
TAOBench: An End-to-End Benchmark for Social
Network Workloads

Audrey Cheng†∗, Xiao Shi‡, Aaron Kabcenell‡, Shilpa Lawande‡, Hamza Qadeer†, Jason Chan†,
Harrison Tin†, Ryan Zhao†, Peter Bailis♢, Mahesh Balakrishnan‡, Nathan Bronson▽,

Natacha Crooks†, Ion Stoica†
†UC Berkeley, ‡Meta, ♢Sisu Data, ▽Rockset
accheng@berkeley.edu,akabcenell@fb.com

ABSTRACT
The continued emergence of large social network applications has
introduced a scale of data and query volume that challenges the
limits of existing data stores. However, few benchmarks accurately
simulate these request patterns, leaving researchers in short supply
of tools to evaluate and improve upon these systems. In this paper,
we present a new benchmark, TAOBench, that captures the social
graph workload at Meta. We open source workload configurations
along with a benchmark that leverages these request features to
both accurately model production workloads and generate emer-
gent application behavior. We ensure the integrity of TAOBench’s
workloads by validating them against their production counterparts.
We also describe several benchmark use cases at Meta and report
results for five popular distributed database systems to demonstrate
the benefits of using TAOBench to evaluate system tradeoffs as well
as identify and address performance issues. Our benchmark fills a
gap in the available tools and data that researchers and developers
have to inform system design decisions.

PVLDB Reference Format:
Audrey Cheng, Xiao Shi, Aaron Kabcenell, Shilpa Lawande, Hamza Qadeer,
Jason Chan, Harrison Tin, Ryan Zhao, Peter Bailis, Mahesh Balakrishnan,
Nathan Bronson, Natacha Crooks, Ion Stoica. TAOBench: An End-to-End
Benchmark for Social Network Workloads. PVLDB, 15(9): 1965-1977, 2022.
doi:10.14778/3538598.3538616

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/audreyccheng/taobench.

1 INTRODUCTION
Despite the ubiquity of social networks, including those atMeta1 [20],
ByteDance [19], LinkedIn [40], Twitter [3], and WeChat [47], there
is a lack of publicly available, realistic workloads to guide research on
their underlying database infrastructure. In academia, this scarcity
makes it difficult to probe the limits of existing systems and develop

∗Work done while at Meta.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 9 ISSN 2150-8097.
doi:10.14778/3538598.3538616

1Formerly known as Facebook.

novel mechanisms to overcome them. In industry, it is challeng-
ing for practitioners to evaluate new features and resolve issues
without a way to reproduce these request patterns.

While there are standard benchmarks for OLTP workloads, such
as TPC-C [27], few equivalents exist for social networks. Most are
derived from synthetic data [17, 23, 29, 45, 46] and have not been
shown to fully capture the skew, high correlation, and read-heavy
nature of these workloads [20, 24]. Others lack transactions [1, 2]
or information about colocation preferences and constraints (e.g.,
data may have to reside on specific shards due to legal reasons).

To address the gap in representative workloads, we present
TAOBench, an open-source benchmark that accurately simulates
the production request patterns of an online social network. Since
benchmarks are only as useful as the workloads they are derived
from, we identify five crucial properties that should be captured by
their request patterns. A comprehensive social network benchmark
should 1) accurately emulate social network requests, 2) capture any
transactional requirements, 3) express data colocation preferences
and constraints, 4) model request distributions without prescriptive
query types, and 5) exhibit multi-tenant behavior on shared data
(Section 2). To satisfy these properties, we profile requests served
by TAO, an online graph data store at Meta [20].

TAO is a read-optimized, geographically distributed data store
that provides access to the social graph for diverse products and
backend systems [20]. In aggregate, TAO serves over ten billion
requests per second on a changing dataset of many petabytes. Its
workload contains a variety of notable attributes. For example,
read and write skew often manifest on different keys: over 99.0%
of data items that are frequently written to are, on average, read
less than once per day (Section 3). While the scale and features
of this workload may be distinctive, TAO’s API and data model,
which TAOBench replicates, are intentionally simple. Consequently,
they generalize to those used by other systems, including OLTP
stores [6] and graph databases [9].

To accurately generate TAO’s workloads at flexible scale, we
characterize these request patterns and identify a small set of pa-
rameters, including transaction size, key to shard mapping, and
frequency of operation types, that are sufficient to replicate pro-
duction workloads. We then leverage these features in TAOBench
to both accurately downscale Meta’s social network workload and
model emergent application behavior. Our parametrized framework
is open-source and extensible, allowing it to simulate a range of
different request patterns.

