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Abstract—Just-In-Time (JIT) compilation is often employed
in Virtual Machines (VMs) to translate their virtual-machine
languages into real-machine code. This approach not only brings
portability, but it also enables aggressive compiler optimizations
based on runtime behavior observed via profiling. The downside
of JIT compilation, compared to Ahead-Of-Time native compila-
tion, is that the profiling and compilation overheads are incurred
during execution. To mitigate these overheads, previous work
have proposed sharing either profile data or final JIT compiled
code across VM executions. Unfortunately, these techniques have
drawbacks, including steady-state performance degradation and
difficulty of use. To address these issues, this paper presents the
Jump-Start mechanism implemented inside the HipHop Virtual
Machine (HHVM). Jump-Start is a practical approach to share
VM profile data at a large scale, being used to power one of the
largest websites in the world. In this paper, we argue for HHVM’s
Jump-Start approach, describe it in detail, and present steady-
state optimizations built on top of it. Running the Facebook
website, we demonstrate that Jump-Start effectively solves the
warmup problem in HHVM, reducing the server capacity loss
during warmup by 54.9%, while also improving steady-state
performance by 5.4%.

Index Terms—virtual machine, JIT compilation, warmup, per-
formance optimization

I. INTRODUCTION

Virtual Machines (VMs) have become a common strategy for
implementing a variety of high-level programming languages.
This approach, which became very popular with the Java
Virtual Machine (JVM), is currently used to implement
languages like C#, JavaScript, Python, PHP/Hack, Lua, and
many more. In a VM-based implementation, the application’s
source code, instead of being directly compiled to machine
code, is compiled down to a higher-level virtual machine
instruction set, typically called a bytecode.1 During runtime,
the application is executed via either interpretation or native
machine code that is translated from the bytecode using a
Just-In-Time (JIT) compiler. Compared to implementations
based on Ahead-Of-Time (AOT) compilation to machine code,
there are two important advantages of VMs: portability and
the ability to transparently leverage runtime information to
generate optimized machine code.

Optimized VMs use JIT compilation to improve performance.
As mentioned above, an advantage of using JIT instead of
AOT compilation is the ability to transparently use runtime

1The high-level representation may even be the source language, in so-called
language VMs, which are typical for JavaScript.

information for optimizations. This is achieved via profile-
guided optimizations (PGO), also known as feedback-driven
optimizations (FDO). To implement PGO, VMs use multi-
tier compilation, in which the code is first compiled with a
simplistic JIT (or even interpreted) to collect profile data (tier
1 compilation), and later recompiled in optimized mode by
leveraging the profile data (tier 2 compilation).

Compared to AOT, the downside of JIT compilation is the
runtime overhead, particularly during the application’s start-up.
Because the compilation is performed at runtime, every cycle
spent compiling the code is a missed cycle that could have
been used to actually execute the application. This overhead is
very pronounced during the start of the application, while it
is being profiled and compiled, which is typically called the
execution’s warmup phase. After this phase, the application’s
execution reaches its steady-state or peak performance by
executing optimized JITed code.

The poor performance during a VM’s warmup phase is
a well-known and important problem [1]–[5]. Although this
problem has been extensively studied in the past, the lack of
proper solutions in most production-quality VMs attests to the
difficulty of solving this problem in practice.

In this paper, we describe Jump-Start, which is the approach
used to address the warmup problem in the HipHop Virtual
Machine (HHVM) [6], [7]. HHVM is a production-quality, high-
performance VM implementing the Hack dialect of PHP [8],
and which has been used to run some of the largest sites on
the web, including Facebook, Wikipedia and Baidu [9]. Jump-
Start adopts the approach of reusing JIT profile data across
VM executions, similar to earlier work done in the context of
Java [1], [4], [10]. In contrast to earlier work though, this paper
describes how HHVM leverages Jump-Start to improve not only
warmup but also steady-state performance. Furthermore, this
paper describes practical aspects of our experience deploying
Jump-Start in a large-scale production scenario, namely running
the Facebook website.

Overall, this paper makes the following contributions:
1) It presents the design of Jump-Start and its implementa-

tion within HHVM.
2) It describes several Jump-Start-based steady-state opti-

mizations implemented in HHVM.
3) It presents a thorough evaluation of the impact of Jump-

Start on HHVM for running a real-world, large-scale
workload, the Facebook website.
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4) It discusses reliability and other practical aspects of
deploying Jump-Start in a production environment.

The rest of this paper is organized as follows. Section II
presents background on HHVM as well as motivation for Jump-
Start. Section III then makes the case for the design decisions
behind Jump-Start, which is then presented in Section IV.
The optimizations to improve steady-state performance using
Jump-Start are presented in Section V. Section VI discusses
reliability concerns and how this work addresses them. After
that, Section VII presents an evaluation of Jump-Start, followed
by a discussion of related work in Section VIII. Finally,
Section IX concludes the paper.

II. BACKGROUND AND MOTIVATION

The ability to seamlessly leverage runtime information is
particularly important in JIT compilers for dynamic languages.
This is because, in lack of profiling information, the quality of
the compiled code for applications written in such languages
suffers tremendously due to the wide realm of potential runtime
behavior enabled by various dynamic features. Although VMs
can naturally support profile-guided optimizations through
JIT compilation, the overheads of JIT compilation can be
significant, particularly for large-scale applications with huge
amounts of code.

