
Published as a conference paper at ICLR 2020

PERMUTATION EQUIVARIANT MODELS FOR
COMPOSITIONAL GENERALIZATION IN LANGUAGE

Jonathan Gordon∗
University of Cambridge
jg801@cam.ac.uk

David Lopez-Paz, Marco Baroni, Diane Bouchacourt
Facebook AI Research
{dlp, mbaroni, dianeb}@fb.com

ABSTRACT

Humans understand novel sentences by composing meanings and roles of core
language components. In contrast, neural network models for natural language
modeling fail when such compositional generalization is required. The main
contribution of this paper is to hypothesize that language compositionality is a
form of group-equivariance. Based on this hypothesis, we propose a set of tools
for constructing equivariant sequence-to-sequence models. Throughout a variety
of experiments on the SCAN tasks, we analyze the behavior of existing models
under the lens of equivariance, and demonstrate that our equivariant architecture is
able to achieve the type compositional generalization required in human language
understanding.

1 INTRODUCTION

When using language, humans recombine known concepts to understand novel sentences. For
instance, if one understands the meaning of “run”, “jump”, and “jump twice”, then one understands
the meaning of “run twice”, even if such sentence was never heard before. This relies on the notion
of language compositionality, which states that the meaning of a sentence (“jump twice”) is to be
obtained by the meaning of its constituents (e.g. the verb “jump" and the quantifying adverb “twice")
and the use of algebraic computation (a verb combined with a quantifying adverb m results in doing
that verb m times) (Kratzer & Heim, 1998).

In the realm of machines, deep learning has achieved unprecedented results in language modeling
tasks (Bahdanau et al., 2015; Vaswani et al., 2017). However, these models are sample inefficient,
and do not generalize to examples that require the use of language compositionality (Lake & Baroni,
2018; Loula et al., 2018; Dessì & Baroni, 2019). This result suggests that deep language models
fail to leverage compositionality; a failure remaining to this day a roadblock towards true natural
language understanding.

Focusing on this issue, Lake & Baroni (2018) proposed the Simplified version of the CommAI
Navigation (SCAN), a dataset to benchmark the compositional generalization capabilities of state-of-
the-art sequence-to-sequence (seq2seq) translation models (Sutskever et al., 2014; Bahdanau et al.,
2015). In a nutshell, the SCAN dataset contains compositional navigation commands such as JUMP
TWICE AFTER RUN LEFT, to be translated into the sequence of actions LTURN RUN JUMP JUMP.

Using SCAN, Lake & Baroni (2018) demonstrated that seq2seq models fail spectacularly at tasks
requiring the use of language compositionality. Following our introductory example, models trained
on the three commands JUMP, RUN and JUMP TWICE fail to generalize to RUN TWICE. Most recently,
Dessì & Baroni (2019) showed that architectures based on temporal convolutions meet the same fate.

SCAN did not only reveal the lack of compositionality in language models, but it also became the
blueprint to build novel language models able to handle language compositionality. On the one
hand, Russin et al. (2019) proposed a seq2seq model where semantic and syntactic information
are represented separately, in a hope that such disentanglement would elicit compositional rules.
However, their model was not able to solve all of the compositional tasks comprising SCAN. On the
other hand, Lake (2019) introduced a meta-learning approach with excellent performance in multiple

∗Work conducted during an internship at Facebook AI Research

1

Published as a conference paper at ICLR 2020

SCAN tasks. However, their method requires substantial amounts of additional supervision, and a
complex meta-learning procedure hand-engineered for each task.

In this paper, we take a holistic look at the problem and connect language compositionality in SCAN
to the disparate literature in models equivariant to certain group symmetries (Kondor, 2008; Cohen &
Welling, 2016; Ravanbakhsh et al., 2017; Kondor & Trivedi, 2018). Interesting links have recently
been proposed between group symmetries and the areas of causality (Arjovsky et al., 2019) and
disentangled representation learning (Higgins et al., 2018), and this work proceeds in a similar
fashion. In particular, the main contribution of this work is not to chase performance numbers, but
to put forward the novel hypothesis that language compositionality can be understood as a form of
group-equivariance (Section 3). To sustain our hypothesis, we provide tools to construct seq2seq
models equivariant when the group symmetries are known (Section 4), and demonstrate that these
models solve all SCAN tasks, except length generalization (Section 6).1

2 THE SCAN COMPOSITIONAL TASKS

The purpose of the Simplified version of the CommAI Navigation (SCAN) tasks (Lake & Baroni,
2018) is to benchmark the abilities of machine translation models for compositional generalization.
Following prior literature (Lake & Baroni, 2018; Baroni, 2019; Russin et al., 2019; Andreas, 2019),
compositional generalization is understood as the ability to translate novel families of sentences,
when this requires leveraging the compositional structure in language.

The SCAN dataset contains compositional navigation commands in English (the input-language)
paired with a desired action sequence (the output-language). For instance, the input-language sentence
JUMP TWICE AND RUN LEFT is paired to the output-language actions sequence JUMP JUMP LTURN
RUN. The rest of our exposition uses SMALL CAPS to denote examples in the input-language, and
LARGE CAPS to denote examples in the output-language. Appendix A contains a full description of
the grammar generating the SCAN language.