To illustrate TAOBench’s applicability, we report on how Meta
uses this tool to test new features, optimizations, and reliability

https://doi.org/10.14778/3538598.3538616
https://github.com/audreyccheng/taobench
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3538598.3538616


(e.g., hotspots, worst-case scenarios) as well as experiment with
speculative workloads that would otherwise be difficult or infeasible
to assess in production. We describe four examples: 1) analyzing
new transaction use cases, 2) assessing contention under longer
lock hold times, 3) evaluating new APIs, and 4) quantifying the
performance of high fan-out transactions. Furthermore, we provide
the results for TAOBench on five widely used distributed databases
(Cloud Spanner, CockroachDB, PlanetScale, TiDB, YugabyteDB) to
demonstrate how our benchmark can be used to study performance
tradeoffs and identify optimization opportunities.

To the best of our knowledge, TAOBench is the first open-source
benchmark that generates end-to-end, transactional request pat-
terns derived from a large-scale social network and addresses the
lack of representative workloads for a major application area. With
our benchmark, we make Meta’s social graph workload accessible
to the database community and provide visibility into real-world
challenges of supporting such workloads.

In summary, we make the following contributions in this paper:

• We identify a small set of representative features that accu-
rately characterizes TAO’s production workload (Section 3).

• We share Meta’s social graph workload with the broader re-
search community via workload configurations in our open-
source benchmark (Section 4) and validate our methodology
for accurately downscaling these request patterns (Section 5).

• We describe how Meta uses TAOBench to evaluate new
features and test system reliability (Section 6).

• We provide results of our benchmark on five databases to
demonstrate its usefulness as a tool for evaluating distributed
data stores (Section 7).

2 MOTIVATION
Despite the enduring popularity of social network systems, re-
searchers have limited tools to understand their performance. In
particular, there is a shortage of benchmarks that generate realistic
workloads for social graphs. The application context of a bench-
mark’s workload determines its relevance and extensibility. Accord-
ingly, we identify several crucial properties for benchmark work-
loads of this application domain: they should accurately emulate
social network requests (P1), capture any transactional require-
ments (P2), express colocation preferences and constraints (P3),
model request distributions without prescriptive query types (P4),
and exhibit multi-tenant behavior on shared data (P5).

2.1 Desired Properties
We describe why each of these properties is necessary and how
existing benchmark workloads stack up against this criteria. These
features motivate us to capture and parametrize TAO’s workloads.

P1. Accurately emulates social network requests: The only
social network benchmark we are aware of that is derived from
production traces is LinkBench [16] from Meta (Table 1). However,
its workload is centered around the persistent storage layer, so it
excludes the majority of application requests that hit cache. Other
benchmarks, such as BigDataBench [46], focus on graph data rather
than accesses patterns, so they may not fully capture the extreme
skew, high correlation, and read-dominance of these workloads.

Table 1: We compare how the workloads of various bench-
marks satisfy the five properties we identify.

Benchmark P1 P2 P3 P4 P5
TAOBench ✓ r/w-only2 ✓ ✓ ✓

AuctionMark [42] ✗ read-write ✗ ✗ ✗

BigDataBench [46] ✗ none ✗ ✗ ✓

BG [17] ✗ none ✗ ✗ ✗

Epinions [1] ✗ none ✗ ✗ ✗

Graphalytics [23] ✗ none ✗ ✗ ✓

LDBC [29] ✗ read-write ✗ ✗ ✓

LinkBench [16] ✓ none ✗ ✓ ✓

SEATS [43] ✗ read-write ✗ ✗ ✗

SmallBank [44] ✗ read-write ✗ ✗ ✗

TPC-C [27] ✗ read-write ✗ ✗ ✗

Twitter [2] ✗ none ✗ ✗ ✓

YCSB [26] ✗ none ✗ ✓ ✗

P2. Captures any transactional requirements: Transactions
are a critical part of the social network workload [25, 29]. However,
among existing social network benchmarks, only LDBC [29] con-
tains (read-write) transactions. TAO provides one-shot read-only
and write-only2 transactions for improved performance and scal-
ability [25]. These requests constitute a significant portion of the
production workload and should be considered explicitly.

P3. Expresses colocationpreferences and constraints:Given
the rampant growth of social networks [3, 20, 38], sharding is es-
sential to their underlying systems. For those that expose sharding
to users [20, 33], data placement is not simply an implementation
detail but can be a reflection of user intent, privacy constraints, or
regulatory compliance. As a result, data colocation patterns are a
significant part of the workload because they can have significant
concurrency control and performance consequences [31]. This in-
formation is also useful for evaluating the effectiveness of different
(possibly implicit) sharding schemes. To the best of our knowledge,
no social network benchmark contains derived data on the sharding
constraints of the supporting data store (Table 1).

