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Abstract

In hyperscale data center operations, automation is applied in many ways

as it is becomes very hard to scale otherwise. There are however areas

relating to understanding, grouping and diagnosing of error reports that are

done manually at Facebook today. This master’s thesis investigates solutions

for applying unsupervised clustering methods to server error reports, server

properties and historical data to speed up and enhance the process of finding

and root causing systematic issues. By utilizing data representations that

can embed both key-value data and historical event log data, the thesis shows

that clustering algorithms together with data representations that capture

syntactic and semantic structures in the data can be applied with good

results in a real-world scenario.
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Chapter 1

Introduction

1.1 Background

Hyperscale Data Centers are becoming more prominent in our day and age[1]. Large IT

and tech companies run data center fleets on the level of ’hyperscale’ with geographical

regions across multiple continents housing millions of servers to be used either for pro-

viding online services to users, or as part of Infrastructure-as-a-Service offerings to other

tech companies. Always online is a key requirement for these data centers as they can

serve customers from all around the globe, and process enormous amounts of data each

waking second. Uptime is maintained by having large operations teams working around

the clock with all components of a data center including cooling, power, networking and

servers.

Due to the size of these data centers, the server-to-tech ratio (how many servers each

technician can be considered responsible for) can often be 10 to 100 times higher than

a traditional enterprise data center[2]. One solution to this is to utilize automation to

assist humans during operations, such as automatically applying remediations for known

problems[3], providing context and feedback during hands-on work, or by deduplicating

and aggregating common and similar issues into bigger tasks for a person to handle.

At Facebook, when a server is considered unhealthy by monitoring systems, it is auto-

matically taken out of production [4]. It then embarks on a journey through multiple

autonomous systems that attempts to repair a server, as shown in figure 1.1. If all

automated measures fail a manual repair ticket/error report is created. If the issue at

hand is known and can be correlated to a faulty part, it is automatically diagnosed and

sent to the data center where the server resides for local technicians to swap out the

faulty part. However, if an automatic diagnosis cannot be determined for the server, it

ends up in a triage queue where engineers manually sift through error reports for the

servers and attempt to figure out the root cause.

1
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Figure 1.1: High-level overview of current repair flow at Facebook

1.2 Problem Description

Because these large data centers are for the most part rather homogeneous thanks to

common and sometimes open source[5] standards for both building, network, and server

design, opportunities exist for treating otherwise one-off problems as distinct groups

of issues between multiple data halls, buildings, and even geographical regions, and

apply the same remediation for similar error reports at the same time. This thesis will

investigate methods to assist with grouping error reports on servers from different data

centers, regions and models, as clusters of error reports that make sense for engineers

to handle as distinct issues, to create a repair flow as depicted in figure 1.2. Today

some of these efforts are done manually by several people analyzing error reports and

grouping them together as figure 1.1 depicts, but this is very time consuming and only

a small subset of the available data is used as the process becomes too overwhelming

otherwise. Distinct issues are identified as a set of error reports that have the same

diagnosed outcome that resolved the underlying issue, which is verified by the server

going back into production without any alarms from monitoring systems.

Figure 1.2: High-level overview of an improved repair flow using automatic clustering,

allowing engineers to focus time on examining clusters and root cause analysis
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To properly represent how an engineer would manually group error reports, both meta-

data for the server and issue at hand as well as historical data in the form of state

transitions need to be considered when evaluating each error report. This provides a

challenge as data with different syntactic structures and values needs to be combined

and clustered on together, whilst still preserving the syntactic structure.

This thesis will attempt to answer the following questions:

• Q1: How well can common clustering methods be used to cluster server error

reports in an unsupervised manner?

• Q2: Can you cluster on key-value data and state transition data together effec-

tively?

• Q3: How does different data representations affect the ability to build good clus-

ters?

The problem can be broken down into a few sub-problems:

• Decide which data to use as part of evaluation

• Evaluate clustering methods available and suitable for the problem at hand

• Evaluate different data encodings and preprocessing to use as representation

• Evaluate and tune parameters and measure their effect on results

• Present resulting clusters in a suitable way to be digested by engineers

For this thesis, the data used will be a combination of metadata for the server such as

data center, make and model, manufacturing date, firmware versions etc, as well as a

log of the different states and transitions the server has been in since it arrived at the

data center. The states include data such as if the server is in repair, its error report

with an error signal, or any remediations taken on the server. Exactly which values

are included can vary slightly and are mostly up to implementation specifics. The data

presentation should result in clusters being represented as a list of error report ids that

an engineer can look up in a list. Visual grouping of results can be done but should not

be considered as a deliverable.

1.3 Challenges

The main challenge will be with the data used, as the outcome/result of an error report

can be a bit different even with identical input information. This is mainly due to how

engineers interpret errors when they are debugging problems with varying degrees of
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error information, and may come to two different conclusions. This becomes a little

more complex also as some diagnoses/outcomes may involve another outcome as well.

An example is the diagnosis ’Reseat Server’, which tells a technician to pull out a server

and make it powered off for a couple of seconds before plugging it in again. This allows

certain always-on components such as Baseboard Management Controller and Network

Interface Card to properly reinitialize its firmware and clear out potential lockouts.

However, if someone would go ahead and diagnose ’Replace Network Interface Card’

instead, it would also require them to effectively ’Reseat Server’ as the server has to

be removed from the rack when replacing components. Keeping this in mind, one can

expect noise in the data that can affect the efficiency factor for each algorithm used.

Another challenge that relates to the data is how one can properly verify that the clusters

and metrics generated by a method is actually of value, as the selection of metrics may

not describe the full story for the data at hand.

Because the work carried out is partly evaluated using Facebook Production data, ev-

erything needs to run inside Facebook’s infrastructure and results will be generalized

and anonymized if needed.

1.4 Scope of work and delimitations

To ensure that the scope of the thesis does not expand too far, a number of delimitations

have been set to focus efforts on a particular type of problem within the space. These

are numbered so they can be easily referenced throughout the thesis.

• D1: As there are many aspects when considering what is a good cluster of error

reports for engineers, this thesis will work with the assumption that a good cluster

is only defined by the diagnosed outcome of all error reports.

• D2: How to acquire the data will not be part of the thesis as this will vary

depending on how and on what you want to apply the algorithms.

• D3: The evaluation part of the thesis will not take into account resource con-

sumption or actual execution time by any of the algorithms, but may comment on

notable differences between them. Additionally the input size of the algorithms

will be constant or near-constant across all tests, so whilst complexity for different

algorithms will be mentioned it will not be considered a deal-breaker.

• D4: As the thesis will focus on finding large systematic issues, we will filter out

any clusters that contain less than 50 objects. This value corresponds to a rough

estimate of the volume an engineer would look for to start considering something

being a systematic issue.
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1.5 Thesis structure

The master’s thesis is divided into 7 chapters, starting with chapter 1 which contains

the background for the thesis, the problem description and some challenges and delimi-

tations. In chapter 2 we explore related work within the fields of using machine learning

and clustering in data center operations, as well as the general areas of clustering on

different types of data structures. In chapter 3 theory for the different concepts used in

the thesis are presented and motivated. Chapter 4 describes the methods used to gather

data, setup and carry out experiments as well as how the experiments were evaluated. In

chapter 5 the results from the experiments are presented, together with some analysis.

The results are further examined and evaluated in chapter 6 where both the methods

used and the results are discussed. The research questions are also evaluated here. Fi-

nally, in chapter 7 a conclusion for the master’s thesis is given, and improvements and

future work are presented.

1.6 Contributions

The results from this thesis can be used to enhance ML models used at Facebook to

predict diagnoses for otherwise undiagnosed error reports. By building clusters that get

a common diagnosed outcome, the ML models get fed higher quality data that allows

them to take actions without having engineers manually examine error reports.