To evaluate the compositional generalization abilities of sequence-to-sequence (seq2seq) machine
translation models (Sutskever et al., 2014; Bahdanau et al., 2015), Lake & Baroni (2018) proposes
four main tasks based on SCAN:

1. Simple task: data pairs are randomly split into training and test sets. No compositional
generalization is required.

2. Add jump task: the only command in the training set containing the verb JUMP is the
command JUMP. All commands not containing JUMP are in the training set (for instance,
RUN TWICE, and WALK RIGHT THRICE AND LOOK LEFT). The test set contains all
commands containing JUMP (for instance, JUMP TWICE, and RUN LEFT AND JUMP RIGHT).
To succeed in this task, models must learn that JUMP is a verb, and that any verb can be
composed with an adverbial number to be repeated a number of times.

3. Around right task: the phrase AROUND RIGHT is held out from the training set; however,
both AROUND and RIGHT are shown in all other contexts (for example, AROUND LEFT or
OPPOSITE RIGHT). To succeed at this task, models must learn that both RIGHT and LEFT
are directions, and can be combined with AROUND and OPPOSITE.

4. Length generalization task: the training set contains pairs such that the length of the action
sequence in the output-language is shorter than 24 actions. The test set contains all pairs
with action sequences of a length greater or equal than 24 actions. The type of compositional
ability required to succeed at this task is more difficult to sketch out, as we discuss in Section
6.2.

Lake & Baroni (2018) use these four tasks to demonstrate that state-of-the-art seq2seq translation
models (Bahdanau et al., 2015) succeed at Simple task, but fail at the other three tasks requiring
compositional generalization. Convolutional architectures (Dessì & Baroni, 2019) achieve only
slightly better performance, and state-of-the-art methods specially developed to address SCAN tasks
fall short from the best achievable performance (Russin et al., 2019), or call for substantial amounts
of additional supervision (Lake, 2019).

1Code available at https://github.com/facebookresearch/Permutation-Equivariant-Seq2Seq

2

Published as a conference paper at ICLR 2020

In the following, we take a holistic look at the language compositionality problems in SCAN, and
highlight their connection to equivariant maps in group theory.

3 SCAN COMPOSITIONALITY AS GROUP EQUIVARIANCE

This section puts forward the hypothesis that:

Models achieving the compositional generalization required in certain SCAN tasks are equivariant
with respect to permutation group operations2 in the input and output languages.

To unfold the meaning of our hypothesis, we must revisit some basic concepts in group theory. A
discrete group G is a set of elements {g1, . . . , g|G|}, equipped with a binary group operation “·”
satisfying the four group axioms (closure, associativity, identity, and invertibility). The sequel focuses
on permutation groups G, whose elements are permutations of a set X , and whose binary group
operation composes the permutations contained in G. The set of all permutations of X is a group, but
not all subsets of permutations of X satisfy the four group axioms, and therefore they do not form a
group. For each element g ∈ G, we define the group operation Tg : X → X as the map applying the
permutation g to the element x ∈ X , to obtain Tgx. Armed with these definitions, we are ready to
introduce the main object of study in this paper: equivariant maps.

Definition 1 (Equivariant map). Let X and Y be two sets. Let G be a group whose group operation
on X is denoted by Tg : X → X , and whose group operation on Y is denoted by T ′g : Y → Y . Then,
Φ : X → Y is an equivariant map if and only if Φ (Tgx) = T ′gΦ(x) for all x ∈ X and g ∈ G.

The operation groups (Tg, T
′
g) defined above operate on entire sequences, an enormous space when

we consider those sequences to be language sentences. In the following two definitions, we relax
group operations and equivariant maps to operate at a word level.

Definition 2 (Local group operations). Let X be a set of sequences (or sentences), where each
sequence x ∈ X contains elements xi ∈ V from a vocabulary set V , for all xi ∈ x. Let G be a group
with associated group operation Tg : X → X . Then, we say that Tg is a local group operation if there
exists a group operation Tgw : V × V such that Tgx = (Tgwx1, . . . , TgwxLx) for all x ∈ X .

When understanding sequences as language sentences, the group operation Tgw would be a permuta-
tion of the words from the language vocabulary. Such operation can be implemented in terms of a
permutation matrix, a |V| × |V| matrix with zero/one entries where each row and each column sum to
one. Finally, we leverage the definition of local group operations to define locally equivariant maps.

Definition 3 (Locally equivariant map). Let X and Y be two sets of sequences. Let G be a group
whose group operation on X is local in its vocabulary, denoted by Tg : X → X , and whose group
operation on Y is local in its vocabulary and denoted by T ′g : Y × Y . Then, we say that Φ : X → Y
is an equivariant map if and only if Φ(Tgx) = T ′gΦ(x) for all x ∈ X and g ∈ G.

x x′

y y′
Φ

Tg

T ′g
Φ

(a)

WALK LEFT AND RUN JUMP LEFT AND RUN

LTURN WALK RUN LTURN JUMP RUN

(b)

RUN LEFT AND WALK RUN LEFT AFTER WALK

(1)︷ ︸︸ ︷
LTURN RUN

(2)︷ ︸︸ ︷
WALK

(2)︷ ︸︸ ︷
WALK

(1)︷ ︸︸ ︷
LTURN RUN

(c)

Figure 1: (a) Commutative diagram for equivariance. (b) Local equivariance enables generalization to verb
replacement in SCAN. (c) Local equivariance does not enable generalization to conjunction replacement in
SCAN.