P4. Models request distributionswithout prescriptive que-
ry types: Most existing benchmarks consist of small, fixed sets of
query types representing the behavior of specific applications. For
example, LDBC’s social network benchmark contains 29 query
types meant to simulate a social network akin to Meta’s [29]. In
contrast, many large-scale, real-world platforms have a wide range
of applications that exhibit changing request patterns with contin-
ued development (TAO’s daily workload involves tens of thousands
of distinct query types). Our approach captures system behavior
through representing workloads in a way agnostic to application
“actions” [17] by using probability distributions. As a result, we
can evaluate performance without having to enumerate individual
queries or replicate their code. These different strategies expose a
tradeoff between isolating particular query types for understand-
ability and modeling workloads via distributions for adaptability.
2Write-only transactions on TAO include both blind writes and atomically precondi-
tioned writes for compare-and-swap functionality (Section 2.2). The latter can depend
on data outside the write set.



USER
id: 11

Alice

MEDIA
id: 23
kind: “photo”

My way

POSTED

POSTED_BY

(a)

Client-Side Cache (CSC)

TAO

Database

(b)

Figure 1: TAO provides online access to the social graph (a)
through its tiered architecture (b).

P5. Exhibits multi-tenant behavior on shared data: Most
benchmarks only generate the workload of a specific application.
In contrast, the distributed databases that support social networks
often have multiple tenants with shared data ownership and vary-
ing transactional needs. As the LDBC benchmark paper acknowl-
edges [29], running mixed workloads does not necessarily reflect
how different applications actually interact on real-world data. In
production, we have found that applications can access the same
data and consequently affect the behavior of other products. The
complex patterns that arise out of these indirect interactions are an
important aspect of these workloads. Moreover, product develop-
ers often layer reusable infrastructure on top of multi-tenant data
stores. This “infra on infra” phenomenon can lead to coordinated
behavior between product groups, or sets of applications that access
the same data or use the same infrastructure. These patterns should
be expressed by the workloads of a social network benchmark.

2.2 TAO
In this paper, we present a benchmark that captures the workload
observed by TAO [20], the system that provides online access to the
social graph at Meta. In aggregate, TAO serves over ten billion reads
and tens of millions of writes per second on a changing dataset
of many petabytes. Our benchmark workload derived from TAO
contains all five properties described above.

Given that this system supports the family of applications used
by Meta’s over 3.6 billion monthly active users [36], TAO’s pro-
duction workload offers unique insights into the modern social
network (P1). TAO provides access to objects (nodes) and asso-
ciations (edges) in the social graph with high availability and at
massive scale (Figure 1a). Objects are uniquely identified by an id
while associations are represented by a (id1, type, id2) tuple.
TAO’s simple API consists of point get, range, and count queries,
operations to insert, update, and delete objects and associations, and
failure-atomic write (multi-put) transactions. Most product develop-
ers access TAO through one of two higher-level query frameworks
that makes it easy to express complex operations over the social
graph. These frameworks define the semantic boundary between
the application logic and the data store. Of these two interfaces, the
majority of requests originate from Ent [25], which decomposes
complex queries into hundreds of reads and tens of writes to TAO.

While TAO was initially designed to be eventually consistent, it
has since added stronger consistency and isolation guarantees to
meet the diverse and growing needs of the applications it serves.
In addition to read-your-writes (RYW) consistency [39], TAO now
provides one-shot write-only transactions with failure atomicity
and has prototyped read-only transactions [25]. TAO’s write trans-
actions are implemented with two-phase locking (2PL) [18] and a

two-phase commit protocol (2PC) [30]. While these requests are
less expressive than the interactive, read-write transactions offered
in SQL, they represent an important option in the tradeoff between
stronger semantics and greater concurrency (P2). TAO also sup-
ports atomic preconditions on writes. Semantically equivalent to
compare-and-swap, this API allows an application to issue a write
that will commit only if its preconditions (e.g., whether an item
exists or is at a particular version) are satisfied.

TAO employs a sharded, tiered architecture to scale both horizon-
tally and vertically (P3). It implements two layers of graph-aware
caches as part of a three-tiered system with a client-side cache
(CSC) and an underlying, statically-sharded MySQL database [35]
as shown in Figure 1b. Applications can choose to explicitly colocate
data in the MySQL tier.

Finally, TAO supports a wide range of application types as a
general-purpose data store. Its simple API has enabled this system
to serve as a building block for layering on applications and other
infrastructure (P4). As a result, TAO’smany tenants exhibit differing
access patterns on shared data (P5). Furthermore, product groups
display coordinated behavior that can lead to distinctive trends in
request patterns. We are able also to filter for and examine single-
tenant workloads (as described in the next section).