In this work, we study how to reduce the overhead of JIT
compilation in the context of HHVM [6], [7]. HHVM is an ideal
case study for this problem due to a combination of several
factors: (1) it runs large-scale applications, (2) it implements
a dynamic language where profile-guided optimizations are
important to obtain performance, (3) it is a highly optimized,
production-quality VM, and (4) it employs state-of-the-art
compilation techniques [7]. In this section, we first provide
a brief background about HHVM’s compilation pipeline
(Section II-A), then we outline the challenges faced by HHVM
regarding JIT compilation overhead (Section II-B), followed
by a discussion of available opportunities (Section II-C).

A. HHVM Background

HHVM employs a traditional VM architecture where the
source code is compiled to a bytecode representation offline,
before the application starts to execute. HHVM uses a custom
bytecode designed specifically for representing PHP and Hack
programs [6]. Due to the dynamically typed nature of these
languages, the bytecode is untyped. The bytecode representation
of the source code is deployed to the execution environment
— in Facebook’s case, to its fleet of web servers spread
across many data centers. Compared to language VMs, this
bytecode-based architecture allows some early compilation
steps and optimizations to be performed offline, thus reducing
runtime overheads. For production deployment (as opposed
to development), where performance is more important, the
application’s bytecode is aggressively optimized offline using
whole-program analyses and optimizations that benefit from the
fact that the application code will not change at runtime [6], [7].
These optimizations significantly boost the application’s steady-
state performance, but they prevent incremental deployment
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Fig. 1: JITed code size over time for HHVM running the Facebook website
without Jump-Start.

and require the HHVM server to be restarted whenever a new
revision of the application is deployed. At runtime, HHVM
can execute the application’s bytecode representation through
either interpretation or JIT compilation. We discuss these two
components next.

HHVM implements a traditional threaded bytecode inter-
preter [11], which serves two main purposes. First, it allows
execution to make progress while the code is being compiled.
Second, the interpreter provides a last resort for execution.
This second purpose is particularly useful in case of HHVM
because it removes the need to compile the entire source code
which, as discussed in Section II-B, can be quite large.

The HHVM JIT compiler includes two alternative compila-
tion strategies. The first one is a tracing-based compiler, which
breaks the application into tracelets that can be efficiently
compiled purely based on information collected by inspecting
the live VM state [6]. The machine code produced for a
compilation unit using this strategy is called a live translation.
The second compilation strategy uses a region-based approach
that aggressively optimizes arbitrary code regions by lever-
aging runtime information collected through profiling, thus
implementing a traditional PGO framework [7]. For a given
compilation unit, the machine code produced for profiling
is called a profiling translation, while the final optimized
code is called an optimized translation. In practice, the hottest
portions of the application are compiled by the profile-guided
region compiler to obtain the highest performance, while the
remaining portions of the application that are still regarded
worth compilation use the tracelet JIT.

B. Challenges

HHVM was primarily motivated by and designed to execute
the Facebook website. This website has a monolithic architec-
ture, with a huge code base consisting of over 100 million lines
of code. In addition to this huge amount of code, compiling the
website to machine code is even more challenging because of its
very flat execution profile, with no single function representing
anywhere close to 1% of the execution cycles and a very long
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tail of functions that execute. As a result, a very large number
of functions need to be optimized by the JIT to significantly
improve performance.

To illustrate the amount of code that HHVM deals with,
Figure 1 plots the size of the JITed code over the initial 30
minutes of executing the Facebook website. In this figure,
the Jump-Start technique described in this paper is not used.
Figure 1 shows that HHVM produces nearly 500 MB of JITed
code before it stops compiling, which happens after nearly 25
minutes into the execution (marked as point “D”). A few other
points of interest are marked in Figure 1. At point “A”, the JIT
stops profiling new code and starts tier-2 compilation. Between
points “A” and “B”, the rate at which JITed code is produced
reduces because the optimized code is not immediately placed
in the code cache. Instead, the JITed code is placed in temporary
buffers and only later relocated into the code cache according
to the result of the function-sorting optimization (cf. Section
5.1.1 in [7]). The relocation of the optimized code into the code
cache happens between points “B” and “C”. Only at point “C”
is that all the optimized code is available to execute — at this
point, HHVM is already able to reach about 90% of its peak
performance. Between points “C” and “D”, the JIT continues
to compile new code that is encountered via the tracelet JIT
as described in Section II-A. At point “D”, JITing ceases and
the system finally achieves its peak performance.

During warmup, the server is able to handle an increasing
number of requests per second (RPS). Figure 2 shows the
normalized RPS over time for a typical web server when it
restarts. At time 0, the old server process stops accepting new
requests and shuts down. Then, the new server process starts,
and it begins to handle requests after initialization. It takes
about 25 minutes until the server reaches peak performance.
In Figure 2, the area below the curve represents the amount
of requests served, while the area above the curve represents
the amount of extra requests that could have been served had
the server not restarted. We call the latter the capacity loss.

The warmup overhead outlined above was reasonable in
the early days of Facebook, when the website used to be
updated (and HHVM restarted) once a day. However, over
time, Facebook started to move to more frequent website
updates, until it eventually switched to a continuous deployment
approach in 2017 [12], [13]. With continuous deployment,
Facebook is updated as soon as a new release from the master
branch is cut and fully tested, which typically happens every 75
minutes in the common case where all tests succeed. Although
continuous deployment improved developer productivity, it also
exacerbated HHVM’s JIT overhead. Suddenly, each HHVM
server was spending about 13% of its life span until optimized
code was produced and decent performance was reached, and
32% of its life span until reaching peak performance.

