∀i ∈K, ∀n≤ t−1, ∀h≤n,

|µ̂hi (t, π)− µhi (t, π)| ≤ c(h, δt)
} (2)

be the event under which the estimates at round t are all accurate up to c(h, δt) ,
√

2σ2 log(2/δt)/h. Then, for a
policy π which pulls each arms once at the beginning, and for all t > K,

P
[
ξαt

]
≤ Kt2δt

2
= Kt2−α ·

Proof. We want to upper bound the probability

P
[
ξαt
]

= P
[
∃i ∈ K, ∃n ≤ t− 1,∃h ≤ n, |µ̂hi (t, π)− µhi (t, π)| > c(h, δt)

]
.

By Doob’s optional skipping (e.g. see Chow and Teicher (1997), Section 5.3) there exists a sequence of random
independent variables (ε′l)l∈N, σ

2 sub-Gaussian such that

P
[
∃n ≤ t− 1,∃h ≤ n, |µ̂hi (t, π)− µhi (t, π)| > c(h, δt)

]
= P

[
∃n ≤ t− 1,∃h ≤ n, |ε̂hn|> c(h, δt)

]
≤

t−1∑
n=1

n∑
h=1

P
[
|ε̂hn|> c(h, δt)

]
≤ t(t− 1)

2
· δt ,

where we used the Chernoff inequality in the last line. Thus, a union bound over the arms allows us to conclude
that

P
[
ξαt

]
≤ Kδtt

2

2
·
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Lemma 1. At round t on favorable event ξαt , if arm it is selected, for any h ≤ Ni,t−1, the average of its h last
pulls cannot deviate significantly from the best available arm at that round, i.e.,

µhit(t, π) ≥ max
i∈K

µi(t,Ni,t−1)− 2c(h, δt).

Proof. We denote by i?t ∈ arg maxi∈K µi(t,Ni,t−1), a best available arm at time t and

hmin
i,t ∈ arg min

h≤Ni,t−1

µ̂hi (t, π) + c(h, δt),

a window which minimizes RAW-UCB index at time t for arm i. Hence, because the reward functions are
non-increasing, we know that

µi?t (t,Ni?t ,t−1) ≤ µ1
i?t

(t, π) ≤ · · · ≤ µ
hmin
i?t ,t

i?t
(t, π)·

On the high-probability event ξt, we know that the true average of the means cannot deviate significantly from
the average of the observed quantity,

µ
hmin
i?t ,t

i?t
(t, π) ≤ µ̂

hmin
i?t ,t

i?t
(t, π) + c(hmin

i?t ,t
, δt).

We know that the selected arm it at time t has the largest index, hence,

µ̂
hmin
i?t ,t

i?t
(t, π) + c(hmin

i?t ,t
, δt) ≤ µ̂

hmin
it,t

it
(t, π) + c(hmin

it,t , δt).

From hmin
i,t definition, we know that this quantity is below any upper-confidence bound for any other window h

µ̂
hmin
it,t

it
(t, π) + c(hmin

it,t , δt) ≤ µ̂
h
it(t, π) + c(h, δt).

Finally, using again the concentration of the average on the ξαt ,

µ̂hit(t, π) + c(h, δt) ≤ µhit(t, π) + 2c(h, δt).

Hence, putting all the equations together, we can write

µhit(t, π) ≥ max
i∈K

µi(t,Ni,t−1)− 2c(h, δt).

For completion, we also restate a similar Lemma about algorithm FEWA (Seznec et al., 2019) in the rested and
restless rotting framework.
Lemma 2. For FEWA tuned with α, on the favorable event ξαt , if an arm i passes through a filter of window h at
round t, i.e., i ∈ Kh, then the average of its h last pulls satisfies

µhi (t, πF) ≥ max
i∈K

µi(t,Ni, t−1)− 4c(h, δt). (15)

Therefore, at round t on favorable event ξαt , if arm it is selected by FEWA (α), for any h ≤ Ni, t−1, the average of
its h last pulls cannot deviate significantly from the best available arm at that round, i.e.,

µhi (t, πF) ≥ max
i∈K

µi(t,Ni, t−1)− 4c(h, δt).

Proof. Let i ∈ Kh be an arm that passed a filter of window h at round t. First, we use the confidence bound for
the estimates and we pay the cost of keeping all the arms up to a distance 2c(h, δt) of µ̂hmax, t , maxj∈Kh µ̂

h
i (t, πF),

µhi (t, πF) ≥ µ̂hi (t, πF)− c(h, δt) ≥ µ̂hmax,t − 3c(h, δt) ≥ max
j∈Kh

µhj (t, πF)− 4c(h, δt), (16)

where in the last inequality, we used that for all j ∈ Kh,

µ̂hmax,t ≥ µ̂hj (t, πF) ≥ µhj (t, πF)− c(h, δt).
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Second, we call ti,t < t the last round at which arm i was selected. Since the means of arms are decaying, we
know that

µ+
t (πF) , max

i∈K
µi(t,Ni, t−1) (17)

≤ µi?t , ti,t = µ1
i (t, πF) (18)

≤ max
j∈K

µ1
j (t, πF) = max

j∈K1

µ1
j (t, πF). (19)

Third, we show that the largest average of the last h′ means of arms in Kh′ is increasing with h′,

∀h′ ≤ h, max
j∈Kh′+1

µh
′+1
j (t, πF) ≥ max

j∈Kh′
µh
′

j (t, πF).

To show the above property, we remark that thanks to our selection rule, the arm that has the largest
average of means, always passes the filter. Formally, we show that arg maxj∈Kh′ µ

h′

j (t, πF) ⊆ Kh′+1. Let
ih
′

max ∈ arg maxj∈Kh′ µ
h′

j (t, πF). Then, for such ih
′

max, we have

µ̂h
′

ih′max
(t, πF) ≥ µh

′

ih′max
(t, πF)− c(h′, δt) ≥ µh

′

max,t − c(h′, δt) ≥ µ̂h
′

max,t − 2c(h′, δt),

where the first and the third inequality are due to concentration of the estimates on ξαt , while the second one is
due to the definition of ih

′

max.

Since the arms are decaying, the average of the last h′ + 1 mean values for a given arm is always greater than the
average of the last h′ mean values and therefore,

max
j∈Kh′

µh
′

j (t, πF) = µh
′

ih′max
(t, πF) ≤ µh

′+1
ih′max

(t, πF) ≤ max
j∈Kh′+1

µh
′+1
j (t, πF), (20)

because ih
′

max ∈ Kh′+1. Gathering Equations 16, 17, and 20 leads to the first claim of the lemma,

µhi (t, πF)
(16)
≥ max

j∈Kh
µhj (t, πF)− 4c(h, δt)

(20)
≥ max

j∈K1

µ1
j (t, πF)− 4c(h, δt)

(17)
≥ µ+

t (πF)− 4c(h, δt).

To conclude, we remark that if i is pulled at round t, it means that i passes through all the filters from h = 1 up
to Ni, t−1. Therefore, for all h ≤ Ni, t−1,

µhi (t, πF) ≥ µ+
t (πF)− 4c(h, δt). (21)

D Efficient algorithms

D.1 The numerical cost of adaptive windows

Seznec et al. (2019) highlight that FEWA was significantly improving over state-of-the-art algorithms on the rested
rotting bandit problem but these improvements are computationally expensive. Indeed, at each round t, we store,
update and compare O (t) statistics. RAW-UCB uses the same statistics than FEWA (see Prop 2), and thus has the
same complexity.

Indeed, the full update of the statistics can be done at a worst case cost of O (t). Indeed, each statistics µ̂hi can
be refreshed with a O (1) operation :

µ̂h+1
i (n+ 1) =

h

h+ 1
µ̂hi (n) +

1

h+ 1
ot .
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The comparison part in both FEWA and RAW-UCB is also a O (t) operations. In FEWA, we do a scan based on µ̂hi for
all i ∈ Kh with increasing h. Hence, the total number of unitary operation is in O (t) in the worst case, as it
scales with the number of statistics. RAW-UCB computes one UCB for each of the O (t) statistics. For each arm, it
selects the minimum UCB as index, which can be done with complexity O (t). Finally, finding the largest index is
an O (K) operations. Therefore, we can conclude,

Proposition 8. FEWA and RAW-UCB have a O (t) worst-case complexity per round t in time and memory.

Hence, handling a large number of windows, which is the main strength of these algorithms to achieve a lower
regret, is a significant drawback when it comes to design fast algorithms. In the following, we detail and refine
the efficient trick of Seznec et al. (2019) by adding a parameter m ≤ 2 which trades-off between regret and
computational performance.

D.2 The efficient update trick

We detail EFF_UPDATE, an update scheme to handle efficiently statistics of different windows. A similar yet
different approach has appeared independently in the context of streaming mining (Bifet and Gavaldà, 2007).
EFF_UPDATE is built around two main ideas.

First, at any time t we can avoid using
{
µ̂hi
}
h
for all possible windows h starting from 1 with an increment of 1.

In fact, both statistics µ̂hi and constructed confidence levels c(h, δt) have very close value for successive h as h
becomes large :

µ̂h+1
i (t, π) = µ̂hi (t, π) +O

(
σ + L

h

)
,

c(h+ 1, δt) = c(h, δt) +O
( σ

h3/2

)
.

Hence, in both FEWA and RAW-UCB, we compute a lot of very similar quantities. Instead, we could use fewer
statistics which are significantly different :

{
µ̂hi (Ni, t−1)

}
h∈Hi,m

, where the window h is dispatched on a geometric
grid,

Hi,m (Ni, t−1) , {hj ∈ {1, . . . , Ni, t−1} | hj+1 = dm · hje and h1 = 1} with m > 1.

When there is no confusion, we drop the dependency in Ni, t−1 and use Hi,m. This modification alone is not
enough to reduce both the time and space complexity. Indeed, updating µ̂hi requires to replace the h-th last
sample by the new one ot. Hence, we need to store all the collected statistics to be able to update all the µ̂hi for
all h with O (1) complexity. Therefore, in EFF_UPDATE, we will use O (K log (t)) delayed statistics that we can
update with O (K log (t)) space and time complexity.

EFF_UPDATE (Alg. 2) takes as input the new observation ot that the learner gets at the Ni-th pull of arm i; the
geometric window grid Hi,m tuned with an hyperparameter m > 1, and for each window hj in this grid, three
different numbers µ̂hj

i,eff, p
hj
i , n

hj
i .

{
µ̂
hj
i,eff

}
i,hj

represents the set of current statistics of window size hj that

will be used instead of
{
µ̂hi
}
i,h

in our efficient algorithms. We also store a pending statistic phji and a count nhji
which are used in the sparse update procedure of µ̂hj

i,eff. EFF_UPDATE outputs an updated set of statistics.