3 WORKLOAD CHARACTERIZATION
To build a comprehensive benchmark, we begin by characterizing
Meta’s social network workload. We describe our data collection
process, explain our sampling methodology, and address privacy
considerations. We then study key features of TAO’s request pat-
terns. For example, over 99.6% of keys that are frequently written to
in transactions are read less than once per day on average. Perhaps
surprisingly, these keys are not distributed uniformly across shards:
over 93.9% of them are colocated with at least one other frequently
requested item for one product group we profile. We also identify
three types of distinctive transactional access patterns, which re-
sult from diverse application needs for atomicity. We report other
notable aspects of TAO’s workload in the rest of this section, and
we use this analysis to identify a set of parameters that can be used
to reliably reproduce these workloads.

3.1 Methodology
To characterize TAO’s workload, we analyze traces of requests
collected over three days. While different days may have varying
peak volumes, we find that access distributions do not change
significantly between these periods. As daily periodicity is the
most prominent pattern in these workloads, we aggregate over
multiple days for a representative dataset. To minimize production
performance overhead, we uniformly sample traces based on the
hash of object id or association (id1, id2) and record every
request to these items. This ensures that we capture all conflicts on
these keys to accurately measure contention.3

We categorize operation types into three semantic groups: reads,
writes, andwrite transactions.We define reads as all types of queries
on TAO (point get, range, count), writes as all single-key operations
that modify data (insert, update, delete), and write transactions as

3For write-read conflicts, we record every instance of these errors rather than all
requests to these data items due to the large volume of reads.



100 102 104 106 108 1010

Requests / Day (respectively)

100

10°6

10°12

CC
D
F
(fr
ac
tio

n
>
)

Access Distribution of Top 400K Keys

Reads
Writes
Write transactions

100 102 104 106 108 1010

Requests / Day (respectively)

100

10°6

10°12

CC
D
F
(fr
ac
tio

n
>
)

Access Distribution of Top 400K Keys

Reads
Writes
Write transactions

Figure 2: Key access distribution of the top 400K read, write,
and write transaction keys. These operation types have
widely different access frequencies.

requests using either the single-shard or cross-shard, failure-atomic
API [25]. We observe differences in write transactions based on
product group, so we further categorize these requests (Section 3.3).
The trace we collect is comprised of 99.7% reads, 0.211% writes, and
0.0162% write transactions.

We perform our analysis on aggregated statistics that do not
expose individual user information to eliminate any risk of com-
promising user privacy. Most of our analysis is limited to the top
400K keys of the particular group due to memory constraints of
our internal querying service; we find that the tail does not differ
significantly beyond 400K keys.

For the graphs in this section, a key refers to a unique object
or association in the social graph. The key access distribution cap-
tures the request frequency over a set of keys. The shard access
distribution captures the request frequency over a set of shards.

3.2 Operation Skew
We summarize differences between operation types in this section.
We find that key access distributions, hotspots, and request latency
vary between reads, writes, and write transactions. Furthermore,
popular keys for reads also vary between tiers.

Key access distributions. Reads, writes, and write transactions
have significantly different key access patterns. Social graph work-
loads are known for their extreme access skew [20, 24], but we
find this asymmetry manifests differently between operation types.
Figure 2 shows that there is significant variation between the key
access distributions of the top 400K keys of reads, writes, and write
transactions. The P90 access frequency is 3.3M requests per day for
reads and 3.3K requests per day for both writes and write trans-
actions. The larger read volume is expected due to the nature of
the social network in which users access data more often than
they update it (e.g., a user can scroll through many posts before
deciding to “like” one). However, the query volume is not the only
point of divergence: the distribution tails across operation types
are clearly distinct. We explore other differences between these
operation types in the rest of this section.

Hotspots. Read and write (transaction) hotspots do not always
align. Skewed access patterns in social networks are often expressed
on different keys across operation types. Specifically, not all keys
that are written to regularly are also read frequently. For instance,
while a post by a celebrity may be both viewed and liked often (right
circle on Figure 3a), data items generated by internal applications
(data migration and processing) may be read infrequently (left

101 103 105

Reads / Day

102

105

108

W
rit
e
Tx

ns
/D

ay

Product Group 2 Access Distribution

Top 400K write txn keys

101 103 105

Reads / Day

102

105

108

W
rit
e
Tx

ns
/D

ay

Product Group 2 Access Distribution

Top 400K write txn keys

101 103 105

Reads / Day

103

104

105

106

W
rit
es

/D
ay

Like Assoc Access Distribution

Top 400K write keys

101 103 105

Reads / Day

103

104

105

106

W
rit
es

/D
ay

Like Assoc Access Distribution

Top 400K write keys

(a) (b)

Figure 3: Read and write (transaction) frequencies of the top
400K write (transaction) keys. Read, write, and write trans-
action hotspots do not always occur on the same keys.

circle). In fact, over 99.0% of hot write keys are read less than once
per day on average for the Like association (and are thus excluded
from this plot), demonstrating the extent to which skew differs.