The results also allows time that was dedicated to manually find and identify clusters to

shift focus on deep-diving into aggregated issues across multiple regions, data centers,

and hardware instead.

Lastly, the thesis as a whole contributes to the area of hyperscale data center operations

which as a whole does not have that many publications to date, and can hopefully

promote further research into this area.
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Chapter 2

Related Work

As the area of hyperscale data center operations is fairly new and modern, many com-

panies are in the early stages of experimenting with and applying machine learning and

AI solutions [6] to tackle problems on an unprecedented scale. There is also a limited

number of publications from academia due to the vast environments that define the area

of hyperscale data center operations being hard to replicate.

As described in [4], Facebook has multiple systems at work today to tackle the ever-

changing environment in their large-scale data centers. One of the main goals of both the

mentioned research and this thesis is to reduce the need for manual debugging of data

center equipment, as the scale that is operated on would require an enormous amount

manpower if all work was done manually by engineers.

In the articles [3] and [7] a machine learning model is deployed on a group of error reports

called ’undiagnosed’, namely error reports where a diagnosis that would fix the issue

could not be derived, and manual diagnosis would have to be carried out by engineers.

The idea is to have engineers root cause undiagnosed problems, and then utilize the

results from that effort to fit an ML model based on input data such as failure logs and

metadata to automatically attempt certain diagnoses for otherwise undiagnosed issues.

Whilst tackling the same problem, such a model can only be effective for issues that

have already existed as it needs that training data, and the point of this thesis is to

work on the group of errors without prior knowledge. However, one outcome from this

thesis could be to provide better and more accurate training data for that model, as the

hope is that clusters of error reports will end up having the same diagnosed outcome.

In [8], a framework for dimensional analysis on the same type of error reports is proposed

based on structured logs that somewhat resemble the data that will be used in this thesis.

They do however only use the last few days of data and treat it as a time series problem,

whereas this thesis will focus on the full lifetime of events of each server and how certain

events can reoccur during a server’s lifetime. The results from running the dimensional

analysis can resemble clustering in the sense that combinations of features are evaluated

7
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to how many error reports distinctly match those features while they don’t match others.

Looking at the clustering of logs in a data center setting, [9] uses DBSCAN [10] and

Levenshtein distance [11] to find unique syntactic structures of different log messages.

They then compute a regular expression for each cluster that can parse every message

in each cluster, effectively storing the syntactic structure of each cluster. This is similar

in that we want to utilize the syntactic structure in logs, but it differs in that we want

to use the syntactic structure between log messages, while they do it only within each

log message. Additionally the research was conducted in an environment with around

100-200 servers, which is not representable of a hyperscale data center environment. To

my knowledge there exists no prior research on clustering on syntactic structure between

log messages.

The same article also implements Hierarchical Agglomerative Clustering together with

Jaccard Distance to cluster problems that existed within the same slots. There are

similarities between comparing which timeslots different items were together in, and

when items were in the same state, as both are a form of temporal information.

Examining ways of mixing different types of structured data, there are plenty of solutions

that simply concatenate vectors of different types [3] and use that as input. However,

that is not as straight forward when dealing with similarity and distance metrics as

the different vector dimensions in concatenated vectors will contain different scales and

putting that through a standard metric would produce skewed results. This problem

is tackled in [12] by leveraging the concept of ”Hybrid clustering”, where the similarity

between items with two or more different types of structured data is weighted for each

piece of data, and then combined as a final similarity metric. This is a potential solution

that could be used in this thesis, but this thesis will also explore solutions that do not

a hybrid clustering approach.

Overall, this thesis will build on existing ideas such as clustering on syntactic structures

and clustering on mixed data types, but will focus on expanding those to new areas

including syntactical structures between logs from state transitions, and clustering on

error reports in a hyperscale data center operations environment.



Chapter 3

Theory

This chapter gives an introduction and some information regarding the methods used

in the thesis, as well as some background for why some methods can be used on the

problem we have at hand. In the first part we look into the features and properties of

automatas, as one of the main challenges of the thesis is to combine event history data

with regular key-value data. We then look at appropriate encodings, and lastly methods

for clustering the data and measuring the result.

In chapter 2, when looking at existing ways of handling syntactic structure the subject

of regular expressions came up as a way to represent such structure within text. As is

mentioned, this thesis is looking to work with syntactic structures between individual

log messages rather than inside log messages. However, because the event history is

primarily records of a server moving between states, an idea to model the data as

a finite-state automata and use the relationship between finite-state automatas and

regular grammars and expressions for embedding this syntactic structure was proposed.

3.1 Automatas, Encodings and Languages

3.1.1 Finite-state automatas

A finite-state automata, also known as finite-state machine or FSA/FSM, is a mathe-

matical model based on states and inputs within the theory of automatas [13][14]. An

FSA has a finite number of states that it can move between based on input received.

The change between two states is called a transition.

Many behaviours of modern everyday devices can be modelled using finite-state au-

tomatas, as they can be described by a finite set of states, and take input from either

humans or other devices. Automatic doors and coffee machines are systems where user-

defined input drives transitions between two or more states.

9
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closed open

0
1

0

1

Figure 3.1: FSA representation of an automatic door, with input representing the sensor

where 0 = no person sensed and 1 = person sensed.

3.1.2 Regular Language

In formal language theory, a regular language is the most basic family of languages

and can be identified as a language that can be accepted by a finite automation. The

definition of a language is ”a set (finite or infinite) of sentences, each of finite length,

all constructed from a finite alphabet of symbols” [15]. Furthermore the grammar of a

language is a set of rules and constraints that can generate all of the strings that are

sentences of a language and only those.

As an example of the relationship between regular languages, grammars and finite-

state automatas we can define an example regular grammar G = (N,Σ, P, S) where

A,B, S ∈ N are non-terminal symbols, a, b, c, d ∈ Σ as terminal symbols, S as the start

symbol, ε as the empty string, and P as the production rules

S →aS

S →bA

A→cA

A→dB

B →ε.

This grammar will generate sentences according to the regular expression a*bc*d, such

as aaaaaabcccd, abccccccccccd, and bcd. In figure 3.2 we have an automation that

validate any sentence for the example grammar.

S A B

a
b

c
d

Figure 3.2: FSA for validating the example grammar.

By observing a finite automata and recording the state transitions for the input string

aabcccd, we get the log

S a S a S b A c A c A c A d B



3.1. AUTOMATAS, ENCODINGS AND LANGUAGES 11

which correspond to the input sentence being valid, and the log consisting of the valid

input sentence including the non-terminals (states) that were visited. The grammatical

properties from the input string are also kept in the observation log, as long as you look

over the states.

Because of this connection, any sentence that can be parsed and accepted by any finite-

state automata will by definition be a part of a regular language and will have the

grammatical properties of a regular grammar [13][16]. This also means that any gram-

matical properties of any part of such a sentence are represented in the logs created

from observing a finite-state automata. Lastly because an finite-state automata deter-

mines next state only based on current state and input [13], we can consider that the

grammatical properties of regular languages are negligible over longer distances. This

is a property that we will use to our advantage when selecting a data representation.

3.1.3 n-grams

N-grams is a common data representation within the field of computational linguistics

[17], and represent a contiguous sequence of n items from a sample of text while em-

bedding context for each item [18]. It can however be used for sequences of items of

almost any data type to model dependencies between items. It finds applications within

areas such as statistical natural language processing [17], computational biology [18],

and data compression to name a few. In language identification, sequences of characters

from text are used to capture language specific patterns, and in biology DNA base pairs

are used as the unit.

As the amount of context is bounded by the value of n, n-grams are not suited for mod-

elling long range dependencies [19] of more complex grammatical properties that exist

in our everyday languages such as english. However, they can be used for text generated

by regular grammars as those grammatical properties are limited to the immediately

surrounding words.