The core of EFF_UPDATE is divided in four parts:

1. From Lines 1 to 6, we create new statistics at a logarithmic rate with respect to the growth of Ni;

2. From Lines 7 to 9, we update the statistics of window h1 = 1;

3. From Lines 10 to 13, we update the other pending statistics and count;

4. From Lines 14 to 20, we eventually update µ̂hj
i,eff and refresh the correspounding pending statistic and count.

The remaining details are quite technical. Thus, we first give the high-level properties that are ensured by the
recursive usage of EFF_UPDATE. Then, we prove them by going through the algorithm line by line.
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Algorithm 2 Eff_Update

Input: ot, Hi,m ← {hj<dm ·Nie | hj+1=dm · hjewith h0=1},
{
{µ̂hj

i,eff, p
hj
i , n

hj
i }
}
hj∈Hi,m

1: if Ni = max (Hi,m) then . Create a new triplet with window hj = dm ·Nie
2: Hi,m ← Hi,m ∪ {dm ·Nie}
3: p

dm·Nie
i = pNii

4: n
dm·Nie
i ← nNii

5: µ̂
dm·Nie
i, eff ← None

6: end if
7: p1

i ← ot . Update the first triplet with ot
8: n1

i ← 1
9: µ̂1

i, eff ← ot

10: for hj ∈ Hi,m r {1} do . Update the other pending statistics phji and nhji
11: p

hj
i ← p

hj
i + ot

12: n
hj
i ← n

hj
i + 1

13: end for
14: for hj ∈ Sort_Desc(Hi,m r {1}) do
15: if nhji = hj then
16: µ̂

hj
i,eff ← p

hj
i /hj . Replace the current statistic µ̂hj

i,eff
17: p

hj
i = p

hj−1

i . Refresh the pending statistics
18: n

hj
i ← n

hj−1

i

19: end if
20: end for
Output:

{{
µ̂
hj
i,eff, p

hj
i , n

hj
i

}}
hj∈Hi,m

Proposition 9.
{{

µ̂
hj
i,eff, p

hj
i , n

hj
i

}}
hj∈Hi,m

, constructed recursively with EFF_UPDATE with initial value{{
µ̂1
i, eff : None, p1

i : 0, n1
i : 0

}}
have the following properties :

1. µ̂hj
i,eff is the average of exactly hj consecutive samples among the 2hj − 1 last ones.

2. The delay between two updates of µ̂hj
i,eff is in

{⌈
m−1
m hj

⌉
, . . . , hj − 1

}
.

3. When m = 2, hj = 2j. Moreover, for j ≥ 1, the k-th update µ̂hj
i,eff happens at pull (k + 1) · 2j−1, i.e. every

2j−1 pulls (and at every rounds for j = 0).

4. phji is the sum of the nhji last samples.

5. nhji < hj for j ≥ 1. Also, n1
i ≤ 1.

6.
{
n
hj
i

}
hj

is an non-decreasing sequence with respect to hj (or j).

Proof. The three last properties are trivially true at the initialization. Thus, we show by induction that they
remain true after updates.

Proof of 4. At Lines 3 and 4, we create a new pending statistics and count by initializing them with other
statistics and counts. Hence, because of the recursion hypothesis, all the pending statistics phji (including the
created one) contains the sum of the nhji before last pulls. At Lines 7 and 8, we update p1

i with the last sample
and set n1

i to 1. At Lines 11 and 12, we add the last sample to phji (which was containing the before last samples)
and increase the count by 1. Hence, at the end of Line 12, all the phji contain the sum of the last nhji samples.
Thus, refreshing phji and nhji with phj−1

i and nhj−1

i keeps this property true (Lines 17 and 18).
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Proof of 5. For j = 0, n1
i , which is equal to 0 at the initialization, is set at 1 at every update (Line 8). Hence,

we have nh0
i ≤ h0 = 1. For j ≥ 1, ndm·Niei is initialized at Line 4 with the value nNii < Ni < dm ·Nie by the

induction hypothesis and because m > 1. Then, nhji < hj (j ≥ 1) is increased by one at each update at Line 12.
Hence, we now have nhji ≤ hj for all j ∈ Hi,m. However, for j ≥ 1, if nhji = hj (Line 15), it is replaced by the
precedent count nhj−1

i ≤ hj−1 < hj (Line 12). Thus, at the end of the update, we do have nhji < hj for j ≥ 1.

Proof of 6. At Line 4, we create a new pending count corresponding to the largest hj and we initialize it
with the precedent largest count. At Lines 8 and 12, we set n1

i = 1 and increase all the other nhji by one. This
operation preserves the non-decreasing property of the ordered set. Last, at Line 18, we set few counts nhji to the
precedent value nhj−1

i - which also preserves the non-decreasing property of the ordered set.

Proof of 1 and 2. Thanks to Property 4, we know that phji is the sum of the nhji last sample. It is still true at
the end of Line 12 (see the proof). Then, at Line 16, and given the condition in Line 15, we set µ̂hj

i,eff with the

average of the last hj sample. Then, µ̂hj
i,eff is not updated untill the condition at Line 15 is fulfilled again.

n
hj
i is refreshed with a quantity larger or equal to 1 and smaller or equal to hj−1 at Line 18. Then, it is

increased by one at each update. we know that µ̂hj
i,eff will be updated at least every hj − 1, and at most every

hj − hj−1 round. Hence, considering the worst possible delay we can conclude : µ̂hj
i,eff is the average of exactly

hj consecutive samples among the 2hj − 1 last ones. Last, considering that hj−1 ≤ hj/m, we conclude that the
minimal delay is larger or equal to m−1

m hj .

Proof of 3. When m = 2, it is easy to find by induction that,

hj+1 = dm · hje = 2hj = 2j+1.

For j = 0, µ̂1
i, eff is updated at every update at Line 9. By induction on j ≥ 1, µ̂hj

i,eff is initialized (Line 16) for

the first time after hj = 2j = 4 · 2j−2 pulls. Therefore, it is also an updating pull for µ̂hj−1

i, eff (by the induction
hypothesis) and nj is set with nj−1 = 2j−1 at Line 18. Notice that we sort Hi,m in the decreasing order at
Line 14, hence nj is updated with nj−1 before it is itself updated with nj−2. Hence, µ̂

hj
i,eff is updated again in

hj − 2j−1 = 2j−1 pulls, i.e. after 6 · 2j−2 pulls of arm i. Again, nj is set with nj−1 = 2j−1 (because it is an
updating pull for µ̂hj−1

i, eff). By induction, we see that the k-th update happens at pull (k + 1) · 2j−1, i.e. every
2j−1 pulls.

Remark 2. At Line 18, we refresh nhji with nhj−1

i which is often larger than 1. Indeed, we could refresh phji
and nhji at 0. Yet, in order to reduce the delay in the update, we use the variable available in the memory which
contains the sums of h last sample, with the largest h < hj. According to Properties 4, 5 and 6, this quantity is
p
hj−1

i .

Notice that we also sort Hi,m in the decreasing order at Line 14 to minimize the delay: if there is two consecutive
updates of µ̂hj

i,eff and µ̂hj+1

i, eff at the same run of EFF_UPDATE, doing a backward loop guarantees to refresh nhj+1

i

with a larger value than with a forward loop.

D.3 EFF-FEWA and EFF-RAW-UCB

EFF-FEWA (πEF) and EFF-RAW-UCB (πER) are the two efficient versions of our initial algorithms. With an hyper-
parameter m > 1, they use EFF_UPDATE instead of UPDATE (Lines 3 and 8 in RAW-UCB). Therefore, they use{
µ̂
hj
i,eff

}
i,hj∈Hi,m

instead of
{
µ̂hi
}
i,h≤Ni, t−1

. More precisely, in RAW-UCB, we only change the h ≤ Ni by hj ∈ Hi,m

and µ̂hi by µ̂hj
i,eff in the index computation at Line 7. We can perform similar changes to adapt FEWA in EFF-FEWA.

Proposition 10. EFF-FEWA and EFF-RAW-UCB tuned with hyper-parameter m have a O (K logm (t)) worst-case
time and space complexity at round t.
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Proof. The total number of statistics for each arm i at round t is bounded by O (logm (t)). Indeed,

t ≥ Ni, t−1 ≥ hj ≥ mj−1 =⇒ j ≤ 1 + logm (t) .

Moreover, in EFF_UPDATE we use 3 numbers for each
{
µ̂
hj
i,eff

}
j
. Hence, the space complexity scales with

∑
i∈K
|Hi,m|=

∑
i∈K
O (logm (t)) = O (K logm (t)) .

The time complexity of EFF_UPDATE scales with the number of statistics in arm it, i.e. at most O (logm (t)). The
indexes computation of EFF-RAW-UCB find the minimum of K sets with cardinality O (logm (t)), while finding the
maximum among these indexes is a O (K) operation. Thus, the worst-case time complexity is O (K logm (t)).
EFF-FEWA uses at most O (logm (t)) times the procedure FILTER whose inner complexity scales with |Kh|≤ K.
Therefore, in the worst case, the time complexity of EFF-FEWA at round t is bounded by O (K logm (t)).

D.4 Analysis

The analysis of RAW-UCB and FEWA only uses Proposition 2 and Lemma 4. We will derive analogous results for
EFF-RAW-UCB and EFF-FEWA. The upper-bounds will directly follow with no additional effort.

A favorable event for efficiently updated adaptive windows
Proposition 11. For any round t and confidence δt , 2t−α, let

ξαt,m,
{
∀i∈K, ∀n≤ t−1, ∀hj ∈ Hi,m(n), |µ̂hj

i,eff(t, π)− µhj
i,eff(t, π)|≤c(hj , δt)

}
be the event under which the estimates at round t are all accurate up to c(h, δt) ,

√
2σ2 log(2/δt)/h. Then, for a

policy π which pulls each arms once at the beginning, and for all t > K,

P
[
ξαt, 2

]
≤ 3Ktδt = 6Kt1−α ·

Remark 3. The probability of the unfavorable event ξαt, 2 scales with O
(
t1−α

)
compared to O

(
t2−α

)
for ξαt

because the efficient algorithms construct less statistics. It means that our theory will hold for a wider range of α.
Yet, this benefits is only theoretical. The union bound in Proposition 2 is not tight because the different statistics
share the same data: the confidence bounds are not independent at all. In practice, it leads to conservative tuning
of the confidence bounds and one can decrease α to get better performance.