The effect of capacity loss during restart is even more
alarming in the context of a large-scale service like Facebook,
which serves over one billion users every day. The Hack code
running on HHVM implements the core functionality of the
Facebook website, thus running on a significant portion of
Facebook’s server fleet distributed over multiple data centers
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Fig. 2: Server capacity loss due to restart and warmup.

across the globe. While it is theoretically possible to limit
capacity loss by limiting the number of servers that restart
simultaneously, doing so would increase the time for updating
the website, and thus prevent its continuous deployment. As a
result, efficiency during warmup is important to reduce capacity
demand for running the website with continuous deployment.

C. Opportunities

Fortunately, the large scale of Facebook’s website that
multiplies HHVM’s warmup overhead also brings some oppor-
tunities. Given the website’s monolithic nature, the Hack source
code that runs on all web servers across the globe is identical.
The web traffic driven to each data-center region varies greatly
though, with very different patterns of web requests sent to
each region. However, within each region, the web requests
are much closer in nature. Within each data center, the load
balancers route requests to servers using a technique called
semantic routing, which partitions the website’s endpoints into
a fixed set of partitions (currently 10). The web servers are also
partitioned into the same number of semantic buckets, each
one corresponding to a semantic partition. The load balancers
try to assign traffic according to this partitioning scheme, such
that a request for an endpoint is preferably assigned to a
server in the corresponding bucket, except when the preferred
bucket is overloaded. Semantic routing improves the overall
site performance because, due to HHVM’s profile-guided JIT
architecture, a request tends to execute on a server with JITed
code that was more tailored for that particular endpoint. Within
a pair of data-center region and semantic bucket though, the
traffic is very similar, and so is the code produced by the
JIT. This provides an opportunity to share some of the work
involved in producing the JITed code across the large set of
servers within the same region and semantic bucket.

Each time a new version of the Facebook website is deployed,
the rollout happens in three phases: C1, C2 and C3 [13]. The C1
phase restarts HHVM on the web servers that handle requests
coming from employees of Facebook, Inc. The second phase,
C2, restarts 2% of the fleet and, finally, C3 restarts the rest of
the fleet. The C1 and C2 phases serve to test and validate that a
version of the website is good before it is deployed to the entire
fleet. These initial phases contain extensive monitoring and
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alerts, which must remain healthy before the C3 deployment
starts. This phased deployment technique, which is common
practice for large-scale deployments, provides a very useful
framework for improving HHVM’s warmup by sharing JIT
profile data collected at earlier phases.

III. THE CASE FOR JUMP-START JIT COMPILATION

When considering the possible language-implementation
approaches, AOT compilation is the best alternative if the goal
is warmup performance. In the specific case of Facebook, an
earlier approach was to use an AOT compiler, HipHop [14].
HHVM was designed to replace the HipHop compiler for three
main reasons. The first one is the already mentioned ability to
transparently leverage runtime information for optimizations.
Second, HHVM had the goal of supporting a fast edit-save-and-
reload development cycle, which is very important for developer
productivity and a main reason for using scripting languages.
Finally, HHVM had the goal of solving the problem of dealing
with huge amounts of compiled code produced for large-scale
applications such as the Facebook website. Back in 2012, using
HipHop to compile this website was already challenging due to
resulting in binaries that were hitting Linux’s 2 GB static-code
limit. Today, Facebook’s source code is multiple times larger,
which would make AOT compilation even more challenging.
For all these reasons, switching back to AOT compilation is not
a compelling option, particularly for applications of Facebook’s
scale. Instead, we focused our effort on improving HHVM’s
warmup, while retaining the aforementioned VM benefits.

Our approach to address the warmup problem is to rely on
the vast number of servers running the same workload, which is
typical of large-scale applications, and to reduce the redundant
work done across the servers during warmup. Two approaches
have been used in the past to avoid some redundant warmup
work: sharing profile data [1], [4], [10] and sharing JITed
machine code [15]. The advantage of sharing JITed machine
code is that a larger portion of the redundant work is reused,
thus reducing the warmup overhead to a greater extent. Despite
that advantage, instead we opted for sharing the profile data
in Jump-Start for a few reasons:

1) Full Optimizations. As discussed in the ShareJIT work,
sharing optimized code may require disabling some
code optimizations [15]. For example, ShareJIT disables
optimizations that embed absolute addresses and even
inlining of user-defined methods. Unfortunately, disabling
such optimizations can significantly degrade steady-state
performance.

2) Safety and Robustness. There may be subtle cases where
machine code must not be shared, and these may be
tricky to detect. In the case of HHVM, the JIT compiler
contains dozens of runtime options that control how the
code is optimized and generated. For example, there are
options to increase error levels (such as turning some
specific warnings into fatal errors) and options that emit
extra checks for debugging. Another usage is for emitting
code differently depending on the target architecture or

micro-architecture, such as to avoid issues specific to a
particular processor model (e.g. [16]). Runtime options
in HHVM are easily overwritten via configuration files,
which provide a very rich mechanism to set different
values for any option based on the machine model, server
name, or user-defined machine groups/tiers. Besides JIT
options, PHP/Hack also provide APIs to query these
server properties, so even the application code may
behave differently depending the value of these properties.
In such scenarios, it is very challenging to robustly ensure
the safety of sharing JITed code.