A similar pattern emerges for popular keys in write transactions.
Figure 3b shows the read and write transaction frequency for Prod-
uct Group 2. Some items are rarely read (left circle) while others are
queried more frequently (right circle). This graph is sparse because
over 99.6% of the top 400K write transaction keys are, on average,
read less than once per day (so they are not visible on this plot). This
high concentration of writes can result from developer dependence
on atomicity guarantees. For instance, an application may send
concurrent write requests and rely on the system to ensure that
only one association of a certain type is created.

Reads across tiers. Key access distributions for reads vary be-
tween tiers.We study how read frequency correlates across the three
layers in our system. The client-side cache (CSC) serves 14.1% of
reads, TAO serves 85.0%, and the database (DB) serves the remaining
0.872% of queries. Figure 4 shows how the read frequencies of the
top 400K keys of each tier compare in the two other tiers. For
example, Figure 4a shows that read frequency is correlated between
the CSC and TAO (green points), but the top CSC keys have varying
popularity in the DB tier (blue points). For the CSC, 83.5% of its top
keys overlap in TAO and 3.84% in the DB. For TAO, 6.24% of its top
keys overlap in the CSC and 1.17% in the DB. Finally, 0.330% of the
top DB keys overlap in the CSC and 3.31% in TAO.

The two main takeaways are: 1) the caches are clearly effective
and important for performance and 2) the caching tiers are not
perfect. The first point is apparent through the circled points on
Figures 4a, 4b, and 4c. These keys are popular in higher tiers and
less frequently requested in lower tiers. Furthermore, many keys
do not appear on each graph. For example, only 1.17% of the top
400K TAO keys are also requested in the DB, indicating that the
vast majority of queries to these keys are served by the cache.

Even though the caches are effective, access is still skewed in
lower tiers, and some hot items are highly requested throughout
because of cache eviction or consistency misses. For instance, 83.5%
of the top CSC keys are also queried in TAO. Since the CSC does
not actively request newer information from lower tiers and relies
on short Time-To-Live (TTL) or FlightTracker tickets [39] for cache
invalidation, reads that need updated data must go to TAO (or to
the DB in rare cases). This trend is apparent through the clustering
of points in the upper right corners of Figures 4a, 4b, and 4c. These
points represent data items that are highly requested in multiple
tiers, indicating that the caches cannot always serve requests to



103 107 1011

DB Reads / Day

103

107

1011

Ti
er

Re
ad
s/

D
ay

Top 400K DB Keys

TAO
CSC

103 107 1011

DB Reads / Day

103

107

1011

Ti
er

Re
ad
s/

D
ay

Top 400K DB Keys

CSC
TAO

103 107 1011

CSC Reads / Day

103

107

1011

Ti
er

Re
ad
s/

D
ay

Top 400K CSC Keys

TAO
DB

103 107 1011

CSC Reads / Day

103

107

1011

Ti
er

Re
ad
s/

D
ay

Top 400K CSC Keys

TAO
DB

101 103 105

Time (µs)

0.0

3.0e–3

6.0e–3

9.0e–3

Fr
eq
ue
nc
y
fo
rC

SC

0.0

2.0e–4

4.0e–4

6.0e–4

8.0e–4

Frequency
forTAO

and
D
B

Read Latency Distribution

101 103 105

Time (µs)

0.0

3.0e–3

6.0e–3

9.0e–3

D
en
sit
y

Read Latency Distribution

CSC
TAO
DB

103 107 1011

TAO Reads / Day

103

107

1011

Ti
er

Re
ad
s/

D
ay

Top 400K TAO Keys

CSC
DB

103 107 1011

TAO Reads / Day

103

107

1011

Ti
er

Re
ad
s/

D
ay

Top 400K TAO Keys

CSC
DB

(a) (b)

(c) (d)

Figure 4: Read frequencies of the top 400K keys and request
latencies for each tier. For (a), (b), and (c), the x-axis shows
the read frequency of hot keys for a particular tier, and the
y-axis shows the read frequencies for the same set of keys
in the other tiers. While the caching tiers are effective, key
access distribution is still skewed across tiers.

these items. Furthermore, hot keys in lower tiers are not necessarily
popular in the higher tiers (shown by the points in the upper left
corners of these three graphs). These keys may have aged out of
cache or may be updated frequently, forcing reads to go lower tiers
for new information.