Proof. As in Proposition 2, we have to count the number of statistics that are required to hold in the confidence
region. Calling uj(t) the number of update of statistics µ̂hj

i,eff after t pulls, we have

P
[
ξαt, 2

]
≤
∑
i∈K

blog2(t)c−1∑
j=0

uj(t)δt

≤
∑
i∈K

t− 1 +

blog2(t)c−1∑
j=1

t− 1

2j−1

 δt

≤ 3Ktδt

In the second inequality, we use Property 3 in Proposition 9: statistics µ̂hj
i,eff(n) is only updated every 2j−1 pulls

for j ≥ 1 (and every pull for j = 0).

Lemma 3. At round t on favorable event ξαt, 2, if arm it is selected by π ∈ {πEF, πER} tuned with m = 2, for any
h ≤ Ni, t−1, the average of its h last pulls cannot deviate significantly from the best available arm at that round,
i.e.,

µhit(t− 1, π) ≥ max
i∈K

µi(t,Ni, t−1)− Cπ√
2α
c(h, δt) with

{
CπER

= 4
√
α√

2−1

CπEF = 8
√
α√

2−1

·
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Proof. Like for Lemma 2 (see its proof), our proof is done in a more general rotting framework that can be
used in the next chapter. We denote by µhh

′

i (t− 1, π) and µ̂hh
′

i (t− 1, π) the true mean and empirical average
associated to the h′ − h samples between the h-th last one (included) and the h′-th last one (excluded). Let
jh ∈ N? such that : 2jh − 1 ≤ h < 2jh+1.

µhit(t− 1, π) ≥ µ2jh−1
it

(t− 1, π) =

jh−1∑
j=0

2j

2jh − 1
µ2j2j+1

it (t− 1, π). (22)

The inequality follows because the reward is decreasing and h ≥ 2jh − 1. Then, we decompose the average in a
weighted sum of averages of geometrically expanding windows. Since the reward is decreasing we have that,

∀k ≤ 2j , µ2j2j+1

it (t− 1, π) ≥ µk:k+2j

it
(t− 1, π).

µ̂
hj
it,eff contains 2j samples among the 2j+1 − 1 last ones (see Proposition 9). Setting k ≤ 2j to the current delay

of the statistics µ̂hj
it,eff (see Point 2 in Proposition 9), we can write,

µ2j2j+1

it (t− 1, π) ≥ µk:k+2j

it
(t− 1, π) = µ

hj
it,eff ≥ µ̂

hj
it,eff − c(2

j , δt), (23)

where we use that we are on ξαt, 2 at the last line. Therefore, gathering Equations 22 and 23,

µhit(t− 1, π) ≥
jh−1∑
j=0

2j

2jh − 1

(
µ̂
hj
it,eff − c(2

j , δt)
)
. (24)

Now, we will use the mechanics of the two algorithms. On the first hand, for EFF-RAW-UCB, we make the index
appear in the inequality,

µhit(t− 1, πER) ≥
jh−1∑
j=0

2j

2jh − 1

(
µ̂
hj
it,eff − c(2

j , δt)
)

(25)

=

jh−1∑
j=0

2j

2jh − 1

(
µ̂
hj
it,eff + c(2j , δt)− 2c(2j , δt)

)
(26)

≥ min
j∈Hi, 2

(
µ̂
hj
it,eff + c(2j , δt)

)
− 2

jh−1∑
j=0

2j

2jh − 1
c(2j , δt). (27)

Then, we can relate the left part of the sum to the best current value µi?t (t,Ni?t , t−1),

min
j∈Hi, 2

(
µ̂
hj
it,eff + c(2j , δt)

)
≥ min
j∈Hi?t ,2

(
µ̂
hj
i?t , eff + c(2j , δt)

)
≥ µhmin

i?t , eff ≥ µi?t (t,Ni?t , t−1). (28)

where hmin ∈ arg minhj∈Hi, 2

(
µ̂
hj
i,eff + c(hj , δt)

)
.The first inequality follows because EFF-RAW-UCB selects the arm

with the largest index. In particular, the index of it is larger or equal to the index of i?t ∈ arg maxi∈K µi(t,Ni?t , t).
The second inequality holds on ξαt, 2. The third inequality uses the decreasing of the reward. Putting Equations 27
and 28, we get,

µhit(t− 1, πER) ≥ µi?t (t,Ni?t , t−1)− 2

jh−1∑
j=0

2j

2jh − 1
c(2j , δt). (29)

On the other hand, for EFF-FEWA, we know that the selected arm passes any filter of window 2j ∈ Hi, 2. Therefore,
with imax ∈ arg maxi∈Khj

µ
hj
i,eff, we can write,

µ̂
hj
it,eff ≥ max

i∈Khj
µ̂
hj
i,eff − 2c (hj , δt) Filtering rule (30)

≥ µ̂hjimax, eff − 2c (hj , δt) imax ∈ Khj (31)

≥ µhjimax, eff − 3c(hj , δt) on ξαt, 2 (32)

= max
i∈Khj

µ
hj
i,eff − 3c (hj , δt) . (33)
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We relate µhj
i,eff to the largest available value at round t,

max
i∈Khj

µ
hj
i,eff ≥ max

i∈K1

µ1
i,eff = max

i∈K
µ1
i,eff ≥ µ1

i?t ,eff ≥ µi?t (t,Ni?t , t−1). (34)

The last inequality follows from the decreasing of the reward and the before last from the definition of the
maximum operator. The first one uses a similar argument than in Lemma 2 : maxi∈Khj µ

hj
i,eff increases with hj .

Indeed, on ξαt, 2,
ij , arg max

i∈Khj
µ
hj
i,eff ∈ Khj+1

,

because it cannot be at more than two confidence bounds from the best empirical value during the filter hj . Thus,
we get,

max
i∈Khj

µ
hj
i,eff = µ

hj
ij ,eff ≤ µ

hj+1

ij ,eff ≤ max
i∈Khj+1

µ
hj+1

i,eff .

The first inequality follows because µhj+1

ij ,eff contains reward sample which are either in µhjij ,eff or are older than the

ones in µhjij ,eff. Indeed, when m = 2, µ̂hj+1

i, eff is updated synchronously with µ̂hj
i,eff (see Property 3 in Proposition 9).

Hence, at each update of µ̂hj+1

i, eff, it contains all the samples of µ̂hj
i,eff and the 2j precedent ones. Thus, because

the reward is decreasing, we have µhj+1

ij ,eff ≥ µ
hj
ij ,eff. The second inequality uses that ij ∈ Khj+1

. Gathering
Equations 24, 33 and 34, we get

µhit(t− 1, πEF) ≥ µi?t (t,Ni?t , t−1)− 4

jh−1∑
j=0

2j

2jh − 1
c(2j , δt). (35)

With few lines of algebra, we reduce the sum,

jh−1∑
j=0

2j

2jh − 1
c(2j , δt) =

jh−1∑
j=0

√
2
j

2jh−1
c(1, δt) c(2j , δt) =

c(1, δt)√
2j

=

√
2
jh − 1(√

2− 1
)

(2jh − 1)
c(1, δt)

N∑
n=0

qn =
qN+1 − 1

q − 1

=
1(√

2− 1
) (√

2
jh

+ 1
)c(1, δt) a2−1=(a−1)(a+1)

≤
√

2(√
2− 1

)√
2jh+1

c(1, δt)
√

2jh + 1 ≥
√

2jh+1

√
2

≤
√

2(√
2− 1

)√
h
c(1, δt) h ≤ 2jh+1

=

√
2√

2− 1
c(h, δt).

c(1, δt)√
h

= c(h, δt)

Plugging this last equation in Equations 29 and 35 leads to the final result,

µhit(t, π) ≥ max
i∈K

µi(t,Ni, t−1)− Cπ√
2α
c(h, δt) with

{
CπER

= 4
√
α√

2−1

CπEF
= 8

√
α√

2−1

·

Remark 4. Can we adapt our theory for m 6= 2? For EFF-FEWA, we used at Equation 34 that µ̂hj
i,eff is

synchronously updated with the precedent statistics which is a specific characteristic for m = 2. For EFF-RAW-UCB,
the proof could work using a grid {2hj , . . . , 2hj+1 − 1} to decompose the means (at Eq. 22). Yet, the computation
is much messier, mainly because of the ceil operator in hj+1 = dm · hje. The constant ratio compared to RAW-UCB’s
guarantee one could get with this technique would be no better than

√
m m−1√

m−1
=
√
m (
√
m+ 1). When m→ 1,

this constant does not go to one: it is disappointing because we know that EFF-RAW-UCB is equivalent to RAW-UCB
for m ≤ 1 + 1

T .
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Finally, we give a synthetic claim of Lemmas 1, 2 and 3.
Lemma 4. At round t on favorable event ξαt (respectively, ξαt, 2), if arm it is selected by π ∈ {πF, πR} (respectively,
π ∈ {πEF, πER} tuned with m = 2), for any h ≤ Ni, t−1, the average of its h last pulls cannot deviate significantly
from the best available arm at that round, i.e.,

µhit(t, π) ≥ max
i∈K

µi(t)−
Cπ√
2α
c(h, δt) with

{
CπR = 2

√
2α and CπER = 4

√
α√

2−1

CπF = 4
√

2α and CπEF
= 8

√
α√

2−1

·

E Analysis for the restless setting

Lower bounds

The two lower bounds follow the same analysis. We build a set of rotting piece-wise stationary problems with an
evenly spaced set of Υ− 1 breakpoints. The adversary can choose the distance between arms ∆ = 1

4

√
σ2KΥ

2T at
the maximum such that the best arm is barely identifiable between two breakpoints. Hence, at each break-point,
each arm’s value decreases by ∆ or 2∆. Even if the set of breakpoints would be known, the learner does not
know which arm is the best on each stationary part. Hence, in the worst case, she suffers at least the sum of the
minimax regret of Υ stationary bandits problems with horizon T

Υ , i.e. O
(√

KΥT
)
. In the piece-wise stationary

setting, we can simply identify Υ = ΥT . In the variation budget setting, the adversary has a constraint over
Υ∆ = 1

4

√
σ2KΥ3

2T = O (VT ). Hence, when the budget is limited, the adversary can choose up to Υ = O
(
T 1/3

)
breakpoints such that the sub-optimal arms are "sufficiently" far from the best one (i.e at ∆). This dependence
on T leads to the increased regret rate of O

(
T 2/3

)
.