3.1.4 Hypervectors

Hypervectors are high-dimensional randomized vectors that can be used to encode and

represent features for tasks like clustering, classification and analogical mapping [20].

They consist of vectors with d = 10000 or similar, where each coordinate is initialized

by a random number, binary in the form of (0, 1) or (-1, 1). Every vector representing a

feature is randomized to be as unique from any other vector in the vector map/dictionary

.

The key features of hypervector algebra includes three operations commonly referred to

as bundling (+), binding (◦) and permutation ρ. The implementation of these operations
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depends on which type of hypervector representation is used. When woring with bipolar

hypervectors, bundling is performed as coordinate by coordinate addition, binding is

performed as coordinate by coordinate multiplication, and permutation is performed by

shifting the coordinate positions by ρ to the left/right.

When working with strictly (0, 1)-binary hypervectors, as can be the case in embedded

systems, the methods are different. Bundling of vectors is performed by calculating the

sum for each dimension of the vectors, and setting each dimension to a 1 only if the sum

reaches a threshold of n/2 where n is the number of vectors being bundled. For binding

between vectors, XOR is used instead.

These operations can be used to represent other data structures as hypervectors. Given

the features a, b, c, d, s, x, y, z and their upper-case vector representations A, B, C, D,

S, X, Y, Z, the following representations can be made:

Set: A set of values s = {a, b, c} can be encoded as:

S = A+B + C

Dictionary/Map: A map of key-value pairs d = (x = a)&(y = b)&(z = c) can be

encoded as:

D = X ◦A+ Y ◦B + Z ◦ C

Sequence: A sequence of values a, b can be encoded using rotation:

AB = ρA ◦B

Appending another element c to a,b is encoded as:

ABC =ρ(AB) ◦ C

=ρ2A ◦ ρB ◦ C

As a form of random indexing, they can be and have been used to represent and cluster

n-gram data with good results [20], and since many different data structures can be

encoded by the same vectors and then be bound together, hypervectors are a good

candidate data representation for combining different types of data.

3.1.5 Paragraph Vectors with Doc2Vec

Word embeddings have become a popular way of quickly building an understanding of

how different words have relations to each other in enormous datasets. Word2Vec [21]

is one of the most popular models that can produce vector representations of words in

texts, where the syntactic and semantic similarity between words is represented in the

vectors that the model produces for each word. Word2Vec is implemented as a a neural
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network that takes sentences as input, and learns about connections to other words in

the corpus to produce fixed-size output vectors based on the context of surrounding

words in sentences or just by association of which words exist in the input sentences.

To get the similarity between two words, the cosine distance can be calculated between

the word embeddings.

A further development to the Word2Vec model is the so called Doc2Vec model [22], which

instead of just words works on full paragraphs or documents to produce vectors that

embed similarity traits between documents. This allows for more complex operations

such as document clustering as the resulting vectors are still compared only using the

cosine distance metric.

One caution with both models is that they are generally better suited for very large

corpuses with millions of words.

3.2 Clustering

The basic idea of clustering is finding items within a dataset that are in some way

considered to be similar to each other[11].

One of the main things to consider when selecting clustering algorithms for this thesis

was finding ones that could work with arbitrary pairwise distance/similarity metrics, as

the chosen data representations above have several different metrics. As the idea for the

thesis was to find an arbitrary amount of clusters the need for algorithms that did not

need a predefined amount of clusters beforehand had to be taken into account.

3.2.1 Similarity

Clustering requires a metric that tries to describe how appropriate it is for two elements

to be a part of the same cluster. This will generally be some kind of similarity or

distance metric that is calculated between all elements[11]. Similarity and Distance

can, as long as they are normalized, be considered each other’s opposite metric. Two

identical objects would have a similarity of 1.0 and a normalized distance of 0.0, while

two fully dissimilar objects would have a similarity of 0.0 and a normalized distance of

1.0.

For this thesis we will look at three different similarity/distance metrics that are selected

based on the data representations that will be used.
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Jaccard Similarity

A way to calculate the similarity between two sets is to calculate the Jaccard Coefficient

or Jaccard Similarity between them [11]. Jaccard Coefficient is a similarity metric

between 0.0 and 1.0 (where 1.0 is fully similar) that is calculated as

J(A,B) =
|A ∩B|
|A ∪B|

.

Cosine Similarity

To compare similarity between vectors one can use cosine similarity, which is a measure

of cosine of the angle between two vectors[23].By doing this, the measurement does

not take magnitude of vectors into account, only which direction they are pointing to.

This functionality gives the vectors the ability to strengthen a feature representation

by multiplying a vector with a scalar or adding identical vectors element-wise multiple

times as it won’t change the resulting angle, only shifting the individual dimensions

further away from origo making the angle harder to affect. Both hypervectors [20] and

word embeddings from the Word2Vec [21] and Doc2Vec [22] methods can be compared

by using cosine similarity.

Hamming Distance

The hamming distance H(x, y) between two vectors x and y is defined to be the number

of positions i such that xi 6= yi [24]. This metric is mostly applicable when working

with (0, 1)-binary vector representations. In this thesis we use the normalized hamming

distance, which is the hamming distance divided by the number of dimensions in the

vector. This ends up producing a number between 0.0 and 1.0.

Another way of expressing the Normalized Hamming distance of two vectors x and y

with d dimensions is

Hnorm(x, y) =

∑d
i=0 xi ⊕ yi

d
.

3.2.2 Hierarchical Agglomerative Clustering

Hierarchical Cluster is a method of cluster analysis where the idea is to build a hierarchy

of clusters [23]. Agglomerative clustering is the so called ”bottom-up” approach where

each item starts as its own cluster, and pairs of clusters are merged as the hierarchy is

built up.

The time complexity for hierarchical agglomerative clustering is atleast O(n2) [10]. It

will also use huge amounts of I/O when clustering over a large number of objects.

This can cause it to scale badly if the input size increases, but as the thesis uses a
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near-constant input size time complexity is not factored into the selection process or

evaluation.

When using hierarchical clustering, there are a couple of methods that determine how

clusters in the hierarchy should be evaluated when determining if they should be merged

or not [10]. Single-link clustering consider the distance between two clusters to be

the shortest distance from any member of one cluster to any member of the other

cluster. Average-link clustering, as the name advertises, uses the average distance

between all members of one cluster and the other cluster. Complete-link clustering

can be considered the opposite of single-link clustering, and will use the longest distance

between any member of one cluster to any member of the other cluster.

In a situation where it is extra important that the cluster only contains items that

definitely should belong there, Complete-link clustering would provide the best fit as it

examines the clusters in a ’worst-case scenario’. This should help reduce false-positives,

but will increase the overall amount of clusters being returned.

3.2.3 DBSCAN

DBSCAN, short for Density-Based Spatial Clustering of Applications with Noise, is a

clustering algorithm that discovers clusters of any shape by examining the neighborhood

of each object and checking if it contains more objects than a defined minimum threshold

[10]. One particular feature of DBSCAN is that it can classify items as either being part

of a cluster, or just being noise. This is different from many other clustering methods

that attempt to force every item in a dataset into a suitable cluster (or give it a separate

cluster for itself).

3.2.4 Cluster Visualization

To get a better grasp of how data that has up to 10000 dimensions get properly clus-

tered, the t-SNE method can be used to represent high dimensional data as 2D-data

in a scatter plot. t-SNE, or t-distributed Stochastic Neighbour Embeddings, is a tech-

nique for dimensionality reduction that still tries to keep the overall features from each

dimension [25].