3) Simplicity. Sharing profile data is arguably simpler than
sharing machine code. Once a mechanism for saving
and reloading the profile data is built, the rest of the
VM can operate in the same way, regardless whether the
profile data was collected during that same VM execution
or came from elsewhere. In contrast, sharing machine
code requires making sure that all the emitted code is
relocatable so that, once the code is loaded in a new
VM instance, the VM can properly patch the addresses
of various code and data elements that may reside at
different locations.

4) JIT Debugging. Besides supporting sharing across VMs,
having a mechanism to save and reload the JIT profile
data is also useful for debugging JIT issues. If a collected
profile triggers a JIT bug, compiler engineers can use
that to replay and step through the execution of the JIT
in order to reproduce and understand the issue, as well as
to verify whether or not a candidate fix actually works.

IV. HHVM JUMP-START

In this section, we give an overview of HHVM’s workflow
with Jump-Start (Section IV-A) and then describe the contents
of HHVM Jump-Start’s profile data (Section IV-B).

A. Workflow

Figure 3a summarizes HHVM’s execution workflow without
Jump-Start, which was described in Section II-B. After the
HHVM process initializes, it starts serving requests and then
JITing profile code. After running profile code for a few minutes
to collect profile data, HHVM then recompiles the profiled
code in optimized mode. After that, any new code that is
reached is JITed in live mode. In steady state, the JITed code
that executes is either optimized or live code.

The goal of Jump-Start is to pre-compile the JITed code
before starting to serve requests, so that the server can achieve
high performance from the start. Given HHVM’s architecture,
we had two choices when it comes to what code could be pre-
compiled: both optimized and live code, or just the optimized
code. Although pre-compiling both the optimized and live code
would completely eliminate the JIT overhead before starting to
serve requests, we opted for just pre-compiling the optimized
code. The reason for this is the time that it would take to collect
the profile data needed for all live code. As Figure 1 shows,
it takes HHVM nearly 25 minutes to finish producing all the
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initialize start serving requests JIT profile code collect profile data JIT optimized code JIT live code

(a) No Jump-Start

initialize start serving
requests

JIT profile
code

collect profile
data

JIT instrumented
optimized code

collect profile data
for optimized code

serialize
profile data exit

(b) Jump-Start Seeder

initialize deserialize profile data JIT optimized code start serving requests JIT live code

(c) Jump-Start Consumer

Fig. 3: HHVM execution workflow without and with Jump-Start.

live code. Since we wanted to leverage HHVM’s phased push,
with profile data collected in the C2 phase, which lasts about
30 minutes, collecting profile data for the live code would not
leave enough time to validate and distribute the profile data
before the C3 phase. Therefore, we opted for only collecting
profile data needed to JIT the optimized code, which takes
about 10 minutes (cf. Figure 1). Furthermore, as mentioned in
Section II-B, once optimized translations are produced, HHVM
is already able to achieve about 90% of its peak performance,
thus achieving a good trade-off between the time to produce
the profile data and the performance benefit it provides.

Figure 3b illustrates HHVM’s execution workflow on the
Jump-Start seeder servers, which collect the profile data in
the C2 push phase. The first four steps are similar to when
Jump-Start is not used. The first difference occurs when JITing
the optimized code, which contains some extra instrumentation
used to collect profile data that feed some of the Jump-Start-
based steady-state performance optimizations discussed in
Section V. Once these profile data are collected, they are
serialized and the server exits to perform validation of the
profile data, which is discussed in Section VI.

The servers in the C3 phase execute in Jump-Start consumer
mode. The execution workflow in this mode is illustrated in
Figure 3c. In this case, after initialization, HHVM proceeds
to deserialize the profile data, which was produced by the
seeder servers and downloaded while the previous instance of
the HHVM server was still running. After that, HHVM uses
these profile data to JIT all the optimized code, which happens
before the server starts to accept requests. Note that, because
HHVM is not serving user requests yet, JITing happens in
parallel using all the cores of the machine, which allows the
optimized code to be compiled much faster than without Jump-
Start. Once that finishes, HHVM starts to accept user requests
and to produce live translations for any new code that was not
compiled in optimized mode until the code cache fills up.

B. Contents of the Profile-Data Package

On Jump-Start consumers, it is necessary to make sure all
inputs and context needed by the JIT are available before
compiling optimized translations, which includes the following
data categories:

1) Necessary global data from the bytecode repo. This
category includes static (literal) strings, static arrays,
and VM data representing units, classes and functions
(including bytecode). Without Jump-Start, the in-memory
data structures for repo global data are initialized on
demand. For example, a unit (and classes/functions
defined in it) is loaded into memory by the autoloader
when executing the first request that uses it. This is
not a problem without Jump-Start, because PGO is only
applied to hot functions that are already loaded. However,
on Jump-Start consumers, the JIT runs before any request.
Thus, the lists of units, strings and arrays that need to
be preloaded are included in the serialized data.

2) JIT profile data. This includes all the data necessary to
create the optimized translations, including the bytecode
instructions and types for each profile translation along
with its execution count. This also includes all the JIT
target profiles, which are custom counters that drive
specific optimizations (e.g. call target profiles for method
dispatch) [7].

3) JIT profile data for optimized code. This includes extra
profile data that enables some of the steady-state opti-
mizations based on Jump-Start discussed in Section V.