Lemma 5. Let Υ ∈ {1, . . . , T} and
{
τk ,

⌈
T
Υ

⌉
if k ≤ T mod Υ else

⌊
T
Υ

⌋}
k≤Υ

. We call tk =
∑k
k′=1 τk′ and

t0 = 0. Consider a family of piece-wise stationary bandits indexed by a vector i? ∈ ({0} ∪ K)Υ as follows: arm i
is a Gaussian distribution N (µi(t), σ) such that

∀k ∈ {0, . . . ,Υ− 1} , ∀t ∈ {tk−1 + 1, . . . , tk} , µi(t) =

{
−k∆ if i = i?k
−(k + 1)∆ else.

We denote by Ei? the expectation under the problem indexed by i?. Then, if ∆ = 1
4

√
σ2KΥ

2T , for any policy π :

∃i? ∈ ({0} ∪ K)Υ, Ei? [RT (π)] ≥
√
σ2KTΥ

32
·

Proof. Note that when i?k = 0 then all the arms share the same means. We also define the vector i?−k equals to i?
with the coordinate k empty and for i ∈ K the vector (i?−k, i) as the vector where we fill the empty coordinate
with i. We fix a policy π and we will lower bound its average regret on the bandits problem indexed by i? ∈ KΥ

1

KΥ

∑
i?∈KΥ

Ei? [RT (π)] =
1

KΥ

∑
i?∈KΥ

Υ∑
k=1

∆Ei? [τk −Nk
i?k

]

= ∆

(
T − 1

KΥ

∑
i?∈KΥ

Υ∑
k=1

Ei? [Nk
i?k

]

)
,

where Nk
i is the number of pulls of arm i during epoch k. Thus we need to upper bound the following quantity

1

KΥ

∑
i?∈KΥ

Υ∑
k=1

Ei? [Nk
i?k

] =

Υ∑
k=1

1

KΥ−1

∑
i?−k∈KΥ−1

1

K

K∑
i=1

E(i?−k,i)
[Nk

i ] .

Using the contraction of the entropy for the bounded random variable Nk
i /τk then the Pinsker inequality (see

Garivier et al., 2019) we get

2

(
1

τkK

K∑
i=1

E(i?−k,i)
[Nk

i ]− 1

τkK

K∑
i=1

E(i?−k,0)[N
k
i ]

)2

≤ 1

K

K∑
i=1

E(i?−k,0)[N
k
i ]

∆2

2σ2
,
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since problems (i?−k, i) and (i?−k, 0) differ only by a gap ∆ on the arm i during epoch k. Thanks to the fact that∑
iN

k
i ≤ τk we get

1

K

K∑
i=1

E(i?−k,i)
[Nk

i ] ≤ τk
K

+
∆

2σ
√
K
τ

3/2
k .

Putting all together we have for K ≥ 2

1

KΥ

∑
i?∈KΥ

Ei? [RT (π)] ≥

(
T

2
−

Υ∑
k=1

τ
3/2
k ∆

2σ
√
K

)
∆ .

We have τk =
⌊
T
Υ

⌋
or τk =

⌈
T
Υ

⌉
such that

∑Υ
k=1 τk = T . Hence, we have that τk ≤ 2T/Υ which leads to

1

KΥ

∑
i?∈KΥ

Ei? [RT (π)] ≥

(
1

2
T −

√
2T 3/2∆

σ
√
KΥ

)
∆ .

Choosing ∆ = 1
4

√
σ2KΥ

2T , we get

1

KΥ

∑
i?∈KΥ

Ei? [RT (π)] ≥ 1

4

√
σ2KΥ

2T

(
1

4
T

)
≥
√
σ2KTΥ

32
·

We can conclude by noticing that the average expected regret across the problem set is lesser or equal to the
maximum across the same problem set.

Proposition 4. For any strategy π, there exists a rotting piece-wise stationary bandit scenario with means

{µi(t)}i,t satisfying Assumption 3 with ΥT ≤
(

32V 2T
Kσ2

)1/3

such that,

E [RT (π)] ≥ σ

32

√
ΥTKT .

Proof. This result directly follows from Lemma 5 by choosing Υ = ΥT . Indeed, the set of problems{
i? ∈ ({0} ∪ K)

ΥT
}

satisfy Assumption 3 as soon as ΥT∆ ≤ V , i.e. ΥT ≤
(

32V 2T
Kσ2

)1/3

.

Proposition 3. For any strategy π, there exists a rotting variation budget bandit scenario with means {µi(t)}i,t
satisfying Assumption 2 with a budget VT ≥ σ

√
K
8T such that,

E [RT (π)] ≥ 1

16
√

2

(
σ2VTKT

2
)1/3

.

Proof. We want to use Lemma 5 but we need to make the set of problems
{
i? ∈ ({0} ∪ K)

ΥT
}

comply with
Assumption 2. First, the function are bounded by −VT . Hence, we need :

Υ∆ ≤ VT . (36)

Second the total variation is bounded according to Equation 6. When t is not a break-point, the variation is null.
At each break-point, the maximal variation across the arm is 2∆. For Υ− 1 break-point, we have that

2∆ (Υ− 1) ≤ VT . (37)

Since 2∆ (Υ− 1) ≤ σ
2

√
K
2T Υ3/2, we choose

Υ = min

(
max

(⌊
2

(
V 2
T T

Kσ2

)1/3
⌋
, 1

)
, T

)
. (38)
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By construction, 38 satisfies 37. Moreover, when Υ > 1, 37 is more restrictive than 36. For Υ = 1, we simply
assume ∆ ≤ VT , i.e. VT ≥ σ

√
K
8T .

Plugging 38 in Lemma 5 allows us to conclude

E [RT (π)] ≥ 1

16
√

2
V

1/3
T σ2/3K1/3T 2/3.

Upper bounds

Lemma 6 (Bound on unfavorable events. Decomposition in unspecified batches. Bound on the first pull of each
arm in each batch). Let an integer Υ ∈ {1, . . . , T}.
Let µi : N? → [0,−V ], the K decreasing reward functions.
Let {tk ∈ {1, . . . , T} | tk > tk−1}k∈{1,...,Υ−1} a set of Υ− 1 distinct rounds delimiting Υ batches. We set t0 = 0
and tΥ = T .
We call hki ,

∑tk+1

t=tk+1 1 (it = i) the number of pulls of arm i in batch k and tki (h) the time at which arm i is
pulled for the h-th time since tk + 1. We also call Kk ,

{
i ∈ K|hki ≥ 1

}
the set of pulled arms in batch k.

Then, π ∈ {πR, πF} run with α ≥ 4, or π ∈ {πER, πEF} run with m = 2 and α ≥ 3, suffers an expected regret of

E [RT (π)] ≤E

Υ−1∑
k=0

∑
i∈Kk

tk+1∑
t=tk+1

hki∑
h=2

1
(
t = tki (h) ∧ ξαt

) (
µ?(t)− µi(t)

)
+ CπσΥK

√
log T + 6KV.

Proof. We start by separating the favorable events from the unfavorable events:

RT (π) =

T∑
t=1

1 (ξαt ) (µ?(t)− µit(t))︸ ︷︷ ︸
RT (π|ξαt )

+

T∑
t=1

1(ξαt ) (µ?(t)− µit(t))︸ ︷︷ ︸
RT (π|ξαt )

, (39)

with µ?(t) , maxi∈K µi(t). For α ≥ 4, we can bound the cost of the unfavorable events thanks to Proposition 2,

E
[
RT (π|ξαt )

]
≤

T∑
t=1

P
[
ξαt
]
V ≤

T∑
t=1

KV

t2
=
KV π2

6
≤ 2KV. (40)

On the favorable events, given any ordered set of Υ− 1 breakpoints {tk}, we divide the horizon in Υ batches
{tk + 1, . . . , tk+1}k≤Υ−1,

RT (π|ξαt ) ≤
Υ−1∑
k=0

tk+1∑
t=tk+1

1 (ξαt ) (µ?(t)− µit(t)).

We define hki the number of pulls of arm i in batch k, i.e. hki =
∑tk+1

t=tk+1 1 (it = i). We use tki (h) to designate the
time at which arm i is pulled for the h-th time since tk.

RT (π|ξαt ) ≤
Υ−1∑
k=0

tk+1∑
t=tk+1

∑
i∈Kk

hki∑
h=1

1
(
tki (h) = t ∧ ξαt

) (
µ?(t)− µi(t)

)
.
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We split the regret on the first pulls of each batch

RT (π|ξαt ) =

Υ−1∑
k=0

tk+1∑
t=tk+1

∑
i∈Kk

1
(
t = tki (1) ∧ ξαt

) (
µ?(t)− µi(t))

)
︸ ︷︷ ︸

FP

+

Υ−1∑
k=0

tk+1∑
t=tk+1

∑
i∈Kk

hki∑
h=2

1
(
t = tki (h) ∧ ξαt

) (
µ?(t)− µi(t)

)
︸ ︷︷ ︸

OP

.

(41)

Analysis of the first pulls. We call k1
i , the index of the batch at which arm i is pulled for the first time. We

call K2
k ,

{
i ∈ Kk|k > k1

i

}
, the set of arms pulled at least once during batch k and at least once in a batch before

k. We split the regret due to the very first pull each arm from the other first pulls in each batch,

FP =

Υ−1∑
k=0

∑
i∈Kk

tk+1∑
t=tk+1

1
(
t = tki (1) ∧ ξαt

) (
µ?(t)− µi(t)

)
(42)

≤
∑
i∈K

(
0− µi(t

k1
i
i (1))

)
+

Υ−1∑
k=1

∑
i∈K2

k

tk+1∑
t=tk+1

1
(
t = tki (1) ∧ ξαt

) (
µ?(t)− µi(t)

)
(43)

=
∑
i∈K

(
0− µi(t

k1
i
i (1))

)
(44)

+

Υ−1∑
k=1

∑
i∈K2

k

tk+1∑
t=tk+1

1
(
t = tki (1) ∧ ξαt

) (
µ?(t)− µ1

i (t, π) + µ1
i (t, π)− µi(t)

)
. (45)

The inequality is justified because µi(t) ≤ 0 for all t. In the last equation, we simply introduce µ1
i (t, π), the last

pulled sample of arm i, which is well defined after the first pull of each arm. According to Lemma 4, the first
difference is bounded on the high-probability event ξαt ,

tk+1∑
t=tk+1

1
(
t = tki (1) ∧ ξαt

) (
µ?(t)− µ1

i (t, π)
)
≤ Cπ√

2α
c(1, 2T−α) = Cπσ

√
log T . (46)

We will show that we can telescope the second sum. First, we notice that we can collapse the sum on t using
1
(
t = tki (1)

)
. Moreover, ξαt will not be needed: hence we can drop 1 (ξαt ) ≤ 1.