A common way of applying this when evaluating clustering results is by using t-SNE to

get 2D coordinates from the input data and draw them in a scatter plot which causes

similar items to get roughly the same coordinates. The points are then also colored

with a unique color for the cluster that they were associated with. The resulting scatter

plot gives an indication of if your clustering algorithm is building clusters for items

that are seemingly similar. As an example, in figure 3.3 the MNIST dataset, a large

labeled collection of images of handwritten numbers between 0 and 9, has had its raw
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Figure 3.3: Scatter plot of running the MNIST dataset through t-SNE.

pixel values from each image fed directly to the t-SNE algorithm as large vectors. The

algorithm has downscaled it from over 700 dimensions to just a 2D grid. Each 2D

point has then been painted on a scatter plot with a color representing the label it

corresponds to. The resulting graph shows that a majority of the handwritten numbers

get 2D coordinates fairly close to each other which is exactly what t-SNE models. More

in-depth information on how t-SNE works can be found in [25].
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Methods

The methods and their implementations were loosely split up to address the different

sub-problems that were presented in chapter 1. For the first step the neccesary data is

gathered and pre-processed. Afterwards an initial test to assess the impact of n-gram

representations. With knowledge from that test, the other data representations are

tuned and tested towards all datasets, and certain evaluation metrics are collected to be

presented in chapter 5. A high-level overview of the whole process is depicted in figure

4.1.

4.1 Data Gathering

The data used to represent prior and current state for servers and error reports was

queried from a data warehouse using a query engine called PrestoSQL [26]. This al-

lows you to make queries across many different data sources that have different storage

backends, such as doing SQL joins between Apache Hive and MySQL clusters.

To decide which servers to look at, error reports for servers from around 5 different dates

were chosen. Each dataset was formed to contain around 10000 servers, but can have

very different composition of clusters. Further queries were then made for these servers

to get historical error reports. Some baseline metrics for the datasets are presented in

table 4.1. These metrics were calculated by counting the unique amount of error signals

present in each dataset. Since this does not take into account different models, firmware

versions, or anything else that might contribute to data being clustered, any computed

clusters cannot directly be compared to this ground truth. However, it serves as a good

enough baseline and it can be expected that the algorithms should find atleast a subset

of these clusters.

These datasets were sampled from very spread out dates throughout the year, as an

attempt to mitigate ’overfitting’ clustering parameters to a particular dataset.

17
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Figure 4.1: High-level overview of converting input data to desired data representations.

The resulting data contains things like current and prior error reports (including signals

about the failures), server model, CPU architecture, workload running on the server,

which datacenter it is installed in, as well as historical and current repairs done. The

data was divided up into key-value pairs for metadata, and as state/state transitions for

event history data.

All data was downloaded to a Jupyter Notebook [27] to be further processed using

pandas [28], a library for handling tabular data. The data was then sorted based on

timestamps to build an event timeline of each server from the day it entered a data

center up until a set date for which the analysis was made on. Each event corresponds

to a definite state the server was in at a point in time, with the inputs that made it end

up in that state.

The event history for each server is then modelled as the finite state automata depicted
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Table 4.1: Statistics for the five datasets used.

Name Size Known Clusters Avg Cluster Size

Dataset 1 ∼10000 14 165.64

Dataset 2 ∼10000 19 200.95

Dataset 3 ∼10000 22 201.18

Dataset 4 ∼10000 17 185

Dataset 5 ∼10000 21 220

in figure 4.2, by rebuilding the FSA log from the event timeline. The only difference is

that inputs such as bad part, error signal, investigate contain more detailed information

of exactly which bad part, error signal or escalation reason was used to move it into

the new state. This is not detailed in the finite-state automata model, but is important

metadata for the actual clustering step to provide more accurate results. The data

was then further processed into the desired data representations described in sections

4.3.3-4.3.6.

4.2 n-gram testing

The first theory to test was that n-grams can and will improve clustering of FSA logs due

to their relationship to regular grammars that was described in section 3.1.2. An initial

test bench was setup via the ”Hypervector representation, Cosine Similarity” approach

described in section 4.3.4.

The test was then ran on one dataset, only changing the n value when building the

n-grams. The results for each run was recorded using the evaluation metrics described

in section 4.4.

4.3 Clustering Setup

4.3.1 Hierarchical Agglomerative Clustering

For HAC the scikit-learn [29] implementation was used. It could either take a distance

matrix as input, or vectors together with a distance method that would output a distance

matrix. The implementation has several parameters that allows it to be used for several

different problems and inputs. For this thesis the following parameters were involved,

and the rest were set to default:
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IN PROD IN REPAIR

DIAGNOSED UNDIAGNOSED

ESCALATED

VERIFIED

error signal

unknown

bad part

repaired

healthy

error signal

investigate

investigate

bad part
bad part

Figure 4.2: FSA representation of the state of a server’s lifecycle.

Parameter Type Description

n clusters int or None The number of clusters to find. If None then

distance threshold is used instead, which is what

is used here.

affinity str Metric used to calculate linkage or similarity.

Values used were ’precomputed’ or ’cosine’.

linkage str Which linkage criteria to use. Only ’complete’

was used.

distance threshold float The distance threshold above which, clusters will

not be merged.

The main tunables of the algorithm are either specifying the number of clusters to find

with n clusters, or specifying a distance threshold which served as a limit between when

clusters are too far away from each other and should not be merged. For these tests

n clusters was set to None so that the algorithm would find an unknown amount of

clusters only based on distance threshold as a variable parameter, as the goal is to find

both known and new clusters. In further tests and results distance threshold is denoted

as the t parameter.
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4.3.2 DBSCAN

scikit-learn [29] was also the source for the DBSCAN implementation. Using the same

library for both had the added benefit that they shared the same API and could be

switched interchangably without changing much of the surrounding code. In this case

the algorithm also accepted either take a distance matrix as input, or vectors together

with a distance method that would output a distance matrix. Similar to the HAC

implementation, DBSCAN has multiple parameters but only a few listed ones were

changed from their default values:

Parameter Type Description

eps float The maximum distance between two samples for them to be

considered in the same neighborhood.

min samples int The number of samples in a neighborhood for a point to be

considered as a core point. The default value of 5 was used.

metric str Metric used to calculate similarity. Values used were ’precom-

puted’ or ’cosine’.

n jobs int While not used in the calculations themselves, specifies how

many parallel jobs will be used to calculate the clusters.

DBSCAN was primarily tuned by the eps parameter, and as the min samples parameter

was set to 5 many small clusters that HAC produces were considered noise by DBSCAN.

4.3.3 Set representation, Jaccard Similarity

The first method of clustering on similarity was to represent each server’s data as a set,

and then use Jaccard Similarity to calculate the pair-wise similarity between all servers

in the dataset.

To represent the FSA log history as a set, we recorded each state and its input as a long

sentence of words. We then built tri-grams of words from the sentence and stored those

in a set. Key-value pairs were also stored in the set as ”key: value” strings.

states = (

"IN_PROD memory_incorr IN_REPAIR ram_stick DIAGNOSED "

"repaired VERIFIED healthy IN_PROD"

)

ngrams = set(ngrams(states , n=3))

kv = {" datacenter dc1", "model type1_gen3 "}

S = ngrams + kv

Figure 4.3: Pseudocode for generating sets from error report data
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The next step was to calculate the Jaccard Coefficient between all servers. The results

are stored in an nxn matrix called a similarity matrix, where each row/column represents

each server in the list of selected servers. Each element eij is a value between 0 and 1

representing how similar server i is to server j, with 1 being exactly similar and 0 fully

dissimilar.

The resulting matrix is transformed from a similarity matrix As to a distance matrix

Ad by taking Ad = 1 − As, causing fully dissimilar pairs that had a value of 0 to get a

max distance of 1 instead, and vice versa.

In chapters 5 and 6 any results from this data representation method will be labeled

’Jaccard’.

4.3.4 Hypervector representation, Cosine Similarity

The second method was representing each server’s data as a bipolar hypervector, and use

cosine similarity to calculate the pair-wise similarity between all servers in the dataset.