2Standard terminology in group theory denotes the elements of a group “to act on” elements of a set. However,
as the output language in SCAN is in navigation “actions”, we use the “operate” terminology for group elements
to avoid ambiguity.

3

Published as a conference paper at ICLR 2020

Now, how do equivariances and local equivariances manifest themselves in the world of SCAN? To
assist our examples, the commutative diagram in Figure 1a summarizes the group theory notations
introduced so far. In Figure 1b and Figure 1c, we parallel these notations to two different examples
of compositional skills required to solve SCAN: verb and conjunction replacement. In the SCAN
domain, X is the set of sentences in the input-language, and Y is the set of sentences in the output-
language. Furthermore, let Φ be a locally equivariant SCAN translation model, and let G be a group
with associated local group operations that permutes words in the input- and output- languages.

On the one hand, we observe in Figure 1b that local equivariance enables compositional generalization
in the case of verb replacement. This is because replacing one verb in the input-language can be
implemented in terms of a local group operation. In turn, this input-verb replacement corresponds
deterministically to a second local group operation that replaces the corresponding verb in the
output-language. The same would apply to a SCAN task where we are interested in generalizing
to the replacement of LEFT and RIGHT. As such, a translation model Φ with these compositional
generalization capabilities must be locally equivariant.

On the other hand, we observe in Figure 1c that local equivariance is insufficient to enable composi-
tional generalization in the case of conjunction replacement. This is because no local group operation
in the output-language would be able to implement the necessary changes induced by the replacement
of AND by AFTER in the input-language. In such cases, we refer to the equivariance as global
equivariance. In particular, we can see how blocks of multiple words in the output-language swap
their relative location. Local equivariances are also insufficient to enable compositional generalization
in the Length generalization SCAN task and we elaborate on this in Section 6.2.

In the following section, we propose a set of tools to implement equivariant seq2seq translation
models, and propose a particular architecture with which we conduct our experiments.

4 IMPLEMENTING AN EQUIVARIANT SEQUENCE-TO-SEQUENCE MODEL

We now implement our proposed equivariant seq2seq model, following the encoder-decoder architec-
ture illustrated in Figure 2. Readers unfamiliar with group theory may parse Figure 2 by temporarily
discarding the “G−” prefixes, and realize that each depicted module is a well-known building block
of recurrent neural network models.

wt

G-Embed

e(wt)

G-RNNht−1 ht

(a) G-Equivariant Encoder

h1 . . .

. . .

hLx

G-Attention

h̃t−1 G-RNN h̃t

ãt

G-Conv

φ

G-Decode w̃t

e(w̃t−1)

G-Embed

w̃t−1

(b) G-Equivariant Decoder

Figure 2: Architecture of our fully-equivariant seq2seq model. Variables shaded in gray are mappings G→ RK ,
implemented as |G| ×K matrices. Encoder and decoder meet at h̃0 := hLx .

To make our model equivariant, we will make intense use of group convolutions.

Definition 4 (Group convolution (Kondor & Trivedi, 2018)). Let G be a discrete group. Let f : G→
RK be an input function. Let ψ = {ψi : G→ RK}K′

i=1 be a set of learnable filter functions. Then,
each scalar real entry from the result of G-convolving f and ψ is given by a |G| ×K ′ matrix with
entries

G-Conv(f ;ψ)g,i =
∑

h∈dom(f)

K∑
k=1

fk(h)ψi
k(g−1h), (1)

for all g ∈ G and i ∈ {1, . . . ,K ′}. As shown by (Kondor & Trivedi, 2018), the G-Conv layer is
equivariant wrt the operations of G. We apply this definition in two ways: (i) “convolving” words
with learnable filters to generate equivariant embeddings. Later, when we introduce our notations, we

4

Published as a conference paper at ICLR 2020

discuss how words may be viewed as functions so as to fit the definition. And (ii) convolving two
group representations, in which case dom(f) = G.

We note that there are several additional methods proposed in the literature for constructing per-
mutation equivariant layers (e.g. , Zaheer et al., 2017; Ravanbakhsh et al., 2017). However, as
demonstrated by Kondor & Trivedi (2018); Bloem-Reddy & Teh (2019), the above form is very
general and subsumes most alternatives. Further, while layers based on weight-sharing may be
more efficient than the general form of Definition 4, the parameter tying restricts the capacity of
the layer. For example, the permutation equivariant layer of Zaheer et al. (2017) requires weight
matrices that are restricted to a form λI + γ(11)T , with learnable parameters λ and γ. This layer
has fewer learnable parameters than the convolutional form of Definition 4. Thus, for reasons of
generality and capacity, we employ the general and expressive convolutional form of Definition 4 for
our permutation equivariant layers.