tk+1∑
t=tk+1

1
(
t = tki (1) ∧ ξαt

) (
µ1
i (t, π)− µi(t)

)
≤ µ1

i (t
k
i (1), π)− µi(tki (1)). (47)

For a given batch k on which arm i is pulled, the precedent reward sample has a mean µhi
(
tki (1) , π

)
. This sample

is the last pull of the last batch k′ before k on which arm i is pulled. Hence, its mean is smaller than the mean of
the first pull on this same batch k′ because the reward is decreasing. Hence, the sum can telescope

∑
i∈K

(
0−µi(t

k1
i
i (1))

)
+

Υ−1∑
k=1

∑
i∈K2

k

tk+1∑
t=tk+1

1
(
t = tki (1) ∧ ξαt

) (
µ1
i (t, π)− µi(t)

)
(48)

≤
∑
i∈K

0− µi(t
k1
i
i (1)) +

Υ−1∑
k=k1

i+1

1
(
hki ≥ 1

) (
µ1
i (t

k
i (1), π)− µi(tki (1))

) (49)

≤
∑
i∈K

(
0− µi(T )

)
≤ KV . (50)
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The first inequality uses the definition of K2
k along with Equation 47. The second inequality follows from the

telescoping argument presented above. The third inequality uses that µi(T ) ≥ −V . Gathering Equation 46 and
48, we can bound the term FP (defined in Equation 41)

FP ≤ KV +

Υ−1∑
k=1

∑
i∈K2

k

Cπσ
√

log T ≤ KV + CπσΥK
√

log T . (51)

Conclusion. From Equation 39, we can bound the expected regret on the unfavorable events thanks to
Equation 40. On the favorable events, we can split the rounds in batches on which we isolate the first pull of
each arm on each batch thanks to Equation 41. Finally, we bound the regret due to these first pulls thanks to
Equation 51, and for α ≥ 4,

E [RT (π)] ≤E

Υ−1∑
k=0

∑
i∈Kk

tk+1∑
t=tk+1

hki∑
h=2

1
(
t = tki (h) ∧ ξαt

) (
µ?(t)− µi(t)

)
+ CπσΥK

√
log T + 3KV.

For the efficient algorithms, we can use the same proof with ξαt, 2 and get for α ≥ 3,

E [RT (π)] ≤E

Υ−1∑
k=0

∑
i∈Kk

tk+1∑
t=tk+1

hki∑
h=2

1
(
t = tki (h) ∧ ξαt

) (
µ?(t)− µi(t)

)
+ CπσΥK

√
log T + 6KV.

Lemma 7 (Analysis of the second pulls in each batch under the favorable events.). Let ∆k
i , µi(tk+1)−µi(tk+1),

the decrement of arm i in batch k. For any arm i and any consecutive rounds {tk + 1, . . . , tk+1} such that i is
pulled hki ≥ 1 times, the regret due to the pulls after the first one can be bounded under the favorable events,

tk+1∑
t=tk+1

hki∑
h=2

1
(
t = tki (h) ∧ ξαt

) (
µ?(t) − µi(t)

)
≤
(
hki − 1

)
∆k
i +

hki∑
h=2

1
(
ξαtki (h)

) (
µ?(t

k
i (h))− µh−1

i (tki (h), π)
)
.

Proof. We call ∆i(t, t
′) , µi(t)− µi(t′) the variation of arm i between times t and t′. As a short notation, we

refer to ∆k
i , ∆i(tk + 1, tk+1) for the variation of arm i in batch k.

∀h ≤ hki , µi(t
k
i (h)) ≥ µi(tk+1) = µi(tk + 1)−∆k

i ≥ µh−1
i (tki (h), π)−∆k

i . (52)
The two inequalities are justified by the rewards decay. Indeed, any pull in batch k has a higher reward than the
value of arm i at the end of the batch tk+1. Moreover, the value at the beginning of the batch is higher that any
average of h value in this batch. The middle equality follows from the definition of ∆k

i .

Then, we plug Equation 52 in the left hand side of our claim,

tk+1∑
t=tk+1

hki∑
h=2

1
(
t = tki (h) ∧ ξαt

)
(µ?(t)− µi(t))

=

hki∑
h=2

1
(
ξαtki (h)

) (
µ?(t

k
i (h))− µi(tki (h))

)
≤

hki∑
h=2

1
(
ξαtki (h)

) (
µ?(t

k
i (h))− µh−1

i (tki (h), π) + ∆k
i

)
≤
(
hki − 1

)
∆k
i +

hki∑
h=2

1
(
ξαtki (h)

) (
µ?(t

k
i (h))− µh−1

i (tki (h), π)
)
.
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The last inequality is justified by 1
(
ξα
tki (h)

)
≤ 1.

Variation budget rotting bandits.

Theorem 1. Let π ∈ {πF, πR} tuned with α ≥ 4 or π ∈ {πEF, πER} tuned with α ≥ 3 and m = 2. For any
variation budget bandit scenario with means {µi(t)}i,t satisfying Assumptions 2 with variation budget VT , π
suffers an expected regret,

E [RT (π)]≤ 4
(
C2
πσ

2VTKT
2 logT

)1/3
+ Õ

((
σV 2

TK
2T
)1/3)

.

Proof. Let Υ ∈ {1, . . . , T} a number of evenly spaced batches that we will specify later. We define the length of
these batches

{
τk ,

⌈
T
Υ

⌉
if k ≤ T mod Υ else

⌊
T
Υ

⌋}
k≤Υ

. Note that
∑Υ
k=1 τk = T . Let tk =

∑k
k′=0 τk′ the last

round of each batch and t0 = 0. On each of these batches, we apply Lemma 7 for the set of arms which have
been pulled in this batch,

ΥT−1∑
k=0

∑
i∈Kk

tk+1∑
t=tk+1

hkt∑
h=2

1
(
t = tki (h) ∧ ξαt

) (
µ?(t)− µi(t)

)
≤

Υ−1∑
k=0

∑
i∈Kk

(
hki − 1

)
∆k
i

+

Υ−1∑
k=0

∑
i∈Kk

hki∑
h=2

1
(
ξαtki (h)

) (
µ?(t

k
i (h))− µh−1

i (tki (h), π)
)
. (53)

The first sums can be handled using Assumption 2 and the evenly spaced property of τk,

Υ−1∑
k=0

∑
i∈K

(
hki − 1

)
∆k
i ≤

Υ−1∑
k=0

max
j∈K

∆k
j

∑
i∈K

(
hki − 1

)
=

Υ−1∑
k=0

max
j∈K

∆k
j (τk −K) ≤ T

Υ

Υ−1∑
k=0

max
j∈K

∆k
j . (54)

The first inequality is justified by definition of the maximum. The second equality states that the total number
of pulls in batch k is τk. The third inequality uses that τk −K ≤

⌈
T
Υ

⌉
−K ≤

⌈
T
Υ

⌉
−K ≤ T

Υ . Now, we need to
relate maxj∈K∆k

j and VT ,

Υ−1∑
k=0

max
j∈K

∆k
j =

Υ−1∑
k=0

max
j∈K

tk+1−1∑
t=tk+1

∆j(t, t+1)≤
Υ−1∑
k=0

tk+1−1∑
t=tk+1

max
j∈K

∆j(t, t+1)≤
T∑
t=1

max
j∈K

∆j(t, t+1)≤VT . (55)

The first inequality is justified because the maximum of a sum is smaller than the sum of the maximums. In the
second inequality, we add positive terms which are the maximum of the decay among the arms at the boundary
between batches. The last inequality is justified by Assumption 2. Therefore, we can bound the first sums using
Equation 54 and 55,

Υ−1∑
k=0

∑
i∈K

(
hki − 1

)
∆k
i ≤

VTT

Υ
· (56)

The second sums can be bounded using Lemma 4 on the high probability event ξα
tki (h)

and Jensen’s inequality,

Υ−1∑
k=0

∑
i∈Kk

hki∑
h=2

1
(
ξαtki (h)

) (
µ?(t

k
i (h))−µh−1

i (tki (h), π)
)
≤

Υ−1∑
k=0

∑
i∈Kk

hki∑
h=2

Cπc (h−1, 2T−α)√
2α

(57)

=

Υ−1∑
k=0

∑
i∈Kk

hki∑
h=2

Cπσ

√
log T

h− 1
(58)

≤
Υ−1∑
k=0

∑
i∈Kk

2Cπσ
√
hki log T (59)

≤ 2Cπσ
√

ΥKT log T . (60)
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We remark that the bound in Eq. 56 is decreasing with Υ and the bound in Eq. 60 is increasing with Υ. We will
choose Υ in order to minimize the sum of these two bounds (which will be our leading term). Therefore, we set,

Υ ,

⌈(
V 2
T T

C2
πσ

2K log T

)1/3
⌉
. (61)

We have that Υ ≤ T when VT ≤ CπσT
√
K log T . Moreover, we will use that Υ ≤ 2

(
V 2
T T

C2
πσ

2K log T

)1/3

which is true

when VT ≥
√

C2
πσ

2K log T
8T .

Finally, we use Lemma 6 where we replace the inner sums thanks to Equations 53, 56 and 60. Then, we plug Υ
set in 61 and conclude,

E [RT (π)] ≤ VTT

Υ
+ 2Cπσ

√
ΥKT log T + CπσΥK

√
log T + 6VTK

≤ 4
(
C2
πσ

2VTKT
2 log T

)1/3
+ 2
(
CπσV

2
TK

2T
√

log T
)1/3

+ 6VTK.

When VT ≤
√

C2
πσ

2K log T
8T , the regret of any policy can be bounded ,

E [RT (π)] ≤ TVT = V
1/3
T T

2/3V
2/3
T T

1/3

≤ V 1/3
T T

2/3

(
C2
πσ

2K log T

8T

)1/3

T
1/3

=
1

2

(
C2
πσ

2VTKT
2 log T

)1/3

≤ 4
(
C2
πσ

2VTKT
2 log T

)1/3
.

For completion, we also consider VT ≥ CπσT
√
K log T . Yet, notice that in that case the leading term is O (KVT ).

We start back from Lemma 6,

E [RT (π)] ≤E

Υ−1∑
k=0

∑
i∈Kk

tk+1∑
t=tk+1

hki∑
h=2

1
(
t = tki (h) ∧ ξαt

) (
µ?(t)− µi(t)

)
+ CπσΥK

√
log T + 6KVT .