The approach was similar to the first method with sets, by recording each state and its

input as a sequence. We then built tri-grams from the sequence that were encoded as

hypervectors and added together. Key-value pairs were also encoded as hypervectors

and added to the resulting vector of each server similar to in figure 4.4.

The next step was, much like the first approach, to build a distance matrix of size nxn.

This time the cosine similarity metric was used instead.

In chapters 5 and 6 any results from this data representation method will be labeled

’HDVector’.

4.3.5 Binary Hypervector representation, Normalized Hamming Dis-

tance

The third method was representing each server’s data as a binary hypervector, and use

normalized hamming distance to calculate the pair-wise similarity between all servers

in the dataset.

The approach is almost identical to the second method in 4.3.4, with the difference that

the operations were for binary (0, 1)-hypervectors instead of bipolar (-1, 1)-hypervectors.

This in turn means that binding and permuting of hypervectors are implemented using

different operations.

In chapters 5 and 6 any results from this data representation method will be labeled

’HDVector2’.
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hdmap = {}

def get_vector(data):

if not data in hdmap:

hdmap[data] = random_vector(d=10000)

return hdmap[data]

states = (

"IN_PROD memory_incorr IN_REPAIR ram_stick DIAGNOSED "

"repaired VERIFIED healthy IN_PROD"

)

kv = {" datacenter ": "dc1", "model": "type1_gen3 "}

Vstates = sum([

get_vector(ngram [0])* get_vector(ngram [1])* get_vector(ngram [2])

for ngram in ngrams(states , n=3)

])

Vkv = sum([ get_vector(k) * get_vector(v) for k,v in kv])

V = Vkv + Vstates

Figure 4.4: Pseudocode for generating hypervectors from error report data

4.3.6 Doc2Vec representation, Cosine Similarity

The fourth approach was representing each server’s data as an word embedding vector

calculated by Doc2Vec. Here cosine similarity was also used for pair-wise similarity.

Because we have no good way of combining the metadata and the state transitions

separately without applying something like hybrid clustering [12], they were simply

appended together as one long sentence representing each server. Doc2Vec was then

initialized and all sentences were fed as the training corpus. Because we are using

magnitudes less data than doc2vec would normally train on, the parameters available

were tuned to ensure that relationships in the data were somewhat captured in the

vectors.

When the model had been trained, each document was given it’s paragraph vector, and

a distance matrix was built the same way as in section 4.3.4 by calculating the cosine

similarity between all vectors.

In chapters 5 and 6 any results from this data representation method will be labeled

’Doc2Vec’.
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states = (

"IN_PROD memory_incorr IN_REPAIR ram_stick DIAGNOSED "

"repaired VERIFIED healthy IN_PROD"

)

kv = [" datacenter dc1", "model type1_gen3 "]

document = " ".join(kv) + states

# repeat for each server and build document db

documents = [document ...]

model = Doc2Vec(documents , vector_size =300, epochs =50)

for doc in documents:

V = model.infer_vector(doc)

Figure 4.5: Pseudocode for generating paragraph vectors from error report data

4.4 Evaluation

Each approach was ran on the datasets mentioned in section 4.1 with each data rep-

resentation. Since the goal is to evaluate methods that in general are viable for this

type of data, the contents of the datasets vary to give an accurate representation of

what might be seen during a year in a data center fleet. Additionally one parameter

was varied for both of the approaches, to see how that affects the results. For HAC

the distance threshold t was tested with four different values from 0.2 to 0.75, and for

DBSCAN the eps parameter was varied between 0.1 to 0.5.

The first analysis is to determine which parameter(s) for each of the algorithms produces

results that are worth looking further into. This is done by weighting the aggregated

average metrics that are described in the sections below.

Evaluation for each run is done by first filtering out all clusters with less than 50 items

in them as per delimitation D4. The rest of the metrics are then computed and stored

into a table. When a few combinations have been deemed more successful than others

(based on the collective weight of all metrics), the metrics are split up from its aggregate

view to show a more detailed view per dataset.

The results from the detailed evaluation will also be compared to the t-SNE visualization

graphs that will be produced for the best and worst run.



4.4. EVALUATION 25

4.4.1 Clusters

The first metric for a run was how many clusters with more than 50 items were detected

in the run. This is not a metric to optimize for alone, but plays a part together with

the accuracy of the clusters. If a particular run finds many clusters but also has high

accuracy, it could be considered a better method.

One thing we don’t take in to account is how many items above 50 that each cluster

contains, as you could have 2 clusters with seemingly identical items that should tech-

nically be one cluster. We examine this by doing a deep dive of clusters from the most

successful run and attempt to explain why seemingly similar clusters have been split

into two or more.

4.4.2 FB Accuracy

The accuracy for a cluster, in this thesis called FB Accuracy, was devised from delim-

itation D1 specified in section 1.4 to provide a metric for how much value a clustering

method could potentially bring when running in a real world scenario. It is calculated

by looking at the occurrences of diagnosed outcome of each error report, and divide the

highest occurrence of a diagnosed outcome with all error reports in the cluster. A score

of 1.0 would mean that all error reports in the cluster had the exact same diagnosed

outcome, which is the ideal score, but generally only achievable for known errors with

automatic diagnoses.

One thing to keep in mind is that the data is composed by both humans and automation,

so there exists a natural accuracy loss due to people selecting different solutions for the

same problem.

4.4.3 Silhouette Score

Silhouette score is a measure of how how well objects have been clustered[30]. The value

measures how similar an object is to its own cluster compared to other clusters. It is

defined as

s(i) =
b(i)− a(i)

max{a(i), b(i)}
where

a(i) = average dissimilarity of i to all other objects in own cluster

and

b(i) = minimum value of average dissimilarity of i to all objects in other clusters.

The resulting value is in the range of [−1, 1] where values towards 1 means that the

correct cluster is chosen, values close to 0 mean that the item is on the border between



26 CHAPTER 4. METHODS

clusters, and values towards −1 means that the item would be better suited in another

cluster.

Because we apply the limitation of only wanting clusters with more than 50 items, two

silhouette scores are calculated. The first is for all items and clusters regardless of size,

and the other is an ”adjusted” silhouette score only involving the selected clusters. In

this implementation the silhouette score is also not calculated for the ”noise” cluster

that the DBSCAN algorithm assigns items it considers to be noise, as it would severely

impact the metric negatively. This has to be kept in mind as one compares the results

between HAC and DBSCAN.



Chapter 5

Results

In this chapter the results from chapter 4 are presented. First we examine the theory

that n-grams can be applied to FSA log data and achieve higher accuracy, then we

present the results from all the data representations we tested with our two clustering

algorithms selected. Lastly a deep dive into one specific run is made to examine the

contents of a few clusters. This chapter will only make some observations regarding the

results and some simpler explanations. A deeper evaluation will be done in chapter 6.

5.1 Impact of n-grams

The first test described in section 4.2 was to evaluate how using n-grams on the FSA logs

would affect the accuracy of the clustering. The results presented in table 5.1 shows

that the measured accuracy goes up when raising n from 1 through 3, but raising it

further does not provide any increase in accuracy, it only finds less clusters. The overall

silhouette score also stabilizes at n = 3, giving an indication that for all data you are

unlikely to get any better results. The adjusted silhouette score keeps increasing as you

increase n, but this is can be attributed to the number of clusters decreasing at the same

time.

Table 5.1: Results for n-gram representations of FSA with respect to clustering.

n-gram Clusters FB Accuracy Sil Score Adj Sil Score

n=1 50 0.667887 0.322974 0.496032

n=2 32 0.819857 0.314197 0.639761

n=3 26 0.831289 0.348428 0.662777

n=4 23 0.825428 0.347941 0.744172

n=5 18 0.834127 0.348703 0.713653

27
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When observing the t-SNE graphs in figures 5.1-5.5 for each run, one can observe some

trends as n is increased. First of all, clusters are more distinct and not as mixed into each

other. This can be attributed to the additional information provided by the surrounding

context eliminating uncertainties about in which cluster an item actually belongs to, and

the additional differences given by the context pushing items further away from each

other when using t-SNE. You also have less ’random’ stragglers that affect the centroids

of each cluster as those become too distant from clusters when the additional features

are introduced. Worth noting is the fact that even with n = 1, the FB accuracy is still

quite decent. This is because each individual keyword is still used on its own during

the clustering step, and the data overall has clustering potential that will be further

evaluated by the tests described in 4.3.