4) Certain intermediate JIT results. Some data, although
they could be derived from the JIT profile data, may
be worth including in the profile package to speed up
Jump-Start, essentially moving their computation from
the consumers to the seeders. The main example is the
list with the order in which the functions should be
placed in the code cache.
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V. BOOSTING STEADY-STATE PERFORMANCE

Although the initial motivation for Jump-Start was to improve
HHVM’s warmup performance, we have also been able to
leverage it to improve HHVM’s steady-state performance. This
section describes several optimizations that we were able to
either add or improve by leveraging Jump-Start.

A. Improving Basic-Block Layout

Due to the huge amount of JITed code produced for running
large-scale websites like Facebook, code-layout optimizations
play a very important role in improving HHVM’s performance
on such workloads. As described in Ottoni [7], the HHVM
JIT uses profile data collected by its tier-1 JIT in order to
drive a set of code-layout optimizations including basic-block
layout, hot/cold code splitting, and function sorting [17]. The
HHVM JIT applies basic-block layout and hot/cold splitting
together, driven by the same profile data, using the Ext-TSP
technique [18]. This section describes how we were able to
improve the effectiveness of these two optimizations using
Jump-Start.

The profile data collected via the tier-1 JIT consists of
instrumentation-based counters inserted at bytecode-level basic
blocks. The basic-block layout and hot/cold splitting optimiza-
tions, however, are applied at the very end of the compilation
pipeline, at HHVM’s lowest-level intermediate representation,
called Vasm [7]. The semantic gap between the granularities
where the profile data is collected (bytecode) and used for code-
layout optimizations (Vasm) inevitably results in inaccuracies
in the Vasm block weights, due to both lowering steps and
various code optimizations that are applied along the way.
These inaccuracies in Vasm block weights can reduce the
effectiveness of both the basic-block and the hot/cold-splitting
optimizations. This same problem was identified in the context
of static compilation by Panchenko et al. [19], who observed
opportunities to improve the layout of code compiled by GCC
and LLVM even when using their PGO frameworks. Their
insight was that these opportunities resulted from both the gap
in representations where the profile data is injected (at a high-
level representation) and used for code layout (at the end of the
compilation pipeline), and also the various code optimizations
applied along the way. With that insight, they demonstrated
that another pass of profile and code-layout optimizations,
applied at the binary level using the BOLT binary optimizer,
could greatly improve the quality of the code layout and the
performance of the final binary. In this work, we used that
insight to further boost the impact of HHVM’s basic-block and
hot/cold splitting optimizations.

In order to obtain accurate profile data to improve the
layout of the optimized JITed code, it is necessary to profile
the execution of the optimized code itself. In theory, the
improved optimized code produced by leveraging this addi-
tional profile data could be produced by adding yet another
optimization tier to the JIT (a 3rd tier). In practice, however,
this would significantly increase HHVM’s warmup time and
the corresponding capacity loss, which were already a concern
prior to Jump-Start. For this reason, such approach was never

pursued before. Fortunately, Jump-Start provided a chance
to explore the opportunity to improve HHVM’s code-layout
optimizations without sacrificing warmup performance, which
we implemented as described next.

In the seeders, the optimized code is JITed with extra
instrumentation to count the number of times that each Vasm-
level basic block is executed. This instrumented optimized
code runs for a few minutes to collect profile data, which is
then included in the serialized profile. In the consumers, the
only change is to read these extra profile counters from the
profile data and use them to update the Vasm block counters
right before applying the code-layout optimizations.

B. Improving Function Sorting

Another important code-layout optimization is function sort-
ing. The HHVM JIT already implemented this optimization [7],
using the C3 algorithm proposed by Ottoni and Maher [20].
This section describes how Jump-Start enabled improving the
effectiveness of this optimization.

The C3 algorithm sorts the functions in a linear order based
on a weighted, directed call graph [20]. In this call graph, the
weight of an arc (f → g) is the frequency that function f calls
function g. Prior to Jump-Start, this call graph was obtained by
instrumenting the tier-1 JITed code produced by HHVM. The
linear order produced by C3 based on this call graph was then
used to determine the order in which the optimized translations
were placed in the JIT’s code cache.

There is one major problem with the call-graph construction
described above: HHVM’s tier-1 compilation does not perform
function inlining. As a result, although the call graph was
representative of the tier-1 JITed code, it could be very
inaccurate for the tier-2 optimized code, where function inlining
is aggressively applied. And we note that enabling inlining in
the tier-1 compiler is not a solution because it is unable to
form non-trivial regions in the absence of profile data.

In order to fix the call-graph inaccuracy described above,
we also used instrumentation of the optimized JITed code in
the seeders, by inserting counters at the entry of each function.
This profiling probe increments a counter corresponding to the
caller-callee pair involved. Once the seeders have collected
enough profile data for the tier-2 code, the JIT uses this new
profiling data to build an accurate call graph. This call graph
is then given to the C3 algorithm to produce a linear function
order, which is then appended to the serialized JIT profile data.
The consumer servers simply load the desired function order
out of the serialized profile data and emit the JIT optimized
code following this order.