In fact, this result can be slightly improved at no cost,

E [RT (π)] ≤E

Υ−1∑
k=0

∑
i∈Kk

tk+1∑
t=tk+1

hki∑
h=2

1
(
t = tki (h) ∧ ξαt

) (
µ?(t)− µi(t)

)
+ Cπσmin (ΥK,T )

√
log T + 6KVT ,

because there are at most min (ΥK,T ) first pulls (see the proof of Lemma 6). Now, we choose Υ = T . Hence,
there is no second pulls and we have,

E [RT (π)] ≤ CπσT
√

log T + 6KVT ,

Now we use that CπσT
√

log T ≤ VT√
K
≤ KVT ,

E [RT (π)] ≤
(
CπσT

√
log T

)2/3(
CπσT

√
log T

)1/3

+ 6KVT

≤
(
C2
πσ

2VTKT
2 log T

)1/3
+ 6KVT

≤ 4
(
C2
πσ

2VTKT
2 log T

)1/3
+ 2
(
CπσV

2
TK

2T
√

log T
)1/3

+ 6KVT .
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Piece-wise stationary rotting bandits.

Let {tk}{k≤ΥT } be the set of breakpoints with t0 = 0 and tΥT = T . For all t ∈ {tk+1, . . . , tk+1}, µi(t) = µki . We
denote i?k ∈ arg maxi∈K µ

k
i (one of) the best arm(s) in batch k, and µk? , maxi∈K µ

k
i , the corresponding best

value. We also call ∆i,k , µk? − µki the gap between arm i and optimal arm in batch k.

Lemma 8. For an arm i and a stationary batch k, we call hki,ξ , max
(
h ≤ hki |ξαtki (h)

)
the last pull of arm i in

batch k under the favorable events (possibly 0). If hki,ξ ≥ 1, the regret due to the second pulls on the favorable
events is bounded by,

tk+1∑
t=tk+1

hki∑
h=2

1
(
t = tki (h) ∧ ξαt

)(
µ?(t)−µi(t)

)
≤
(
hki,ξ−1

)
∆i,k ≤ Cπσ

√(
hki,ξ−1

)
log T .

Proof. We apply Lemma 7 on each stationary batch. Hence, ∆k
i = 0 and we can write,

tk+1∑
t=tk+1

hki∑
h=2

1
(
t = tki (h) ∧ ξαt

) (
µ?(t)− µi(t)

)
≤

hki∑
h=2

1
(
ξαtki (h)

) (
µ?(t

k
i (h))− µh−1

i (tki (h), π)
)
.

We notice that µ?(tki (h)) = µ
(k)
? . We call hki,ξ , max

(
h ≤ hki |ξαtki (h)

)
. Hence,

hki∑
h=2

1
(
ξαtki (h)

)(
µ?(t

k
i (h))−µh−1

i (tki (h), π)
)

=

hki,ξ∑
h=2

1
(
ξαtki (h)

)(
µk?−µh−1

i (tki (h), π)
)

≤
hki,ξ∑
h=2

µk? − µh−1
i (tki (h), π)

=

hki,ξ∑
h=2

µk? − µki

=
(
hki,ξ − 1

)
∆i,k .

The first equality follows from ∀h > hki,ξ, 1
(
ξα
tki (h)

)
= 0 by definition of hki,ξ. The first inequality follows

by dropping 1
(
ξα
tki (h)

)
≤ 1. The second equality uses that the function is stationary in batch k : ∀h ≤

hki,ξ, µ
h−1
i (tki (h), π) = µki . The last equality follows by definition of ∆i,k (which does not depend on the summand

index h).

Then, we apply Lemma 4 at time tki
(
hki,ξ

)
. By definition of hki,ξ, 1

(
ξα
tki (hki,ξ)

)
= 1.

(
hki,ξ − 1

)
∆i,k ≤

Cπ√
2α

(
hki,ξ − 1

)
c(hki,ξ−1, 2T−α) = Cπσ

√(
hki,ξ − 1

)
log T .

Theorem 2. Let π ∈ {πF, πR} tuned with α ≥ 4 or π ∈ {πEF, πER} tuned with α ≥ 3 and m = 2. For any
piece-wise stationary bandit scenario with means {µi(t)}i,t satisfying Assumption 3 with ΥT − 1 change-points, π
suffers an expected regret,

E [RT (π)] ≤ Cπσ
√

log T
(√

ΥTKT + ΥTK
)

+ 6KV.

Proof. We apply Lemma 8,

ΥT−1∑
k=0

∑
i∈Kk

tk+1∑
t=tk+1

hki∑
h=2

1
(
t= tki (h)∧ξαt

) (
µ?(t)−µi(t)

)
≤

ΥT−1∑
k=0

∑
i∈Kk

Cπσ
√
hki,ξ log T .
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We notice that
∑ΥT−1
k=0

∑
i∈Kk h

k
i,ξ ≤ T . Hence, thanks to Jensen’s inequality,

ΥT−1∑
k=0

∑
i∈Kk

Cπσ
√
hki,ξ log T ≤ Cπσ

√
ΥTKT log T .

We use Lemma 6 with the last equation and conclude,

E [RT (π)] ≤ Cπσ
√

log T
(√

ΥTKT + ΥTK
)

+ 6KV.

Theorem 3. Let π ∈ {πF, πR} tuned with α ≥ 4 or π ∈ {πEF, πER} tuned with α ≥ 3 and m = 2. For any
piece-wise stationary bandit scenario with means {µi(t)}i,t satisfying Assumption 3 with ΥT − 1 change-points, π
suffers an expected regret

E [RT (π)] ≤
ΥT−1∑
k=0

∑
i∈K

C2
πσ

2 log T

∆i,k
+O

(
σΥTK

√
log T

)
.

Proof. Let Kk , {i ∈ K|∆i,k > 0}, the set of sub-optimal arms in batch k. We apply Lemma 8 to bound the
number of wrong pull (under the favorable events) of arm i ∈ Kk during batch k,

∆i,k

(
hki,ξ − 1

)
≤ Cπσ

√(
hki,ξ − 1

)
log T =⇒ hki,ξ ≤ 1 +

C2
πσ

2 log T

∆2
i,k

·

Then, we apply Lemma 8 again to bound the regret due to second pulls of any sub-optimal arm i /∈ arg maxi∈K µ
k
i

in any batch k,

OP (i, k) ,
tk+1∑

t=tk+1

hki∑
h=2

1
(
t= tki (h) ∧ ξαt

)
(µ?(t)−µi(t))

≤ Cπσ
√(

hki,ξ−1
)

log T

≤ C2
πσ

2 log T

∆i,k
·

We apply Lemma 6 on the set of ΥT − 1 breakpoints and we conclude thanks to the precedent equation,

E [RT (π)] ≤ E

[
ΥT−1∑
k=0

∑
i∈Kk

OP (i, k)

]
+ CπσΥTK

√
log T + 6KV

≤
ΥT−1∑
k=0

∑
i∈K

C2
πσ

2 log T

∆i,k
+ CπσΥTK

√
log T + 6KV .

F Rested rotting setting

Sketch of the proof

In Lemma 9, we split the regret decomposition according to whether the overpulls has been done on the favorable
event ξαt or not.

In Lemma 10, we show that the part of the expected regret due to pulls under ξαt is bounded by a constant with
respect to T for α > 4. Indeed, while we have only trivial bounds on the quality of the pulls on these events, we
can control their probabilities thanks to Proposition 2.
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In Lemma 11, we show that for hi, T overpulls of arm i, we suffer no more than Õ
(√

hi, T
)
on the favorable event.

Indeed, thanks to Lemma 4, we know that the cost of the h before last pulls is bounded by h · c(h, δt) = Õ
(√

h
)
.

The proof of Proposition 6 follows by noticing that
∑
i∈K hi, T ≤ T which leads to the Õ

(√
KT

)
rate. Indeed,

thanks to the concavity of the
√
· and to Jensen’s inequality, we find that the worst allocation is hi, T = T

K .

In Lemma 12, we construct a problem-dependent bound of hi, T which extends the notion of gap for rotting
bandits using Lemma 4.

The proof of Proposition 7 follows by plugging this bound in the result of Lemma 11.

Full proof

Let tπi (n) the function such that tπi (n) = t when policy π selects arm i at time t for the n-th time. We call
µ+
T (π) , maxi∈K µi (Ni, T ), i.e. the largest available reward for π at round T+1.

Lemma 9. Let hi, T , |Ni, T −N?
i, T |. For any policy π, the regret at round T is no bigger than

RT (π) ≤
∑
i∈op

hi, T−1∑
h=0

[
ξαtπi (N?i, T+h)

] (
µ+
T (π)− µi(N?

i, T + h)
)

+

T∑
t=1

[
ξαt

]
Lt.

We refer to the the first sum above as to Aπ and to the second sum as to B.

Proof. In the rested rotting setting, we can conveniently write the regret as

RT (π) =
∑
i∈K

N?i,T−1∑
n=0

µi(n)−
Nπi,T−1∑
n=0

µi(n)

 (62)

=
∑
i∈up

N?i,T−1∑
n=Nπi,T

µi(n)−
∑
i∈op

Nπi,T−1∑
n=N?i,T

µi(n), (63)

where we define up ,
{
i ∈ K|N?

i,T > Nπ
i,T

}
and likewise op ,

{
i ∈ K|N?

i,T < Nπ
i,T

}
as the sets of arms that are

respectively under-pulled and over-pulled by π with respect to the optimal policy. We consider the regret at
round T .

We upper-bound all the rewards in the first double sum - the underpulls - by their maximum µ+
T (π) ,

maxi∈K µi(N
π
i,T ). Indeed, for any overpulls µi(ni) (with ni ≥ Nπ

i,T ), we have that

µi(ni) ≤ µi(Nπ
i,T ) ≤ µ+

T (π) , max
i∈K

µi(N
π
i,T ),

where the first inequality follows by the non-increasing property of µis; and the second by the definition of the
maximum operator. Second, we notice that there are as many underpulls than overpulls (terms of the second
double sum) because there both policies π and π? pull T arms. Notice that this does not mean that for each arm
i, the number of overpulls equals to the number of underpulls, which cannot happen anyway since an arm cannot
be simultaneously underpulled and overpulled. Therefore, we keep only the second double sum,

RT (π) ≤
∑
i∈op

Nπi,T−1∑
n=N?i,T

(
µ+
T (π)− µi(n)

)
. (64)

Then, we need to separate overpulls that are done under ξαt and under ξαt . We introduce tπi (n), the round at
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which π pulls arm i for the n-th time. We now make the round at which each overpull occurs explicit,

RT (π) ≤
∑
i∈op

hi, T−1∑
h=0

T∑
t=1

[
tπi
(
N?
i, T + h

)
= t
] (
µ+
T (π)− µi(N?

i, T + h)
)

≤
∑
i∈op

hi, T−1∑
h=0

T∑
t=1

[
tπi
(
N?
i, T + h

)
= t ∧ ξαt

] (
µ+
T (π)− µi(N?

i, T + h)
)

︸ ︷︷ ︸
Aπ

+
∑
i∈op

hi, T−1∑
h=0

T∑
t=1

[
tπi
(
N?
i, T + h

)
= t ∧ ξαt

] (
µ+
T (π)− µi(N?

i, T + h)
)

︸ ︷︷ ︸
B

.