Figure 5.1: HDVector n-grams n = 1
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Figure 5.2: HDVector n-grams n = 2

Figure 5.3: HDVector n-grams n = 3
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Figure 5.4: HDVector n-grams n = 4

Figure 5.5: HDVector n-grams n = 5
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5.2 Clustering results

The results of running our two clustering algorithms described in section 4.3 are pre-

sented in the tables 5.2 and 5.3. For each algorithm, each data representation method

was tested whilst varying one primary parameter of the algorithm. This was done as

mentioned in section 4.1 the results presented in the tables are the averages over those

5 datasets, which is why ’Clusters’ is not presented as a integer number.

Avg Size represents the average size of the clusters for a run. FB Acc is calculated for

each cluster as described in section 4.4.2, and is then averaged first per run and then

between all datasets. Sil(houette) Score and Adj Sil Score are calculated as described

in section 4.4.3.

The overall goal of the value in each column is to be as large as possible while not

negatively affecting any of the other columns. Therefore an ’Overall’ score is calculated

for each row simply by multiplicating all values except avg cluster size in each row,

which gives a guiding value for which combination of algorithm, data representation

and parameter yielded the overall best results.

Table 5.2: Results for clustering with Hierarchical Agglomerative Clustering, using dif-

ferent data representations.

Method Clusters Avg Size FB Acc Sil Score Adj Sil Score Overall

Jaccard t=0.2 12.4 97.0 0.888750 0.311340 0.749159 2.57

Jaccard t=0.4 14.8 113.35 0.888779 0.314197 0.673119 2.78

Jaccard t=0.5 17.2 117.53 0.855634 0.310708 0.666675 3.05

Jaccard t=0.75 31.8 118.91 0.855073 0.250363 0.447783 3.05

HDVector t=0.2 15.8 112.2 0.891730 0.333868 0.714308 3.36

HDVector t=0.4 27.8 118.89 0.878886 0.335961 0.514565 4.22

HDVector t=0.5 29.8 121.27 0.861274 0.316833 0.483834 3.93

HDVector t=0.75 44.0 148.18 0.712813 0.273230 0.402436 3.45

HDVector2 t=0.2 15.6 100.71 0.871843 0.333868 0.535248 2.43

HDVector2 t=0.4 38.8 133.8 0.762654 0.265864 0.308051 2.42

HDVector2 t=0.5 30.2 308.13 0.487405 0.213583 0.144330 0.45

HDVector2 t=0.75 1.0 9570.6 0.336196 0.0 0.0 0.0

Doc2Vec t=0.2 21.2 97.78 0.844697 0.186407 0.295855 0.99

Doc2Vec t=0.4 22.4 151.59 0.785514 0.280665 0.476130 2.35

Doc2Vec t=0.5 24.2 157.88 0.770898 0.274395 0.449959 2.30

Doc2Vec t=0.75 34.2 158.6 0.676039 0.227502 0.389680 2.05

A common theme for almost all HAC runs in table 5.2 is that the number of clusters

increase when t is increased. This can be expected as t controls how far between clusters
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and items can still be considered similar, and therefore more clusters with more than

50 items are found. Examining the different data representations, all representations

had quite decent accuracy for t = [0.2, 0.4]. The main thing that differs for these

values is how many clusters are found, and what silhouette scores are calculated for

them. Additionally Jaccard and Doc2Vec produce a steady value of clusters when t =

[0.2, 0.4, 0.5] compared to the hypervector implementations. The HDVector2 t=0.75 run

resulting in one cluster (which in turn produces a silhouette score of 0) is because the

normalized hamming distance for two random (0,1)-binary hypervectors will be around

0.5, meaning that a distance threshold above that would consider all items to be from

one big cluster.

Table 5.3: Results for clustering with DBSCAN, using different data representations.

Method Clusters Avg Size FB Acc Sil Score Adj Sil Score Overall

Jaccard eps=0.1 4.2 123.57 0.788243 0.966728 0.797842 2.55

Jaccard eps=0.2 17.8 143.38 0.886407 0.552311 0.594982 5.18

Jaccard eps=0.4 14.1 420.13 0.714311 0.146582 0.103012 0.15

Jaccard eps=0.5 4.8 1649.57 0.614064 -0.013862 0.063106 0.00

HDVector eps=0.1 14.2 190.99 0.811893 0.641321 0.654076 4.84

HDVector eps=0.2 17.6 284.79 0.723152 0.222881 0.376874 1.07

HDVector eps=0.4 1.8 5029.1 0.416580 -0.010272 0.076180 0.0

HDVector eps=0.5 1.0 9464 0.338606 0.059307 0.0 0.0

HDVector2 eps=0.1 6.6 198.73 0.851350 0.732700 0.681204 2.80

HDVector2 eps=0.2 17.0 332.64 0.722329 0.132759 0.235136 0.38

HDVector2 eps=0.4 1.0 9568.4 0.336120 0.0 0.0 0.0

HDVector2 eps=0.5 1.0 9570.6 0.336055 0.0 0.0 0.0

Doc2Vec eps=0.1 11.4 496.5 0.706639 0.176955 0.340904 0.49

Doc2Vec eps=0.2 2.0 6450 0.350994 -0.187435 0.144124 -0.02

Doc2Vec eps=0.4 1.0 9472 0.335993 0.029505 0.0 0.0

Doc2Vec eps=0.5 1.0 9567.6 0.336384 0.0 0.0 0.0

Overall DBSCAN results in table 5.3 have a few distinct differences compared to HAC

runs in table 5.2. DBSCAN finds less clusters with more than 50 items, but can have a

much higher silhouette score. This is because anything DBSCAN considers noise is not

included in the silhouette score calculation, contrary to HAC that will force a cluster

and silhouette score for every item n the dataset. However, DBSCAN is also reporting

negative silhouette scores, which is described in section 4.4.3 as having items that most

likely should belong to another cluster than the one they were assigned to. Some of the

runs even report only one cluster, meaning that the algorithm likely has its parameter

set too high. Looking at the dataset sizes in table 4.1 we see that the only cluster it

finds nears the size of the whole dataset, which strengthens this claim.
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From these aggregated results, we select a few ones to look at closer:

• HAC Jaccard t=0.5

• HAC HDVector t=0.2

• HAC HDVector t=0.4

• HAC Doc2Vec t=0.4

• DBSCAN Jaccard eps=0.2

• DBSCAN HDVector eps=0.1

These are selected because they have the best combinations of values and scores, and

subsequently produce the highest Overall scores. Details for these runs are summarized

in table 5.4, with values for each selected method versus each dataset. By doing this, the

HDVector2 data representation is not further examined. This was somewhat expected

as the binary hypervectors are known to have less accuracy than bipolar hypervectors

that don’t get truncated, and for the aggregated results HDVector2 performed more

poorly for all parameters and combinations.



34 CHAPTER 5. RESULTS

Table 5.4: Results per dataset for methods that we are diving into.