We observe that there is a tradeoff between proactively invalidat-
ing the cache (i.e., doing work at write time) and taking consistency
misses (doing work at read time). Figure 4d illustrates that request
times in lower tiers are over an order of magnitude higher, due
to reading from disk rather than memory and cross-region com-
munication delays. The average latency of reads is 6.0 ms from
the CSC, 15.4 ms from TAO, and 76.5 ms from the DB.4 More ef-
fective caching policies to reduce skew and load while balancing
consistency considerations could further reduce request times.

Request latency. Read and write (transaction) latency distribu-
tions are bimodal due to cache misses and cross-region requests. As
Figure 5 shows, request latency between read and write operations
differs significantly since all writes must go to the primary region
database (on average, 13.4 ms for reads, 80.0 ms for writes, and 61.9
ms for write transactions). Writes and write transactions have sim-
ilar request latencies because transactional use cases are carefully
vetted for performance, and most currently involve small write
sets. All operation types exhibit long tail latencies due to client-side
delays (e.g., network latency) and asynchronous tasks, which are
off-peak, analytical jobs that involve more complex queries. Each
operation type presents a bimodal latency pattern. Read latency
clusters around two peaks: the first corresponds to requests hitting
the CSC, while the second captures reads that must go to a local

4Note the x-axis of Figure 4d is in log scale, so the long tail of each distribution is not
apparent in the graph. For example, the P50 latency is 1.76 ms for the CSC, 1.87 ms for
TAO, and 13.7 ms for the DB.

101 102 103 104 105 106

Time (µs)

0.0

2.0e–4

4.0e–4

6.0e–4

8.0e–4

Fr
eq
.f
or

Re
ad
s

0.0

0.5e–5

1.0e–5

1.5e–5

Freq.forW
ritesand

Txns

Latency Distribution

101 102 103 104 105 106

Time (µs)

0.0

2.0e–4

4.0e–4

6.0e–4

8.0e–4

Fr
eq
.f
or

Re
ad
s

Latency Distribution

Reads
Writes
Write transactions

101 102 103 104 105 106

Time (µs)

0.0

2.0e–4

4.0e–4

6.0e–4

8.0e–4

Fr
eq
ue
nc
y
fo
rr
ea
ds

0.0

0.5e–5

1.0e–5

1.5e–5 Frequency
forw

rites

Request Latency Distribution

101 102 103 104 105 106

Time (µs)

0.0

2.0e–4

4.0e–4

6.0e–4

8.0e–4

Fr
eq
.f
or

Re
ad
s

0.0

0.5e–5

1.0e–5

1.5e–5

Freq.forW
ritesand

Txns

Latency Distribution

Figure 5: Latency distributions of different operation types.
Reads have noticeably shorter latencies than writes, which
must go to the database and possibly cross-region.

102 105 108

Write Txns / Day (respectively)

100

10°6

10°12

CC
D
F
(fr
ac
tio

n
>
)

Shard Access Distribution of Top 400K Keys

Product Group 1
Product Group 2
Product Group 3

102 105 108

Write Txns / Day (respectively)

100

10°6

10°12

CC
D
F
(fr
ac
tio

n
>
)

Shard Access Distribution of Top 400K Keys

Product Group 1
Product Group 2
Product Group 3

102 106 1010

Write Txns / Day (respectively)

100

10°6

10°12

CC
D
F
(fr
ac
tio

n
>
)

Access Distribution of Top 400K Keys

Product Group 1
Product Group 2
Product Group 3

102 106 1010

Write Txns / Day (respectively)

100

10°6

10°12

CC
D
F
(fr
ac
tio

n
>
)

Access Distribution of Top 400K Keys

Product Group 1
Product Group 2
Product Group 3

(a) (b)

Figure 6: Key and shard access distributions of the top 400K
write transaction keys for Product Groups 1, 2, and 3. These
distributions vary dramatically, illustrating the need to cap-
ture diverse access patterns in a benchmark’s workloads.

or cross-region instance of TAO or the DB. Writes and write trans-
actions also have bimodal latency distributions but for a different
reason. The second peak arises when the primary database for a
key is not in the local region, necessitating a cross-region request.

3.3 Write Transactions
We study write transactions in detail because they represent a
challenging but important part of TAO’s workload. Specifically, we
profile the size, contention, sharding, and skew of the transactions
executed by the three main product groups on TAO.

Product groups. Transactions are highly skewed and vary across
applications. Product groups often build common infrastructure,
which may lead to shared request patterns and emergent behavior
lower in the stack. Figure 6 shows that the key and shard access
distributions differ significantly between the three product groups.
Items requested more than 1K times per day make up 67.2%, 3.89%,
and 41.4% of the top 400Kwrite transaction keys for Product Groups
1, 2, and 3, respectively. This variation demonstrates that it is im-
portant for a distributed database benchmark to have a wide range
of workloads to inform the design of multi-tenant, large-scale sys-
tems. Specifically, a benchmark should capture how applications
interact with each other on parts of the social graph they share (e.g.,
intra-product group behaviors) as well as the diversity of request
patterns that arises with a large number of tenants.