Equivariant with respect what group? The previous G-Conv layer requires choosing a discrete
group G. As hinted in Section 3, we will choose G to contain |G| permutations of language
vocabularies, e.g. products of cyclic groups on sets of words. Note that for a vocabulary size of |V |,
the set of all permutations has a size of n!. However, it suffices to consider subgroups containing
permutations such that every word can be reached by composing elements of the subgroup. For
example, while the group of permutations on the four verbs in SCAN consists of 24 elements, it will
suffice to choose G as the circular shift group on the four verbs, which is a subgroup of four elements.
Following standard notation in group theory, we write g · h to denote the composition of two group
elements g, h ∈ G, and g−1 to denote the inverse element of g.

As final preliminaries, denoting [V] = {1, . . . , |V |}, we represent a word w in the input-language
by the function w : [V] → {0, 1}, where

∑
v∈[V] w(v) = 1, and similarly by using w̃ ∈ Ṽ for the

output-language. These notations are functional representations of word one-hot encodings that will
play well with our notations. Note that this representation is equivalent to one-hot vectors, and in
what follows we use the shorthand w for the one-hot vector representation of words.

To avoid notational clutter, we use g to denote the permutation-matrix-representation of the corre-
sponding group element. Thus, the group operation on a word gw can be implemented as matrix
multiplication between the permutation matrix g and the one-hot vector w. Note that this operation
results in another one-hot vector, i.e. another word in the vocabulary. Similarly, the binary group
operation can be written as matrix multiplication gh between two group members g, h ∈ G. Here
too, multiplication of permutation matrices results in permutation matrix, so gh ∈ G.

We now describe each of the components in our G-equivariant translation model, by following the
transformation process of an input sequence x = (w1, . . . , wLx

) (in SCAN, a navigation command
in English) into its output translation y = (w̃1, . . . , w̃Ly

) (in SCAN, a sequence of actions).

4.1 G-EQUIVARIANT ENCODER

Upon arrival, the input-language sentence x = (w1, . . . , wLx
) is sent to a G-equivariant encoder. The

first step in the encoding process is to transform each input word wt into a permutation equivariant
embedding e(wt). As mentioned before, each word wt is represented by the one-hot vector wt :
[V] → {0, 1}. The corresponding embedding is obtained by applying a set of K 1-dimensional
learnable filter functions {ψi : [V]→ R}Ki=1 in a group convolution (throughout the section, we use
K everywhere to ease notation). Using Definition 4, the embedding, which we call G-Embed, is then
represented as a matrix R|G|×K , where

e(w)g,i = G-Embed(w;ψ)g,i = ψi(g−1w), (2)

for all g ∈ G and i = {1, . . . ,K}. Note that since w is a one-hot vector, G-Embed is a particularly
simple instantiation of Definition 4, as summation over dom(f) consists of only a single term. The
corresponding embedding is a function e(wt) : G→ RK , which can be represented as a |G| ×K
matrix, where each row corresponds to the embedding of the word gw for a particular g ∈ G. This
layer can be implemented by defining ψ with standard deep learning embedding modules.3

3e.g. PyTorch NN.EMBEDDING

5

https://pytorch.org/docs/stable/_modules/torch/nn/modules/sparse.html#Embedding

Published as a conference paper at ICLR 2020

Importantly, we note that for this layer, both ψ and w are functions on [V]. However, the resulting
embedding e(w) is a function on the group G. Therefore, in all subsequent computations we will
require the learnable filters ψ to also be functions on G.

We illustrate this layer with an example. Let G be the cyclic group that permutes the words LEFT
and RIGHT. We can think of g1 as the identity, and g2 as permuting the words LEFT and RIGHT
(leaving all other words unchanged). In this case, embedding LEFT results in the 2 × K matrix
[ψ(LEFT)T , ψ(RIGHT)T]T , while embedding JUMP results in [ψ(JUMP)T , ψ(JUMP)T]T , since both
g1 and g2 act as the identity permutation for JUMP.

Next, the word embedding e(wt) is sent to a permutation equivariant Recurrent Neural Network
(G-RNN). The cells of a G-RNN mimic those of a standard RNN, where linear transformations are
replaced by G-Convs (Definition 4). This cell receives two inputs (the word embedding e(wt) and
the previous hidden state ht−1) and returns one output (the current hidden state ht), all three being
functions G→ RK , parametrized as |G| ×K matrices. More specifically:

ht = G-RNN(e(wt), ht−1) = σ(G-Conv(ht−1;ψh) +G-Conv(e(wt);ψe)), (3)

where ψh, ψe : G→ RK are learnable filters (represented as |G|×K matrices), and σ is a point-wise
activation function.

The cell G-RNN is equivariant because the sum of two equivariant representations is equivariant
(Cohen & Welling, 2016), and the pointwise transformation of an equivariant representation is
also equivariant. To initialize the hidden state, we set h0 = ~0. We note that our experiments
use the equivariant analog of LSTM cells (Hochreiter & Schmidhuber, 1997), which we denote
G-LSTM, since these achieved the best performance. We include the architecture of G-LSTM cells
in Appendix B.

This completes the description of our equivariant encoder, illustrated in Figure 2a.

4.2 G-EQUIVARIANT DECODER

Once the entire input-language sentence x = (w1, . . . , wLx
) has been encoded into the hidden

representations h = (h1, . . . , hLx
), we are ready to start the decoding process that will produce the

output-language translation y = (w̃1, . . . , w̃Ly
).