C. Improving Object Layout

In addition to improving code locality, we have also been
able to improve data locality by leveraging Jump-Start. One
optimization we created to improve data locality was to
optimize the layout of user-defined objects. The goal of this
optimization is to reorder the properties within objects by using
profile information collected through Jump-Start.
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Reordering of structure fields has been studied in the context
of C applications in the past [21]–[23]. However, in C structures,
reordering fields can affect correctness due to unrestricted use
of pointers, thus rendering this optimization unsafe. Therefore,
previous work focused on creating recommendation tools
that suggest new orders for the fields, leaving it up to the
programmer to verify the correctness of the transformation and
then manually apply it.

Our work, in the context of PHP/Hack, does not face the
issue with pointers in unmanaged languages like C, but it has
two different constraints: (a) inheritance and (b) the declared
order of the object properties is observable in PHP/Hack2.
Since objects can inherit properties from its ancestor classes
and subtyping must be honored, our technique only reorders
properties within each layer of the class hierarchy. To deal with
the observable order of properties, each object representing
a PHP/Hack class is extended with an array that maps each
property’s declared index to the physical index in memory.
This array is then used in all operations that require accessing
the properties in their declared order. Although such operations
become more expensive, they are not commonly used in
practice.

In order to guide property reordering, we use the Jump-Start
seeder machines to collect profile data about property accesses.
For each non-static property P declared in class K, we count
the number of accesses to this property by instrumenting the
JITed profile code (tier-1). These counts are kept in a hash
table mapping the string “K::P” to its corresponding counter.
This hash table is then serialized along with the serialized JIT
profile data.

In the consumer servers, when a PHP/Hack class K is created
inside the VM, the order for K’s inherited properties is copied
from its parent class and then the order of its own, non-inherited
properties is decided and appended. To decide this order, we use
a simple hotness metric based on the property-access counters
that were loaded from the JIT profile data. More specifically, the
properties are sorted in decreasing order of their access counts.
We note that previous work has also explored using the affinity
of the fields/properties to decide on their order [21]. Using the
affinity of access requires more expensive profiling, but it has
the potential to further improve data locality. Exploring this
opportunity inside HHVM is left for future work.

VI. RELIABILITY CONSIDERATIONS

Although Jump-Start proves very effective in improving
performance, it also raises some reliability concerns when
deployed to large-scale production systems. This section
discusses these concerns and how to address them in practice.

A. Avoiding Widespread JIT Compiler Bugs

Given HHVM’s large-scale usage inside Facebook’s data
centers, combined with HHVM’s own complexity and the huge
size and constantly evolving nature of the Hack code base that

2For example, in PHP/Hack, an object can be casted to an array and then
iterated over its properties in declared order.

it runs, it is nearly impossible to avoid hitting HHVM bugs
in production. This is even more challenging due to HHVM’s
profile-guided JIT compilation approach. Even with unmodified
source code, different profile data collected at runtime may
expose bugs in the JIT compiler.

Although the profile-guided nature of the JIT compiler makes
it harder to avoid compiler bugs, these characteristics also
make HHVM more resilient to widespread compilation bugs.
With each server collecting its own profile data, it is unlikely
that all servers hit a rare bug. Furthermore, when a server
crashes, it automatically restarts and the chances of hitting
a bug again are small. Effectively, the rate of failed servers
decreases exponentially with each attempt, because only the
servers that crash will restart.

With Jump-Start, a straightforward deployment loses this
natural resiliency that arises from each server independently
collecting its own profile data. If a bad profile data is collected
and shared with the entire server fleet, all the servers may crash
at the same time. Even worse, upon automatically restarting,
the servers will again crash in the same way, entering a crash
loop and taking down the entire website.

To avoid the risks of a single “bad” profile-data package caus-
ing a major service disruption, we employed three techniques
to improve Jump-Start’s reliability:

1) Validation of profile data. Before publishing a profile-
data package, each seeder validates that the profile data
do not cause crashes during JIT compilation, and that
the resulting optimized code does not lead to crashes or
elevated error rates. To do so, a seeder server restarts
HHVM in Jump-Start consumer mode using the profile
data it just collected and only publishes the data if it
remains healthy for a few minutes. Otherwise, the server
restarts in seeder mode and repeats the entire process.
We also store the problematic profile data on a database,
so that rare bugs triggered by edge cases in the profile
data can later be easily reproduced and debugged.

2) Use of multiple, randomized profiles. Instead of having
a single seeder server for each data center and semantic
partition (cf. Section II-C), we actually have several. Each
seeder independently collects, validates, and publishes
its own profile-data package. A consumer randomly
picks a profile-data package for its corresponding data
center and semantic partition each time it restarts. This
way, even if a crash-inducing profile-data package slips
through validation, it only affects a fraction of the
consumers. Furthermore, when affected consumers crash
and automatically restart, they will again pick a random,
probably different, profile-data package, thus reducing
the number of affected consumers exponentially with
each restart.

3) Automatic no-Jump-Start fallback. If a consumer cannot
find or download a suitable profile-data package, or it
repeatedly fails to healthily start in Jump-Start mode, it
will automatically restart with Jump-Start disabled, i.e.
collecting its own profile data. This mechanism avoids
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not only issues with potentially bad profile data that
managed to pass validation, but also the situation of
the seeders failing to produce a package, or in case the
package itself gets corrupted.

Finally, HHVM has a simple configuration option to disable
Jump-Start, which can be quickly used as a last resort across
the entire fleet of servers. Contrary to the techniques described
above, which are fully automated, disabling Jump-Start via
this configuration option is a manual process done at the
discretion of the engineers. However, in our experience running
the Facebook website using HHVM Jump-Start for over one
year, we never had to resort to this mechanism.