Transaction size. Write transactions can span many keys and
shards. Currently, more than 0.233% of write transactions on TAO
contain 20 or more operations, and over 28.7% involve keys on
more than one shard (Figure 7). Most existing large transactions
are updates to associations on a single shard. Their inverse associa-
tions can be asynchronously updated without needing to undergo



0 25 50 75 100
Number of Shards

10°6

10°4

10°2

100

Fr
eq
ue
nc
y

Write Transaction Shard Distribution

0 25 50 75 100
Number of Operations

10°6

10°4

10°2

100

Fr
eq
ue
nc
y

Transaction Size Distribution

0 25 50 75 100

Number of Shards

10°6

10°4

10°2

100

Fr
eq
ue
nc
y

Write Transaction Shard Distribution

0 25 50 75 100

Number of Operations

10°6

10°4

10°2

100

Fr
eq
ue
nc
y

Write Transaction Size Distribution

(a) (b)

Figure 7: Write transaction size and shard distributions.
Write transactions can span many keys (a) and shards (b).
Many large transactions on TAO currently undergo an opti-
mized protocol [25] to maintain high performance.

101 103 105 107 109

Con�icts / Day (respectively)

100

10°6

10°12

CC
D
F
(fr
ac
tio

n
>
)

Key Type Distribution

Write-read con�icts
Write-write con�icts

101 103 105 107 109

Con�icts / Day (respectively)

100

10°6

10°12

CC
D
F
(fr
ac
tio

n
>
)

Key Type Distribution

Write-read con�icts
Write-write con�icts

Figure 8: Contention distribution across key type, which cor-
responds to distinct transaction use cases. Contention varies
greatly across use cases, which are carefully vetted to ensure
they do not impact other requests.

2PC [25] as long as they do not have preconditions (e.g., uniqueness
or version constraints). This optimization ensures that high fan-out
transactions can maintain efficient performance and avoid affecting
other requests to these keys.

Contention. Contention varies greatly across key type, which
serves as a proxy for different application use cases. Figure 8 demon-
strates how the diversity and skew of the social graph impacts
conflicts between transactions. We find that both write-read and
write-write conflicts [15] are skewed across key type. Moreover,
certain application request patterns can cause high contention.
There are no read-write conflicts because all reads are currently
non-blocking on TAO.

Altogether, write-read conflicts affect 0.000567% of all read re-
quests and span 82 object and association types. Given the large,
read-heavy workload on TAO, even a low contention rate is sig-
nificant in practice. Write-write conflicts impact 10.1% of all write
transaction requests and span 456 types. Since there is no exclusive
ownership of data in the social graph, it is essential to manage
contention, which may also impact non-transactional requests. As
a result, TAO developers proactively investigate and mitigate high
contention cases, resulting in low conflict rates on average.

Over 97.3% of write-write conflicts occur as a result of intention-
ally racing inserts. For example, an application can send redundant
requests when creating associations for live video time slices. The
application requires only one association for each time slice but
wants to ensure timely processing, so it intentionally retries re-
quests, leading to higher contention. While this is a legitimate use
of transactions for compare-and-swap functionality, applications

100 101 102 103 104 105

Shards of Top 400K keys (respectively)

100

101

102

103

Ke
ys

on
Sh

ar
d

Shard Distribution of Top 400K Keys

Product Group 1
Product Group 2
Product Group 3

100 101 102 103 104 105

Shards of Top 400K keys (respectively)

100

101

102

103

Ke
ys

on
Sh

ar
d

Shard Distribution of Top 400K Keys

Product Group 1
Product Group 2
Product Group 3

Figure 9: Shard distribution of the top 400K keys of Product
Groups 1, 2, and 3. Sincemany of these keys are colocated on
the same shards, a sharding strategy that distributes these
items more uniformly would enable better load balancing.

are generally expected to keep contention to a minimum to avoid
affecting other products. Though the data store ensures transac-
tional guarantees, applications should be jointly responsible for
performance isolation on shared data.

Contention and colocation. Hot keys in write transactions tend
to be colocated on the same shards. More than 93.9% of hot data items
are colocated with at least one other frequently requested item for
Product Group 1, 10.0% for Product Group 2, and 17.0% for Product
Group 3 (Figure 9). While popular data items are often clustered
on a small number of shards, we find that they are rarely part
of the same transactions. Hot keys may have been intentionally
colocated by application developers to improve the efficiency of
batched requests. These results demonstrate a tradeoff between
load balancing and the performance of a subset of queries.