Method Dataset Clusters Avg Size FB Acc Sil Score Adj Sil Score

HAC

Jaccard t=0.5 Dataset 1 7 109.71 0.931178 0.282980 0.681091

Jaccard t=0.5 Dataset 2 16 145.31 0.835228 0.320002 0.677073

Jaccard t=0.5 Dataset 3 25 106.72 0.858929 0.318254 0.616092

Jaccard t=0.5 Dataset 4 15 95.67 0.766408 0.288431 0.629339

Jaccard t=0.5 Dataset 5 18 130.22 0.893284 0.318272 0.697565

HDVector t=0.2 Dataset 1 6 117.33 0.917393 0.311145 0.760073

HDVector t=0.2 Dataset 2 15 133.8 0.912523 0.340481 0.690754

HDVector t=0.2 Dataset 3 23 98.86 0.898861 0.350009 0.676802

HDVector t=0.2 Dataset 4 15 92.87 0.860888 0.319670 0.654318

HDVector t=0.2 Dataset 5 17 118.71 0.935092 0.335455 0.693338

HDVector t=0.4 Dataset 1 13 111.85 0.916742 0.305052 0.432025

HDVector t=0.4 Dataset 2 23 137.91 0.869518 0.345985 0.596120

HDVector t=0.4 Dataset 3 32 114.13 0.876756 0.348655 0.588531

HDVector t=0.4 Dataset 4 25 108.76 0.821769 0.317627 0.529345

HDVector t=0.4 Dataset 5 35 121.8 0.889445 0.355528 0.543546

Doc2Vec t=0.4 Dataset 1 11 130.45 0.931510 0.245740 0.483257

Doc2Vec t=0.4 Dataset 2 25 156 0.810802 0.299183 0.468620

Doc2Vec t=0.4 Dataset 3 24 186.83 0.724893 0.285468 0.413601

Doc2Vec t=0.4 Dataset 4 24 132.92 0.745924 0.289819 0.479546

Doc2Vec t=0.4 Dataset 5 26 151.73 0.793207 0.301431 0.471515

DBSCAN

Jaccard eps=0.2 Dataset 1 7 160.71 0.929998 0.502084 0.556105

Jaccard eps=0.2 Dataset 2 15 180.53 0.862234 0.556639 0.625499

Jaccard eps=0.2 Dataset 3 27 107.67 0.887277 0.625450 0.654552

Jaccard eps=0.2 Dataset 4 17 126.59 0.852698 0.540423 0.556135

Jaccard eps=0.2 Dataset 5 24 141.38 0.902769 0.541889 0.566242

HDVector eps=0.1 Dataset 1 6 220.5 0.813889 0.676462 0.648211

HDVector eps=0.1 Dataset 2 13 210.77 0.839949 0.596388 0.610169

HDVector eps=0.1 Dataset 3 22 136.5 0.810578 0.670981 0.717888

HDVector eps=0.1 Dataset 4 15 161.87 0.781724 0.630856 0.635677

HDVector eps=0.1 Dataset 5 15 225.33 0.851480 0.587761 0.651982
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If we recall the ground truth values for the datasets described in table 4.1, there are a

few observations to be made. When comparing the selected HAC runs with the selected

DBSCAN runs, the two main differences are the average cluster sizes being closer to or

higher to the ground truth values for DBSCAN, as well as the silhouette scores being

higher as mentioned earlier. This points towards DBSCAN possibly being more suitable

for clustering data with these types of data representation, and could be evaluated

further with more tuning to the DBSCAN algorithm. None of the algorithms are able

to find 14 known clusters for Dataset 1, and while HAC HDVector t=0.4 came close

it, the average cluster size is far lower. Apart from that, HAC HDVector t=0.4 and

HAC Doc2Vec t=0.4 have found more clusters than what are known which either means

there are unknown clusters, or known clusters might have been split in two. This can

be verified by diving into the contents of the clusters, which is done in section 5.3.

5.3 Cluster Contents

To get an understanding of what type of clusters the combinations of algorithms and

data repreresentations actually have created, five runs were picked from table 5.4 and the

clusters were examined with the ground truth values from table 4.1. The comparison

was done by extracting the error signal from all items in the cluster and picking the

majority value. This is also how the known clusters in the ground truth data were

calculated. If the error signal exists both in the ground truth and the clustered data, it

is considered a known cluster. Any duplicate error signal clusters in the same run are

counted towards ”Known Duplicates”. If the error signal was not found in the ground

truth data, it is counted as an unknown cluster, and any duplicates of that error signal

as ”Unknown Duplicates”. The ground truth data contains no duplicate clusters due to

the way it was built. The data is presented in table 5.5.

Table 5.5: Known and unknown clusters found

Method Dataset Known Known Dup Unknown Unknown Dup

HAC

Jaccard t=0.5 Dataset 5 9 3 4 1

HDVector t=0.4 Dataset 5 13 13 4 1

Doc2Vec t=0.4 Dataset 3 12 2 11 1

DBSCAN

Jaccard eps=0.2 Dataset 5 14 4 4 1

HDVector eps=0.1 Dataset 3 7 4 8 4

While some of the runs reached the number of known clusters in table 5.4, here we

can see that all of the runs are a mix of known and unknown clusters, plus several of

them duplicates. One explanation for not finding all known clusters can possibly be
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explained by the same way duplicate clusters have been found here. If a known cluster

is split into smaller clusters due to other features causing them to seem unique enough,

it could create clusters with fewer than 50 items in each which would not show up in

our analysis. By looking at the t-SNE graphs in figures 5.6-5.10, we get some indication

of this behavior in figure 5.7 where several clusters are closely intertwined.

Another observation that can be made in the t-SNE graph in figure 5.8 is that the data

representation Doc2Vec produces way tighter clusters overall when compared to any of

the other representations. It will however not create the round eye-shaped clusters that

can be seen in Jaccard and HDVector t-SNE graphs. One explanation for this could be

that Doc2Vec did not use n-grams and was given more context of the surrounding words

when building the vectors.

Figure 5.6: Jaccard HAC t=0.5 on Dataset 5
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Figure 5.7: HDVector HAC t=0.4 on Dataset 5

Figure 5.8: Doc2Vec HAC t=0.4 on Dataset 3
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Figure 5.9: Jaccard DBSCAN eps=0.2 on Dataset 5

Figure 5.10: HDVector DBSCAN eps=0.1 on Dataset 3
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To verify that duplicate clusters aren’t just due to ’bad’ clustering, one of the runs were

further examined based on the error signal each error report contained and presented in

table 5.6. The goal was to ensure clusters that are built for the same error signal have

other reasonably distinct features to be considered unique. This was done by manually

examining the error reports and their metadata in the clusters by using an internal tool

for error reports.

Table 5.6: Manual examination of duplicate error signal clusters.

Error Signal FB Accuracy Cluster ID Common feature

Unknown 0.9974619289340102 2196 Gen 2 Microserver

Unknown 1.0 1298 Gen 1 Microserver

Signal 1 1.0 122 Model Type 1

Signal 1 1.0 692 Model Type 10

Signal 1 1.0 87 Model Type 1

Signal 2 1.0 1608 Model Type 1 Manufacturer A

Signal 2 1.0 552 Model Type 1 Manufacturer B

Signal 2 1.0 853 Model Type 10

Signal 3 1.0 830 Model Type 1 Manufacturer A

Signal 3 1.0 935 Model Type 1 Manufacturer B

For all duplicate error signals (including the ’unknown’ signal), a distinct common fea-

ture that validated the cluster’s existence was found. Additionally all clusters but one

had an accuracy of 1.0 which generally corresponds to it being a known error with an

automated diagnosis. The only duplication that could not easily be explained was Signal

1 on Model Type 1, which had two clusters. There are however some features in the

datasets that are not easily surfaced without digging through several internal tools, so

it was not further examined due to limitation in time.
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Chapter 6

Discussion

In this chapter a reflection of the results and the evaluation method is presented, and

the research questions mentioned in chapter 1 will be evaluated. Suggestions and im-

provements for future work are also presented.