As illustrated in Figure 2b, our equivariant decoder is also run by an equivariant recurrent cellG-RNN.
We denote the hidden states of the recurrent decoding process by h̃t, where h̃0 = hLx

. At time t, the
two inputs to the decoding G-RNN cell are the previous hidden state h̃t−1 as well as an attention āt
over all the encoding hidden states h. (Once again, all variables are mappings G→ RK implemented
as |G| ×K matrices.)

Attention mechanisms (Bahdanau et al., 2015; Vaswani et al., 2017) have emerged as a central tool in
language modelling. Fortunately, attention mechanisms are typically implemented as linear combina-
tions, and a linear combination of equivariant representations is itself an equivariant representation.
We now leverage this fact to develop an equivariant attention mechanism. Given all the encoder
hidden states h, as well as the previous decoding hidden state h̃t−1, we propose the equivariant analog
of dot-product attention (Luong et al., 2015) as

āt = G-Attention(h̃t−1, h) =

Lx∑
j=1

αt,jhj , where (4)

αt,j =
expβt,j∑Lx

k=1 expβt,k
, and βt,j =

∑
g∈G

h̃t−1(g)>hj(g). (5)

Following Figure 2b, the attention āt and a G-embedding e(w̃t−1) for the previous output word are
concatenated and sent to a G-Convolution.4 The concatenation with e(w̃t−1) provides the decoder
with information regarding the previously embedded word. In practice, during training we use
teacher-forcing (Williams & Zipser, 1989) to provide the decoder with information about the correct
output sequences. This process returns a final hidden representation φ : G→ RK .

4To embed w̃0 we use a special “start of sentence” symbol, appended to the output language vocabulary.

6

Published as a conference paper at ICLR 2020

As a final step in the decoding process, we need to convert φ into a collection of logits over the
output-language vocabulary. Then, sampling from the categorical distribution induced by these logits
at time t (or taking the maximimum) will produce the word w̃t, to be appended in the output-language
translation, y. This final decoding module can be implemented as follows:

G-Decode(φ;ψ)w̃ =
∑
h∈G

K∑
k=1

φk(h)ψk(h−1w̃), (6)

where ψ = [Ṽ]→ Rk are the learnable parameters of this layer (represented by a |Ṽ | ×K matrix).

Recall that φ(h) ∈ RK is the final-layer representation for the group element h, and that h−1w̃ is
the inverse element of h ∈ G applied to the output word w̃ (represented as a one-hot vector), which
results in another word in the output language. Thus, ψ is a learnable embedding of the output words
into RK . This layer is evaluated at every w̃ in the output vocabulary to produce a scalar. The resulting
vector of logits represents a categorical distribution over the output vocabulary. While similar, this
layer is not a group convolution (Definition 4). Rather, equivariance for this module is achieved via
parameter-sharing (Ravanbakhsh et al., 2017).

This completes the description of our equivariant decoder, illustrated in Figure 2b. Composing the
equivariant encoder and decoder results in our complete sequence-2-sequence model. Importantly,
since all operations in this model are equivariant, the complete model is itself also equivariant to the
group G (Kondor & Trivedi, 2018). In Section 6, we provide further implementation details for our
model, and detail our empirical evaluation of its equivariant properties and their relation to the SCAN
tasks described in Section 2.

5 RELATED WORK

In this section we review state-of-the-art methods to address SCAN compositional tasks. We focus
on two recent models that we will compare to in our experiments.

On the one hand, the syntactic attention model of Russin et al. (2019) builds on the idea that composi-
tional generalization can be achieved by language models given the correct architectural organization.
Borrowing inspiration from neuroscience, Russin et al. (2019) argue that compositionality might
arise when using separate processing channels for semantic and syntactic information. In their model,
the attention weights depend on a recurrent encoding of the input sequence, which they refer to as
the syntactic representation. The attention weights are then applied to separate, context-independent
embeddings of the words in the input sequence, which intend to model a semantic representation.
We find (Russin et al., 2019) interesting from a group equivariance perspective, since one way to
enforce equivariance is to use an invariant representation (about syntax) together with an additional
representation (about semantics) that maintains the information about the original “sentence pose”.

On the other hand, the meta-learning (Thrun & Pratt, 2012; Schmidhuber, 1987) approach of Lake
(2019) is a model that learns to generalize. In particular, Lake (2019) designs one specific and
complex meta-learning procedure for each SCAN task, where a distribution over tasks is provided
to the learner (Finn et al., 2017; Gordon et al., 2018). For example, in the Add jump and Around
right tasks, the meta-learning procedure of Lake (2019) samples permutations from the relevant
groups (the permutation groups on the verbs and set of directions, respectively). This is interpreted
as data-augmentation, a valid procedure for encouraging equivariance (Cohen & Welling, 2016;
Andreas, 2019; Weiler et al., 2018). However, at test-time, Lake (2019) sets the context set to the
correct mapping between the permuted commands and their corresponding actions. For example, in
the Add jump task, the context set for meta-testing would consist of the following pairs: {(WALK,
WALK), (RUN, RUN), (LOOK, LOOK), (JUMP, JUMP) }. This is equivalent to providing the model with
one-to-one information regarding the correct command-to-action mapping for the permuted words.