B. Avoiding Inferior Performance

Improperly collected profile data on the seeders can neg-
atively affect the performance of the entire fleet. This may
happen for many reasons, with the most common one being
that a seeder did not receive enough requests during profile
collection because its data center was partially or fully drained
at the time (e.g. due to network disruptions). The randomized
selection of profile-data packages discussed in Section VI-A
also helps reducing the performance impact in such cases. In
addition, profile coverage, including the number of functions
profiled and the total size of profile data, is checked against
pre-configured thresholds before the profile data is published.

VII. EVALUATION

This section presents an evaluation of Jump-Start’s impact
on HHVM’s performance for running the Facebook website.
We evaluate Jump-Start’s impact on both warmup performance
(Section VII-A) and steady-state performance (Section VII-B).

The servers used in this evaluation are powered by 1.8-GHz
Intel Xeon D-1581 (Broadwell) microprocessors, with 16 cores
and 32 GB of RAM. The servers run the Linux operating
system.

A. Warmup Performance

To quantitatively evaluate the warmup impact, we set up
two production test tiers, one with and one without Jump-Start.
Both tiers consist of more than 2000 web servers, and they
are simultaneously pushed every 1 to 2 hours. Note that the
servers were not loaded to their maximum capacity; instead,
they were taking their typical production load.

Performance during warmup is evaluated in two aspects:
throughput, as measured by RPS, and latency, as measured
by the average wall time it takes to process a request. Both
throughput and latency improve with server uptime during
warmup. Thus, we plot performance-over-uptime curves in
Figure 4 to show the trend during the initial 10 minutes of the
servers’ lifetime. We compare the warmup performance during
the first 10 minutes because these are the most critical for our
production deployment and, even without Jump-Start, HHVM
is able to finish JITing all the optimized code and to achieve
nearly 90% of its peak performance after that.

In Figure 4, the server uptime (x-axis) starts when the new
HHVM process starts, while the curves start when HHVM
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Fig. 4: Benefits of Jump-Start on (a) latency and (b) throughput during warmup.

starts to serve user requests. Recall from Figure 3c that, before
starting to serve requests, Jump-Start already deserializes the
profile data and JITs the optimized code, while no JITing
happens in the no-Jump-Start case before starting to serve
requests (Figure 3a). Despite doing more work prior to start
serving requests, the Jump-Start servers still start to take user
requests slightly earlier than the servers without Jump-Start.
The reason for this discrepancy is due to how the initialization
work is performed in either case. During initialization, HHVM
executes a number of warmup requests, which serve the
purposes of both warming up some HHVM extensions that talk
to backend services and preloading some important bytecode
and VM metadata into memory. Because the order in which
these data are loaded affects data locality and steady-state
performance, without Jump-Start, the warmup requests are
executed sequentially. However, with Jump-Start, the serialized
profile data already includes lists encoding the order in which
these metadata should be loaded, and these data are preloaded
before running the warmup requests. As a result, with Jump-
Start, the warmup requests can be run in parallel, which greatly
reduces the time to process them. In the end, this win in
initialization with Jump-Start is more than enough to offset
the time that it takes to JIT all the optimized code, which is
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also faster with Jump-Start because the JIT runs concurrently
using all hardware cores.

Figure 4a compares the average wall time per request over
the first 10 minutes after the server starts. From the chart,
we can see that Jump-Start brings about a 3× reduction in
wall time per request between when HHVM starts to serve
requests and 250s. This is mostly because, without Jump-
Start, the initial requests spend most of their time loading and
interpreting bytecode. Such overhead is greatly reduced after
250s, when the hot units are loaded, and profiling translations
are created. However, a request still takes notably more time
until optimized translations are finished, which happens a bit
after 550s. In contrast, with Jump-Start, the per-request wall
time on servers not only starts much lower but also converges
to a level closer to the steady-state value at about 150s. Even
after 550s, as the curves get much closer, the wall time is
still slightly lower with Jump-Start due to the optimizations
described in Section V.

Figure 4b shows the comparison of RPS over uptime. Note
that the RPS values are normalized to those of servers that are
fully warmed up running the same workload. Overall, in the
first 10 minutes, a server without Jump-Start loses 78.3% of its
capacity compared to the ideal case of a server that does not
restart. In contrast, the capacity loss with Jump-Start during
the initial 10 minutes is only 35.3%. Therefore, relative to
running HHVM without Jump-Start, Jump-Start reduces the
capacity loss during the initial 10 minutes by 54.9%.

B. Steady-State Performance

In order to measure steady-state performance, we conducted
experiments while running the Facebook website serving
production traffic under high load. A total of 200 servers
were used per experiment, with one half running without Jump-
Start and the other half running with Jump-Start. We note
that both sets of servers run the same HHVM binary in our
experiments, with just different configuration options used to
enable/disable Jump-Start. For these experiments, we used an
in-house performance-measurement tool. This tool synchronizes
the start of web servers in all servers and then waits for them
all to warmup. After that, the tool loads the servers to a target
80% CPU utilization and then collects performance data for a
minimum of 30 minutes. The main performance metric reported
by the tool is the throughput measured in RPS.