For the analysis of the pulls done under ξαt we do not need to know at which round it was done. Therefore,

Aπ ≤
∑
i∈op

hi, T−1∑
h=0

[
ξαt(N?i, t+h)

] (
µ+
T (π)− µi(N?

i, T + h)
)
.

For FEWA or RAW-UCB, it is not easy to directly guarantee the low probability of overpulls (the second sum). Thus,
we upper-bound the regret of each overpull at round t under ξαt by its maximum value Lt. While this is done to
ease FEWA analysis, this is valid for any policy π. Then, noticing that we can have at most 1 overpull per round t,
i.e.,

∑
i∈op

∑hi, T−1
h=0

[
tπi
(
N?
i, T + h

)
= t
]
≤ 1, we get

B ≤
T∑
t=1

[
ξαt

]
Lt

∑
i∈op

hi, T−1∑
h=0

[
tπi
(
N?
i, T + h

)
= t
] ≤ T∑

t=1

[
ξαt

]
Lt.

Therefore, we conclude that

RT (π) ≤
∑
i∈op

hi, T−1∑
h=0

[
ξαtπi (N?i, t+h)

] (
µ+
T (π)− µi(N?

i, T + h)
)

︸ ︷︷ ︸
Aπ

+

T∑
t=1

[
ξαt

]
Lt︸ ︷︷ ︸

B

.

Lemma 10. Let ζ(x) =
∑
n n
−x. Thus, with δt = 2t−α and α > 4, we can use Proposition 2 and get

E [B] ,
T∑
t=1

p
(
ξαt
)
Lt ≤

T∑
t=1

KLt3−α ≤ KLζ(α− 3) .

In particular, for α ≥ 5, we have :
E [B] ≤ KLζ(2) ≤ 2KL < 5KL .

Thanks to Proposition 11, we can prove a similar bound on B2 ,
∑T
t=1

[
ξαt, 2

]
Lt,

E [B2] ≤ 6KLζ(α− 2), i.e., for α ≥ 4, E [B2] ≤ 5KL.

Lemma 11. We define hξi, T , max
{
h ≤ hi, T | ξαtπi (N?i, t+h)

}
, the largest number of overpulls of arm i pulled

under ξαt at round t = tπi (N?
i, t + hξi, T ) ≤ T . We also define opξ ,

{
i ∈ op| hξi, T ≥ 1

}
. For policy π ∈ {πR, πF}

with parameter α, Aπ defined in Lemma 9 is upper-bounded by

Aπ ,
∑
i∈op

hi, T−1∑
h=0

[
ξαtπi (N?i, T+h)

] (
µ+
T (π)− µi(N?

i, T + h)
)

≤
∑
i∈opξ

(
Cπσ

√(
hξi, T − 1

)
log (T ) + Cπσ

√
log (T ) + L

)
.
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Proof. First, we define hξi, T , max
{
h ≤ hi, T | ξαtπi (N?i, t+h)

}
, the largest number of overpulls of arm i pulled at

round ti , tπi (N?
i, t + hξi, T ) ≤ T under ξαt . Now, we upper-bound Aπ by including all the overpulls of arm i until

the hξi, T -th overpull, even the ones under ξαt ,

Aπ ,
∑
i∈op

hi, T−1∑
h=0

[
ξαtπi (N?i, t+h)

] (
µ+
T (π)− µi(N?

i, T + h)
)

≤
∑
i∈opξ

hξi, T∑
h=0

(
µ+
T (π)− µi(N?

i, T + h)
)
,

where opξ ,
{
i ∈ op| hξi, T ≥ 1

}
. We can therefore split the second sum of hξi, T term above into two parts. The

first part corresponds to the first hξi, T − 1 (possibly zero) terms (overpulling differences) and the second part to
the last (hξi, T − 1)-th one. Recalling that at round ti, arm i was selected under ξαti , we apply Lemma 4 to bound
the regret caused by previous overpulls of i (possibly none),

Aπ ≤
∑
i∈opξ

µ+
T (π)− µi

(
N?
i,T + hξi, T − 1

)
+

Cπ√
2α

(
hξi, T − 1

)
c
(
hξi, T − 1, δti

)
(65)

≤
∑
i∈opξ

µ+
T (π)− µi

(
N?
i,T + hξi, T − 1

)
+

Cπ√
2α

(
hξi, T − 1

)
c
(
hξi, T − 1, δT

)
(66)

≤
∑
i∈opξ

µ+
T (π)− µi

(
N?
i,T + hξi, T − 1

)
+ Cπσ

√(
hξi, T − 1

)
log (T ), (67)

The second inequality is obtained because δt is decreasing and c(., δ) is decreasing as well. The last inequality is
the definition of confidence interval in Proposition 2. If N?

i, T = 0 and hξi, T = 1 then

µ+
T (π)− µi(N?

i, T + hξi, T − 1) = µ+
T (π)− µi(0) ≤ L,

since µ+
T (π) ≤ maxj∈K µj(0) and maxj∈K µj(0)− µi(0) ≤ L by the definition of L (Eq. 10). Otherwise, we can

decompose

µ+
T (π)− µi(N?

i, T + hξi, T − 1) =µ+
T (π)− µi(N?

i, T + hξi, T − 2)︸ ︷︷ ︸
A1

+ µi(N
?
i, T + hξi, T − 2)− µi(N?

i, T + hξi, T − 1)︸ ︷︷ ︸
A2

.

For term A1, since this hξi, T -th overpull is done under ξαti , by Lemma 4 we have that

A1 = µ+
T (π)− µ1

i (N
?
i, T + hξi, T − 1) ≤ 1c(1, δti) ≤ 2c(1, δT ) ≤ Cπσ

√
log (T ).

The second difference, A2 = µi(N
?
i, T + hξi, T − 2)− µi(N?

i, T + hξi, T − 1) cannot exceed L by definition (Eq. 10),
the maximum decay in one round is bounded. Therefore, we further upper-bound Equation 67 as

Aπ ≤
∑
i∈opξ

(
Cπσ

√(
hξi, T − 1

)
log (T ) + Cπσ

√
log (T ) + L

)
. (68)

Proposition 6 (gap-free bound). Let π ∈ {πF, πR} tuned with α ≥ 5 or π ∈ {πEF, πER} tuned with α ≥ 4 and
m = 2. For any rotting bandit scenario with means {µi}i satisfying Assumption 1 with bounded decay L and any
time horizon T , π suffers an expected regret,

E [RT (π)] ≤ Cπσ
√

log (T )
(√

KT +K
)

+ 6KL.
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Proof. In Lemma 9, we split the regret in two parts. The first one B corresponds to the regret due to unfavorable
events ξαt . We do not derive any guarantee of our algorithms on these events but their probabilities can be
controlled thanks to parameter α. Hence, for α > 4, we show in Lemma 10 that the part of the expected regret
due to unfavorable events can be bounded by a constant w.r.t. T . Yet, we choose α ≥ 5 to have a small constant.

The second one Aπ corresponds to the regret due to favorable events ξαt which can be bounded for our two
algorithms (FEWA and RAW-UCB) thanks to Lemma 11. In order to get a problem-independent upper bound, we
need to replace hξi, T by a problem-independent quantity. Starting from Lemma 11,

Aπ ≤
∑
i∈opξ

(
Cπσ

√(
hξi, T − 1

)
log (T ) + Cπσ

√
log (T ) + L

)
.

Since opξ ⊆ op, we can upper-bound the number of terms in the above sum by K. Next, the total number
of overpulls

∑
i∈op hi, T cannot exceed T . As square-root function is concave we can use Jensen’s inequality.

Moreover, we can deduce that the worst allocation of overpulls is the uniform one, i.e., hi, T = T/K,

Aπ ≤ K(Cπσ
√

log(T ) + L) + Cπσ
√

log(T )
∑
i∈op

√
(hi, T − 1) (69)

≤ K(Cπσ
√

log(T ) + L) + Cπσ
√
KT log(T ). (70)

Therefore, using Lemma 9 together with Equations 70 and Lemma 10, we bound the total expected regret as

E[RT (π)] ≤ Cπσ
√

log (T )
(√

KT +K
)

+ 6KL· (71)

Lemma 12. We define the smallest reward gathered by the optimal policy µ−T and the gap of the h first overpulls
of arm i with respect to that value ∆i,h.

µ−T , min
i∈K?

µi
(
N?
i, T − 1

)
with K? ,

{
i ∈ K|N?

i, T ≥ 1
}
,

∆i,h , µ
−
T − µ

h
i

(
N?
i, t + h

)
.

hξi, T defined in Lemma 9 is upper-bounded by a problem-dependent quantity,

hξi, T ≤ h
+
i, T , max

{
h ≤ T | h ≤ 1 +

C2
πσ

2 log (T )

∆2
i,h−1

}
≤ 1 +

C2
πσ

2 log (T )

∆2
i,h+

i, T−1

·

Proof. We want to bound hξi, T with a problem dependent quantity h+
i, T . We remind the reader that for arm i at

round T , the hξi, T -th overpull is pulled under ξαti at round ti. Therefore, Lemma 4 applies and we have

µ
hξi, T−1

i

(
N?
i, T + hξi, T − 1

)
≥ µ+

T (π)− Cπ√
2α
c
(
hξi, T − 1, δti

)
≥ µ+

T (π)− Cπ√
2α
c
(
hξi, T − 1, δT

)
≥ µ+

T (π)− Cπσ
√

log (T )

hξi, T − 1
,

Hence, we have that

hξi, T ≤ 1 +
C2
πσ

2 log (T )(
µ+
T (π)− µh

ξ
i, T−1

i

(
N?
i, T + hξi, T − 1

))2 · (72)
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Yet, this upper-bound still depends on random quantities such as µ+
T (π) or hξi, T on the denominator. Consider

the smallest value collected by the optimal policy,

µ−T , min
i∈K?

µi
(
N?
i, T − 1

)
with K? ,

{
i ∈ K|N?

i, T ≥ 1
}
.

It is the T -th largest value among the KT possible ones. Since µ
hξi, T−1

i

(
N?
i, T + hξi, T − 1

)
is an average of

overpulls value, which are all smaller or equal to µ−T , we have

µ−T ≥ µ
hξi, T−1

i

(
N?
i, T + hξi, T − 1

)
.