6 EXPERIMENTS

We now evaluate the empirical performance of our equivariant seq2seq model (described in Section 4)
on the four SCAN tasks (described in Section 2). We compare our equivariant seq2seq to regular
seq2seq models (Lake & Baroni, 2018), convolutional models (Dessì & Baroni, 2019), the syntactic
attention model of Russin et al. (2019), and the meta-learning approach of Lake (2019). The compared
seq2seq models use bi-directional, single-layer LSTM cells with 64 hidden units. For the equivariant

7

Published as a conference paper at ICLR 2020

Model Simple Add Jump Around Right Length

seq2seq (Lake & Baroni, 2018) 99.7 1.2 NA 13.8
CNN (Dessì & Baroni, 2019) 100.0 69.2 ± 9.2 56.7 ± 10.2 0.0
Syntactic Attention (Russin et al., 2019) 100.0 91.0 ± 27.4 28.9 ± 34.8 15.2 ± 0.7
Meta seq2seq (Lake, 2019) NA 99.9 99.9* 16.64
seq2seq (comparable architecture) 100.0 0.0 ± 0.0 0.02 ± 2e-2 12.4 ± 2.3
Equivariant seq2seq (ours) 100.0 99.1 ± 0.04 92.0 ± 0.24 15.9 ± 3.2

Table 1: Test accuracies for four SCAN tasks, comparing our equivariant seq2seq to the state-of-the-art.

seq2seq models, we use the cyclic permutation group on the verbs for the Add jump task, and the
cyclic permutation group on directions for the Around right task. For Length, we use the product of
those groups. Our model knows that the same group operates on both the input- and output- languages.
However, it does not receive information regarding the correspondence between commands and
actions in the set of words being permuted in the input / output languages. This is in contrast to Lake
(2019), where (as stated in Section 5), it is necessary to provide the model with explicit information
regarding the correct command-to-action mapping at test-time.

Training procedures match those of Lake & Baroni (2018) where possible. We train models for
200k iterations, where each iteration consists of a minibatch of size 1, using the Adam optimizer to
perform parameter updates with default parameters (Kingma & Ba, 2015) with a learning rate of
1e-4. We use teacher-forcing (Williams & Zipser, 1989) with a ratio of 0.5, and early-stopping based
on a validation set consisting on 10% of the training examples. As in previous works, we compute
test accuracies by counting how many exact translations each model provides, across the test set
associated to each task.

6.1 RESULTS

Table 1 summarizes the results of our experiments. First and as expected, all models achieve excellent
performance on the Simple task, which does not require any form of compositional generalization.

Second, our equivariant seq2seq model performs very well at the Add jump and Around right SCAN
tasks, which are the two tasks satisfying our local equivariance assumption from Definition 3. Our
equivariant seq2seq model significantly outperforms the regular seq2seq (Lake & Baroni, 2018)
and convolutional (Dessì & Baroni, 2019) models, as well as the state-of-the-art methods of Russin
et al. (2019) and Lake (2019). This result is an encouraging piece of evidence supporting our main
hypothesis from Section 3. Next, let us compare the results of our equivariant seq2seq model with
the previous state-of-the-art Russin et al. (2019); Lake (2019) in more detail.

On the one hand, the syntactic attention model of Russin et al. (2019) achieves significant improve-
ments over baselines methods at the Add jump SCAN task. However, it does not fare so well on the
Around right task. Furthermore, its performance has high variance. Although we here report the
numbers from Russin et al. (2019), we observed such high variance in our own implementation as
well, where the model often achieved 0% test accuracy. We hypothesize that modeling the invariance
of the syntactic attention directly would result in improved performance and stability. This can be
achieved, for instance, by replacing all verbs in the syntactic module by a shared word. As expected,
by explicitly exploiting equivariance, our model outperforms Russin et al. (2019) on the Add jump
and Around right SCAN tasks, also being much more robust.

On the other hand, the meta-learning model of Lake (2019) achieves excellent performance on the
local equivariance tasks Add jump and Around right. This is additional evidence supporting the use-
fulness of local equivariance. In contrast to our model, Lake (2019) requires (i) a complicated model
and training procedure tailored to each task, (ii) providing the model with the correct permutation
of words, equivalent to telling the model the “true” mappings between the input and output words,
and (iii) augmenting the set of words being permuted, to ensure enough diversity in the training
distribution (for instance, adding additional directions beyond RIGHT and LEFT).

8

Published as a conference paper at ICLR 2020

6.2 ON THE DIFFICULTY OF LENGTH GENERALIZATION

As seen in Table 1, length generalization remains a tough challenge in SCAN. While generating long
sequences is a known challenge in seq2seq models (Bahdanau et al., 2015), we believe that this is not
the main issue with our equivariant seq2seq model, as it is able to produce long translations when
these appear in the training set (as are the other models). Therefore, this is not a capacity problem, but
one of not being able to express the Length generalization SCAN task in terms of local equivariances
on both input- and output- languages. We hypothesize that this is the very reason why (Russin et al.,
2019; Lake, 2019) also fail on this task.