Figure 5 summarizes the steady-state performance impact
of Jump-Start for HHVM running the Facebook website, as
well the effects on some key micro-architectural metrics. The
throughput speedup from Jump-Start is 5.4%, i.e. HHVM
is able to serve 5.4% more requests in steady-state. The
micro-architectural metrics shown in Figure 5 demonstrate
the effectiveness of the Jump-Start-based optimizations. The
code-layout improvements help to reduce front-end metrics,
reducing branch misses by 6.8%, I-cache misses by 6.2% and I-
TLB misses by 20.8%. Jump-Start’s data-layout optimizations,
including object-property layout and how Jump-Start preloads
the bytecode meta-data, help by reducing D-cache misses by
1.4% and D-TLB misses by 12.1%. Finally, Jump-Start reduces
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last-level cache (LLC) misses by 3.5% due to a combination
of both code and data locality improvements.

Figure 6 presents the steady-state performance impact of
enabling Jump-Start and each of the optimizations described in
Section V. In this graph, the baseline is Jump-Start without any
of those optimizations. The first bar measures the impact of
disabling Jump-Start, which causes a 0.2% regression. In other
words, HHVM is about 0.2% faster with Jump-Start enabled
versus disabled, even without the optimizations from Section V.
The other three bars show the speedup of individually enabling
each of the optimizations described in Section V. Basic-block
reordering (along with hot/cold splitting) gets the largest
speedup, 3.8%. This confirms the observations of the BOLT
work [19] regarding the importance of very accurate profile
data to drive these optimizations. The third bar in Figure 6
shows that HHVM gets a 0.75% speedup by improving the
accuracy of the call graph used to sort the functions in the code
cache. Finally, the last bar shows that the new object-property
reordering optimization enabled by Jump-Start results in a 0.8%
speedup.

VIII. RELATED WORK

To the best of our knowledge, Arnold et al. [1] was the first
work to describe reusing profile data across virtual-machine
executions. Their work differs from ours in several aspects.
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First of all, their profile repository is local, restricted to a
single server, while our approach is to share profile data
across many servers, which is very important for large-scale
deployments. Second, they use the profile data mostly to
decide the optimization level to compile each method given the
amount of time spent in the given method and the estimated
speedup of compiling the code at that optimization level.
Unlike Jump-Start, their mechanism is not used to perform
any additional optimization. Finally, compared to our approach,
Arnold et al. [1] also has the disadvantage that the application
still initially runs in interpreted mode and compiled code is
produced during the application’s execution. This results in two
overheads: slower execution due to the initial interpretation
and JIT overhead to produce optimized code. Our technique,
in contrast, pre-compiles the optimized code before starting
to execute the application, therefore eliminating both of these
overheads.

Majo et al. [4] presents an approach similar to Arnold et
al. [1], in which profile data is cached and reused across
executions. Similar to Jump-Start, but in contrast with Arnold
et al. [1], Majo et al. [4] uses the profile data to directly produce
optimized code (tier 2) for all the profiled methods. In contrast
to Jump-Start though, this compilation only happens after the
code is run through the interpreter to trigger compilation. This
is similar to Arnold et al. [1]’s approach, and it shares with
them the same disadvantages compared to Jump-Start regarding
runtime interpretation and compilation overheads.

Another work that closely relates to ours is Azul Zing’s
ReadyNow [10]. Similar to HHVM Jump-Start, ReadyNow also
allows reusing JIT profile data across runs, so that the profile
can be collected in a small set of servers and then reused across
a large set of servers. However, ReadyNow requires the user
to insert directives in the code to prevent invalid optimizations
that would break the application’s semantics [24], [25]. In
contrast, HHVM Jump-Start does not require user annotations
to guarantee correctness, thus being more transparent and
robust. These properties are particularly important for HHVM’s
dominant use-case of running large-scale and rapidly evolving
web applications.

Krintz [26] describes a hybrid approach that combines online
and offline profiling. The goal of that work was to reduce the
drawbacks of each one, namely the overhead of online profiling
and the potentially staleness of offline data. In our work, we
solely use offline profiling to reduce the JIT overhead, and
we address the potentially staleness of the offline profile by
freshly collecting it for the exact workload and usage scenario
where the VM is going to be used.

Xu et al. [15] describes ShareJIT, which is a technique to
share JIT compiled code across processes, in the context of
Java. In order to make the compiled machine code shareable,
ShareJIT disables some optimizations (e.g. embedding absolute
addresses and inlining of user-defined methods), which then
degrades steady-state performance. In contrast, the approach
presented in this paper not only allows all JIT optimizations to
be applied but also supports additional optimizations to further
boost steady-state performance.

Béra et al. [2] snapshots the optimized intermediate repre-
sentation instead of the final machine code to save some of
the compilation overhead.

Finally, we highlight that all previous approaches from the
literature that reuse profile data across runs lack the additional
optimizations included in HHVM Jump-Start presented in
Section V. To the best of our knowledge, HHVM Jump-Start
is the first of these techniques to improve not only warmup
performance but also steady-state performance.

IX. CONCLUSION

This paper motivated and argued for the Jump-Start com-
pilation approach developed in the context of HHVM. This
technique has been deployed across the Facebook website,
leading to a 54.9% reduction in the capacity loss during
HHVM warmup. Furthermore, this paper also described several
optimizations that were either enhanced or completely built
on top of the Jump-Start mechanism, providing an additional
5.4% steady-state performance. Finally, although we studied
and evaluated these techniques in the context of HHVM, we
believe that they are general enough and thus can be useful to
improve both warmup and steady-state performance of other
optimizing VMs.
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