Moreover, µ−T > µ+
T (π) implies that the regret is 0. Indeed, in that case µ+

T (π) - the pull with the largest
value among the remaining values at the end of the game for π - is strictly smaller than µ−T - the T -th largest
reward sample. Therefore, π has collected the T largest value and has zero regret. Hence, we focus on the case
µ−T ≤ µ

+
T (π), for which the regret may not be zero. In that case, we can upper-bound the RHS term Equation 72

by replacing the random quantity µ+
T (π) by the smaller quantity µ−T . Hence,

hξi, T ≤ 1 +
C2
πσ

2 log (T )(
µ+
T (π)− µh

ξ
i, T−1

i

(
N?
i, T + hξi, T − 1

))2 ≤ 1 +
C2
πσ

2 log (T )

∆2
i,hξi, T−1

,

with ∆i,h , µ
−
T − µhi

(
N?
i, t + h

)
, the difference between the lowest mean value of the arm pulled by π? and the

average of the h first overpulls of arm i. Yet, this self-bounding property of hξi, T is not a proper problem-dependent
upper bound. We will consider the largest h which satisfies this self-bounding property,

h+
i, T , max

{
h ≤ T | h ≤ 1 +

C2
πσ

2 log (T )

∆2
i,h−1

}
·

We have that,

hξi, T ≤ h
+
i, T ≤ 1 +

C2
πσ

2 log (T )

∆2
i,h+

i, T−1

·

Proposition 7 (gap-dependent bound). π ∈ {πF, πR} tuned with α ≥ 5 (or π ∈ {πEF, πER} tuned with α ≥ 4
and m = 2) suffers an expected regret,

E [RT (π)] ≤
∑
i∈K

(
C2
πσ

2 log (T )

∆i,h+
i, T−1

+ Cπσ
√

log (T ) + 6L

)

with h+
i,T ,max

{
h≤1+

C2
πσ

2log T

∆2
i,h−1

}
, and the pseudo-gap

∆i,h , min
j∈K

µj
(
N?
j,T − 1

)
− µhi

(
N?
i,T + h

)
.

Proof. We use Lemmas 11 and Lemma 12 to bound Aπ (see Lemma 9). Indeed, since the square-root function is
increasing, we can upper-bound the result in Lemma 11 by replacing hξi, T by its upper bound in Lemma 12

Aπ ≤
∑
i∈opξ

(
Cπσ

√
log(T )

(
1 +

√
h+
i, T − 1

)
+ L

)

≤
∑
i∈opξ

(
Cπσ

√
log(T )

(
1 +

Cπσ
√

log(T )

∆i,h+
i, T−1

)
+ L

)
.

Notice that the quantity opξ ⊂ K. Therefore, we have

Aπ ≤
∑
i∈K

(
C2
πσ

2 log (T )

∆i,h+
i, T−1

+ Cπσ
√

log (T ) + L

)
. (73)
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Using Lemmas 9, 10, and Equation 73 we get

E [RT (π)] = E [Aπ] + E [B]

≤
∑
i∈K

(
C2
πσ

2 log (T )

∆i,h+
i, T−1

+ Cπσ
√

log (T ) + L

)
+ 5KL

≤
∑
i∈K

(
C2
πσ

2 log (T )

∆i,h+
i, T−1

+ Cπσ
√

log (T ) + 6L

)
·

G Full experiments

The code of all our experiments can be found on SMPyBandits (Besson, 2018), an open-source bandits package
in Python. The goal of these experiments is to perform an exhaustive benchmark of non-stationary algorithms
which might be able to perform well in both rested and restless rotting setups in an agnostic way (i.e. with the
same tuning).

Algorithms and parameters. We include UCB and FEWA (Seznec et al., 2019), the only algorithms which got
known regret bounds in both setups. We include two versions of each algorithm: with the theoretical tuning
α = 4; and with the empirical tuning αR = 1.5 and αF = 0.06. These two values are selected by grid-search on
the rested benchmark. This benchmark has 30 different problems (for different L) but this is not a problem as
the best tuning of α is the same for all the considered problem. In the restless setting, we replace RAW-UCB and
FEWA by their efficient versions because of the longer horizon.

We also include Exp3.S (Auer et al., 2003), an algorithm which was designed for the very general adversarial
bandits problem against switching experts. As explained in the introduction, tuned Exp3.S reaches the minimax
optimal rate in all the presented restless setup. Yet, it is unclear if it is able to learn in the rested rotting bandits
problem. We use the theoretical tuning which requires the knowledge of T and VT .

We also include GLR-UCB (Besson and Kaufmann, 2019). This algorithm has two parameters : a confidence level
δ for its change-point detector and an active exploration rate α. We set α to zero. Indeed, the active exploration
of change-detection algorithms is only useful in the increasing case (as argued by Cao et al. (2019)). We tune
δ by its theoretical value, which requires the knowledge of T . Last, we only restart the history of the changed
arm as our setup do not assume that all the rewards change simultaneously. For fair comparison, we only use
the subgaussian version of the algorithm. Indeed, KL-UCB indexes are expensive to compute. Instead, for all
the confidence bound algorithms, we rather tune σ2 = 1 in the rested benchmark and σ2 = 0.29 in the restless
benchmark (the variance of a binomial B (10, 0.03)).

We do not include SWA (Levine et al., 2017) which was shown to be less consistent than FEWA (Seznec et al., 2019)
on rested rotting bandits. We do not include SW-UCB and D-UCB as they were shown to be unable to learn in
the rested setting (Levine et al., 2017; Seznec et al., 2019). We also do not include CUSUM-UCB (Liu et al., 2018)
and M-UCB (Cao et al., 2019), as 1) they were shown to under-perform against GLR-UCB (Besson and Kaufmann,
2019); and 2) their change-detector is harder to tune.

G.1 Simulated benchmark for rested bandits

Setup. We use the two-arm benchmark of Seznec et al. (2019). Arms are gaussians with fix variance σ = 1 and
rested rotting mean. The first arm has a constant mean 0 while the second arm abruptly switches from +L

2 to
−L2 at t = T

4 = 2500. Several values of L are investigated between 10−3 and 10.

Result : RAW-UCB vs FEWA. We compare RAW-UCB and FEWA both for theoretical value α = 4 and tuned values
αR = 1.5 and αF = 0.06 (selected by grid-search). For theoretical tuning, we see in Figure 2 (left), that RAW-UCB
outperforms FEWA on all sizes of decays by a factor ∼ 4 which is predicted by our theory. Indeed, there is also
a factor 4 between the two problem-dependent upper-bounds. Surprisingly, for empirical tuning, the average
performances of the two algorithms are much closer. We also notice that there is a larger variance in FEWA’s result
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Figure 2: Left: Regret at the end of the game for different values of L. Middle, Right: Regret across time for
two values of L. Average over 2000 runs. We highlight the [10%, 90%] confidence region.

compared to RAW-UCB. This is not surprising because we had to drastically reduce the confidence bounds to make
FEWA practical. It means that empirical FEWA filters arms based only on a handful of samples. This bet leads to
either very good runs or very bad runs. Last, Figure 2 (middle, right) shows that RAW-UCB outperforms FEWA at
any time T , both on easy and difficult problems.

Overall, our experiment suggests that RAW-UCB has better expected and high-probability performance than FEWA
on rested problems. Moreover, our analysis reduces the gap between theory and practice. Indeed, RAW-UCB
practical confidence bounds are reduced compared to theoretical value by a factor

√
4/1.4 = 1.7 while FEWA’s

are reduced by a factor
√

4/0.06 = 8.2. Note that the empirical tuning δT = T−1.4 is very close to asymptotic
optimal tuning of UCB: δT = T−1 log (T )

−2 ∼ T−1.48 for T = 104. It suggests that RAW-UCB might not need to
use larger confidence bands than UCB for stationary bandits.

Result : Restless algorithms. Exp3.S shows reasonable performance for small L and very bad performance
for large L. Indeed, Exp3.S suffers from the fact that it pulls any arm with a probability at least

√
T
−1

. When
the cost of a single mistake is big (large L), it increases the regret. When the distance between arm is small
(small L), all the consistent policies do ∼ T number of mistakes. Hence, the

√
T
−1

exploration rate is not a
problem here. Combined with the observation of Levine et al. (2017) and Seznec et al. (2019), we can conclude
that passive forgetting and active random exploration leads to linear regret rate in rested rotting bandits.

This is why we cancel the random exploration for GLR-UCB. GLR-UCB use an active forgetting mechanism based
on change-point detection. While it has been designed for restless bandits, it gives surprisingly good result on
this rested benchmark. For L < 10−1, GLR-UCB shows worse regret than FEWA (α = 4) which is equivalent to
round-robin for small L. This is because the change is too small to be detected. Hence, the algorithm uses biased
sample to compute the suboptimal arm’s UCB after the break point. In this region, there is also large regret
deviation. For L ∈ [0.1, 4], GLR-UCB performs very well. Indeed, it can detect the change-point and then run the
optimal KL-UCB subroutine for the remaining rounds (on which reward is stationary). For L > 4, GLR-UCB have
worse performance than RAW-UCB. Indeed, when an arm gets abruptly worse, 1) we detect the change-point; 2)
we restart the arm’s history which triggers additional exploratory pulls. This two steps mechanism require more
pulls at the break-point than RAW-UCB. However, we can see on Figure 2 (right) that after the first few pulls
GLR-UCB pulls the sub-optimal arm at an optimal log T rate. This benchmark reveals that GLR-UCB with local
restarts and no random exploration may be able to learn in the rested rotting setting, in particular when the
decay is limited compared to the noise.

G.2 Real world Yahoo! experiment



Julien Seznec, Pierre Menard, Alessandro Lazaric, Michal Valko

Figure 3: Left: reward functions on from the Yahoo! dataset
Right: average regret of policies over 500 runs
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Day EFF-RAW-UCB EFF-RAW-UCB EFF-FEWA EFF-FEWA EFF-FEWA Exp3.S GLR-UCB
(T) (α=1.4,m=1.1) (α=1.4,m=2) (α=4,m=1.1) (α=0.06) (α=4)

2 67 35 65 143 337 56 560
3 66 33 65 175 308 53 613
4 90 43 90 223 391 67 683
5 86 47 88 159 473 77 2421
6 91 46 91 183 487 75 707
7 74 41 74 115 380 69 1529
8 88 44 89 193 428 71 957
9 64 34 63 116 341 55 971

Table 1: Average computational time in seconds for each algorithm in each experiment.
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