However, we suspect that some forms of local equivariance on the input language, but global
equivariance on the output language, may help. For example, RUN TWICE, RUN THRICE and RUN
AROUND LEFT TWICE are all input commands contained in the training set of the length task. A
trained seq2seq model is able to execute them, but fails on the unseen test command RUN AROUND
LEFT THRICE, suggesting that the network did not correctly understand the relationship between
TWICE and THRICE. Using a network that is explicitly equivariant to the permutation of TWICE
and THRICE should be able to generalize correctly on RUN AROUND LEFT THRICE. However,
while the TWICE-THRICE permutation is a local group operation (Definition 2), the corresponding
operation on the output language, which is to repeat the same action sequence multiple times, is a
global group operation. Similarly, permuting AND and AFTER in the input sequence using a local
group operation, while operating globally on the output language by permuting the order of the
associated actions, should help succeed on the Length generalization SCAN task. How to formalize
the aforementioned global operations on the output language and build the desired equivariant network
remains a fascinating open research question that we leave for future work.

7 DISCUSSION AND FUTURE WORK

This work has introduced hypothesis linking between group equivariance and compositional gen-
eralization in language. Motivated by this hypothesis, we have proposed an equivariant seq2seq
translation model, which achieves state-of-the-art performance on a variety of SCAN tasks.

Our work has several points for improvement. Most importantly, our model requires knowing the
permutation symmetries of interest, to be provided by some domain expert. While this is simple to
do in the synthetic language of SCAN, it may prove more difficult in real-world tasks. We propose
three directions to attack this problem. (i) Group words by their parts-of-speech (e.g., nouns, verbs,
etc.), which can be done automatically by standard part-of-speech taggers (Màrquez & Rodríguez,
1998); (ii) Learn such groupings of words from corpora, for example using the recent work of
Andreas (2019); (iii) Most appealingly, parameterize the symmetry group and learn operations
end-to-end while enforcing the group structure. For permutation symmetries, the group elements can
be parameterized by permutation matrices, and learned from data (Lyu et al., 2019). Our preliminary
work in this direction hints that this is a fruitful avenue for future research.

A further consideration to address is that of computational overhead. In particular, for the convolu-
tional form we use in this work (Definition 4), computational complexity scales linearly with the size
of the group, O(|G|). This arises from the need to sum over group elements when the representation
is a function on G, and may be prohibitive when considering large groups. One way of addressing
this issue when large symmetry groups are of interest is to consider more efficient computational
layers for permutation equivariance (e.g Zaheer et al., 2017; Ravanbakhsh et al., 2017). These
methods incur less computational overhead at the cost of restricting the layer capacity. Another
interesting option for future research is to consider sub-sampling group elements when performing
the summation in Definition 4, which requires further consideration of the consequences of doing so.

Another exciting direction for future research is to consider global equivariances. Many operations of
interest, e.g. groups operating directly on parse trees, can only be expressed as global equivariances.
Modeling these equivariances holds exciting possibilities for capturing non-trivial symmetries in
language tasks, but also requires more sophisticated machinery than is proposed in this work.

Finally, in further theoretical work, we would like to explore the relation between our equivariance
framework and the idea of compositionality in formal semantics (Kratzer & Heim, 1998). On the
one hand, the classic idea of compositionality as an isomorphism between syntax and semantics is
intuitively related to the notion of group equivariance. On the other hand, as shown by the failures

9

Published as a conference paper at ICLR 2020

at the length generalization example, it is still unclear how to apply our ideas to more sophisticated
forms of permutation, such as those involving grammatical phrases rather than words. This would
also require to extend our approach to account for the context-sensitivity that pervades linguistic
composition (c.f., the natural interpretation of “run” in “run the marathon” vs. ”run the code”).

ACKNOWLEDGMENTS

We thank Emmanuel Dupoux and Clara Vania for helpful feedback and discussions.

REFERENCES

Jacob Andreas. Good-enough compositional data augmentation, 2019.

Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization.
arXiv preprint arXiv:1907.02893, 2019.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. In Proceedings of ICLR Conference Track, San Diego, CA, 2015.
Published online: http://www.iclr.cc/doku.php?id=iclr2015:main.

Marco Baroni. Linguistic generalization and compositionality in modern artificial neural networks.
arXiv preprint arXiv:1904.00157, 2019.

Benjamin Bloem-Reddy and Yee Whye Teh. Probabilistic symmetry and invariant neural networks.
arXiv preprint arXiv:1901.06082, 2019.

Taco Cohen and Max Welling. Group equivariant convolutional networks. In International conference
on machine learning, pp. 2990–2999, 2016.

Roberto Dessì and Marco Baroni. CNNs found to jump around more skillfully than RNNs: Com-
positional generalization in seq2seq convolutional networks. arXiv preprint arXiv:1905.08527,
2019.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In Proceedings of the 34th International Conference on Machine Learning-Volume
70, pp. 1126–1135. JMLR. org, 2017.

Jonathan Gordon, John Bronskill, Matthias Bauer, Sebastian Nowozin, and Richard E Turner. Meta-
learning probabilistic inference for prediction. arXiv preprint arXiv:1805.09921, 2018.