6.1 Results Evaluation

Evaluating if a clustering algorithm builds good cluster on a dataset is a fairly hard task,

especially since the notion of a good cluster is subjective to the person or process that

gets to interpret and work with the cluster afterwards. By setting a reasonable constraint

such as delimitation D1 specified in section 1.4 that could then be translated into an

accuracy metric in section 4.4.2, the overall evaluation process was greatly simplified as

it gives a hard number that can be compared between algorithms that produce the same

output. It also served as a counterweight to the silhouette score metric that is otherwise

often used when determining the quality of a cluster. While it provides a good indication

of if the clustering run should be considered at all, it also wasn’t reliable on its own as

it could be skewed when different algorithms handled things like noise differently.

Another consideration that isn’t always done is going to lengths to examine the data

in built clusters to actually verify that each and every cluster ’makes sense’ to a person

who has an expectation of what the cluster should contain. While this expectation

is as mentioned earlier subjective, getting and recording that feedback atleast gives

an indication of the real-world value of applying the clustering algorithm on a specific

problem.

Looking at the results presented in chapter 5, and section 5.1 there is strong evidence

that the data recorded from the state transitions has grammatical properties that can

be captured by n-grams and by doing such it enhances the clustering results. That

n = 3 is a good value can be inferred partly by looking at the structure of the FSA log

example in section 3.1.2. With n = 3, the context captured from a raw string of the

41
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form ”input state input state input state ...” will always be of one of the two forms a)

”input state input” or b) ”state input state”. Since a finite-state automata’s next state

is only affected by it’s current state and current input, b) gives you a representation of

this relation for all items in the log. And since the grammar of the regular language

is never more complex than the relation between two adjacent inputs, a) provides this

representation to the data.

For the comparison of clustering algorithm, data representation and parameter value,

there is good evidence that the data in the datasets can be clustered using several of

the tested algorithms and data representations and provide value. It should however be

noted that the choice of parameters must be carefully tested depending on the number

and different types of features that is used as input data before converting it to a

certain data representation. One example is the distance threshold t for the Hierarchical

Agglomerative Clustering algorithm. When coupled with Jaccard Similarity, the quality

of the threshold is directly determined by the number of features contained in each set.

For example if the dataset contains 5 unique features, having one feature of a difference

between two sets creates a distance difference of 0.2, which can easily throw an item

over a threshold value.

Using hypervectors for data representation mitigates this a bit as a more complex sim-

ilarity metric is used, but since each distinct feature represented as a hypervector is

approximately orthogonal from any other feature it can still cause big jumps in distance

by adding or removing just one feature if the overal feature count is low.

For Doc2Vec we are somewhat in the blind trying to understand what happens as the

the model is trained, and it is only by manually examining the data and comparing

what is similar to what that you get somewhat of an understanding. It also does not

function well at all if the feature count or overall dataset size becomes too low, which

is likely an issue in our case with only about 10000 items in each dataset. It is however

a good contender, and would be a clear choice if the number of features are extended

with more rich log data.

Lastly, there will be no apparent ’winner’ picked as it was not one of the goals of

the thesis. Instead, the results will be used as motivation for answering the research

questions below.

6.2 Research Questions

In chapter 1 several research questions were established as part of the problem descrip-

tion. These will now be answered based on the theory, methods and results presented

in previous chapters.
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Q1: How well can common clustering methods be used to cluster server

error reports in an unsupervised manner?

Based on the results presented in sections 5.2 and 5.3, together with the accuracy metric

described in section 4.4.2, common clustering methods can serve very well in real-world

scenarios to reduce manual work when assessing systematic issues in large-scale data

center fleets. Since the accuracy metric was based on error reports having the same

desired outcome, and the overall input data for clustering resembling what engineers

were manually looking at today to achieve this very same goal, the results show that

this step in the process can be automated.

Q2: Can you cluster on key-value data and state transition data together

effectively?

Yes, by combining data representations such as sets as in section 4.3.3, or random

indexing via hypervectors as in section 4.3.4 both data structures can be represented as

one entity that can represent items in datasets. Further, by augmenting input data for

state transitions with n-grams by utilizing the underlying grammatical properties of the

state transitions as noted in section 3.1.2, the data representation is further enhanced

to accurately depict the state transition input data as proven in section 5.1. This is

further discussed in 6.1 by evaluating why trigrams does well at representing the FSA

log data.

Q3: How does different data representations affect the ability to build good

clusters?

As evident by the results presented in tables 5.2-5.5, data representation and their

corresponding similarity metrics highly influence the ability to build good clusters. For

simple cases like sets + Jaccard Similarity, where you essentially have no fuzziness

involved as a feature in a set either exists or it doesn’t, it is a bit more cautious building

clusters as there needs to be enough full matches to build up to the desired threshold,

whereas for something like random indexing and doc2vec with cosine similarity will

have a degree of fuzziness as the vector representations are built and mangled together.

Parts of the answer to Q2 are also applicable here, as finding ways to accurately represent

the syntactic and semantic structure of the data also plays into how well the data is

represented.
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6.3 Future Work

Looking at the results that this thesis presents, there several things that could be done by

future work to both further explore the area of clustering error reports in this hyperscale

data center operations setting, but also in the area of clustering on mixed data types.

One fairly straight forward thing would be to actually start building clusters based on

production data, and give it to engineers that actually work with this type of data

manually today, to get feedback on how valuable it is for them in their daily work

and possibly reduce the amount of hours needed. This would provide more real-world

signal than trying to represent it solely with the metric in section 4.4.2. Another thing

would be to flip the delimitation D4 around and instead of optimizing for finding large

clusters, to instead find small clusters that contain more unique and complex error

reports and server history. This could be good to help reduce the so called ”long tail”

that occurs when you get complex hardware and software failures that normal systems

cannot diagnose.

For clustering on different data types it would be interested to use something like the

hybrid clustering method that was looked at in chapter 2, to assign different weights to

different types of features for an item. This would allow to, for example, treat certain

key-value metrics that could too easily affect clustering outcome as less valuable. With

the current implementation every feature has an equal weight to affect the outcome of

the clusters.

If more data could be gathered for each server, properly testing something like doc2vec

as data representation would be very interesting to pursue further. This would however

require some thought to wheter all data should be represented as one plan-text document

as is done in this thesis, or if this solution also should implement something like hybrid

clustering to better represent the semantic differences between raw text data and key-

value data.
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Conclusion

In this master’s thesis the usage of unsupervised clustering methods has been proposed

and tested as a way to speed up and enhance the process of finding and root causing

systematic issues when working with server error reports in a hyperscale data center

operations environment. With a mix of server properties as key-value data, and historical

data as a log of events, several data representations and clustering algorithms were

evaluated. Results show that using data representations that can represent syntactic

and semantic structures of historical events modelled as finite-state automatas improves

clustering accuracy in real-world scenarios.

By leveraging the relationship between regular languages and finite-state automatas,

the application of n-grams on sentences that conform to a certain regular grammar can

capture the inherent grammatical properties and improve the accuracy when comparing

similarities between such sentences. This is not limited to the area of hyperscale data

center operations, but can be applied to other problems where event logs can be modelled

as finite-state automatas.

Comparing clustering solutions for a particular problem can be really complex as the

definition of good and bad clusters must be established in a measurable way beforehand.

Additionally it might not be enough to use just one metric during comparison, as there

are multiple aspects that needs to be taken into account when clusters are generated

such as examining contents and verifying items in clusters make sense with each other.

From the results, both the simpler data representation using sets and Jaccard Similarity

as well as bipolar hypervectors with cosine similarity worked well to achieve high accu-

racy and well-defined clusters for the defined clusters. There were noticeable differences

for the different similarity metrics that affected how many clusters were found or how

many items each cluster contained that needs to be considered on a case-by-case basis.

With the results from this thesis, the long-term plan is to build a proof-of-concept that

can be applied in a production environment to further evaluate the different methods,
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and enhance the way Facebook works with hyperscale data center operations.
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