Irina Higgins, David Amos, David Pfau, Sebastien Racaniere, Loic Matthey, Danilo Rezende,
and Alexander Lerchner. Towards a definition of disentangled representations. arXiv preprint
arXiv:1812.02230, 2018.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In In International
Conference on Learning Representations (ICLR), 2015.

Imre Risi Kondor. Group theoretical methods in machine learning. Columbia University, 2008.

Risi Kondor and Shubhendu Trivedi. On the generalization of equivariance and convolution in neural
networks to the action of compact groups. arXiv preprint arXiv:1802.03690, 2018.

Angelika Kratzer and Irene Heim. Semantics in generative grammar, volume 1185. Blackwell
Oxford, 1998.

Brenden M Lake. Compositional generalization through meta sequence-to-sequence learning. arXiv
preprint arXiv:1906.05381, 2019.

Brenden M. Lake and Marco Baroni. Generalization without systematicity: On the compositional
skills of sequence-to-sequence recurrent networks. In Proceedings of the 35th International
Conference on Machine Learning, ICML 2018, Stockholm, Sweden, pp. 2879–2888, 2018.

10

http://www.iclr.cc/doku.php?id=iclr2015:main

Published as a conference paper at ICLR 2020

João Loula, Marco Baroni, and Brenden Lake. Rearranging the familiar: Testing compositional
generalization in recurrent networks. pp. 108–114, 01 2018. doi: 10.18653/v1/W18-5413.

Minh-Thang Luong, Hieu Pham, and Christopher D Manning. Effective approaches to attention-based
neural machine translation. arXiv preprint arXiv:1508.04025, 2015.

Jiancheng Lyu, Shuai Zhang, Yingyong Qi, and Jack Xin. AutoShuffleNet: Learning permutation
matrices via an exact lipschitz continuous penalty in deep convolutional neural networks. arXiv
preprint arXiv:1901.08624, 2019.

Lluís Màrquez and Horacio Rodríguez. Part-of-speech tagging using decision trees. In European
Conference on Machine Learning, pp. 25–36. Springer, 1998.

Siamak Ravanbakhsh, Jeff Schneider, and Barnabas Poczos. Equivariance through parameter-sharing.
In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pp. 2892–
2901. JMLR. org, 2017.

Jake Russin, Jason Jo, and Randall C O’Reilly. Compositional generalization in a deep seq2seq
model by separating syntax and semantics. arXiv preprint arXiv:1904.09708, 2019.

Jürgen Schmidhuber. Evolutionary principles in self-referential learning, or on learning how to learn:
the meta-meta-... hook. PhD thesis, Technische Universität München, 1987.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks.
In Advances in neural information processing systems, pp. 3104–3112, 2014.

Sebastian Thrun and Lorien Pratt. Learning to learn. Springer Science & Business Media, 2012.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Maurice Weiler, Fred A Hamprecht, and Martin Storath. Learning steerable filters for rotation
equivariant cnns. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 849–858, 2018.

Ronald J Williams and David Zipser. A learning algorithm for continually running fully recurrent
neural networks. Neural computation, 1(2):270–280, 1989.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan R Salakhutdinov,
and Alexander J Smola. Deep sets. In Advances in Neural Information Processing Systems, pp.
3394–3404, 2017.

11

Published as a conference paper at ICLR 2020

A DETAILS ON THE SCAN DATASET

SCAN is composed from a non-recursive grammar, as shown in Figure 3. In particular, SCAN
consists of all commands that can be generated from this grammar (20,910 command sequences),
with their deterministic mapping into actions, as detailed by Figure 4

Figure 3: The grammar used to generate commands in the SCAN domain. Indexing notation is used to allow
infixing: read D[i] as “the i-th element directly dominated by category D”. Image borrowed from Lake &
Baroni (2018).

Figure 4: The SCAN translation mapping. Double brackets denote the interpretation function translating SCAN’s
command (input language) into the action (output) language (which are denoted by upper-case strings. Image
borrowed from Lake & Baroni (2018).

B G-LSTM DETAILS

We provide the equations for implementing our G-LSTM. Given ht−1, ct−1 (hidden state and cell-
state, respectively), and e(w)t (all of which are of the form G 7→ RK , we can describe the G-LSTM
cell as follows:

it = σ (xt ∗ψii + st−1 ∗ψih) ; ft = σ (xt ∗ψfi + st−1 ∗ψfh)

gt = tanh (xt ∗ψgi + st−1 ∗ψgh) ; ot = σ (xt ∗ψoi + st−1 ∗ψoh)

ct = ft ◦ ct−1 + it ◦ gt; ht = ot ◦ tanh(ct),

where {ψjk : G 7→ RK ; j ∈ {i, f, g, o}; k ∈ {i, h}} are the learnable filters of the cell. Here we
have used the shorthand

f ∗ψ := [f ∗ψ] (g) ∀g ∈ G
for two functions on the group.

12

	Introduction
	The SCAN Compositional Tasks
	SCAN Compositionality as Group Equivariance
	Implementing an Equivariant Sequence-to-Sequence Model
	G-Equivariant Encoder
	G-Equivariant Decoder

	Related Work
	Experiments
	Results
	On the difficulty of length generalization

	Discussion and Future Work
	Details on the SCAN Dataset
	G-LSTM Details