Distinct transactional access patterns. Transactions exhibit
distinct request patterns across product groups. To identify these
patterns, we examine the correlation between transaction size and
key access frequency for each product group. We find that there
are three main transaction types: TX1 are small transactions (<10
operations) on hot keys, TX2 involve large transactions on both
hot and cold keys, and TX3 are large transactions that access keys
of similar frequency. Product Group 1 contains TX1 and TX2. TX1
transactions are involved in state updates (e.g., changing the value
of an object or edge). For this product group, one use case of TX2
transactions is to create a large number of new objects and attach
them to an existing popular object. Product Group 2 executes TX1
and TX3 transactions. A representative TX3 transaction could atom-
ically update all associations connected to a node. Product Group 3
contains TX2 and TX3. For example, TX2 transactions are used to
log segments of a video clip as it is uploaded. When this process has
completed, all the clips (cold keys) can be linked together to a video
reference node (hot key), and transactional guarantees prevent
duplicate content in the case of retries during media upload.

3.4 Workload Parameters
Our observations above suggest that a small set of parameters is suf-
ficient to fully characterize the social network workload (Table 2).
We divide these parameters into two groups: either generalizable
to OLTP and graph databases or unique to TAO. Features in the
first category include transaction size, sharding strategy, opera-
tion type, and data size. We omit a data size distribution graph
due to space constraints. TAO-specific features include association



Table 2:We parametrize TAO’s workload with this set of fea-
tures, which we use to create a benchmark.

Parameter Description

Transaction sizes Discrete distr. for read- & write-only txns
Sharding Discrete distr. for objects & associations
Op. types Proportions for single- & mutli-key reqs.
Request sizes Discrete distr. of data sizes
Association types Proportions of association types
Preconditions Proportions of precondition categories
Read tiers Proportions of reqs. served by each tier

types, preconditions, and read tiers. Different association types may
have varying constraints (e.g., uniqueness, no inverse) that impact
request handling. Object types in TAO do not influence system
behavior, so we exclude them from our parameters. Write opera-
tions and transactions can have atomic preconditions (Section 2.2).
Finally, queries can be served from different tiers of the system.

To specify a particular workload, we set parameters in a work-
load configuration file as discrete probability distributions or mod-
eled after a well-known distribution (e.g., uniform). For example,
transaction size is currently specified by an array of sizes and their
corresponding weights. We run an offline analysis pipeline peri-
odically to create and refresh workload configurations based on
production traces (sampled as described in Section 3.1).

4 BENCHMARK
From our large-scale analysis of TAO’s request patterns, we identify
a set of key features for social networkworkloads. In this section, we
describe how we leverage these parameters to design a benchmark.
TAOBench can accurately reproduce the current TAOworkload and
is also sufficiently flexible to enable the evaluation of new scenarios.

4.1 Request API
Our benchmark supports the following set of requests, which are
mapped to the underlying data store through an adapter layer.
We choose to align most of TAOBench’s API directly with TAO’s.
Though this API is intentionally simple, it has enabled engineers to
construct complex queries and applications. It also generalizes to
the OLTP stores [4] and graph databases [9] underlying many social
networks. TAOBench translates TAO’s API of point get, range, and
count queries, operations to insert, update, and delete objects and
associations, and more recently, one-shot read-only and write-only
transactions into the following set of requests:

• read(key): Read a record
• read_txn(keys): Read a group of records atomically
• write(key,[preconditions]): Write to a record, option-
ally with a set of preconditions

• write_txn(keys,[preconditions]): Write to a group of
records atomically, optionally with a set of preconditions

While TAOBench does not produce interactive, read-write trans-
actions in its current workloads, we have found restricted transac-
tional semantics to be sufficient for application needs in production.
TAOBench can easily support interactive transactions once there

Config:
txn_sizes={2,3,…};
read_percent=0.99;
…

Workload Generator
Social graph generation
Requests

Data Store Adapter Layer

Benchmark Driver

Client Threads

Data Store

Figure 10: Our benchmark takes in workload configurations
and uses them to generate requests to a specified data store.

are workloads on the benchmark (possibly from other social net-
works) that contain them. We also leave range and count queries
to future work.

4.2 Architecture
We describe the distributed, scalable architecture of TAOBench (Fig-
ure 10). Based on the workload parameters specified in Section 3.4,
our benchmark takes in a workload configuration file containing
discrete or piecewise linear probability distributions. TAOBench
also takes in several benchmark parameters (duration, target load,
warm-up period), which are specific to each run. The benchmark dri-
ver, which can be distributed across multiple machines, uses these
parameters to generate requests. Each driver creates multiple client
threads, which independently execute requests through the data
store adapter layer. Each thread measures throughput and latency,
and these statistics are aggregated and reported at the end of each
run. The benchmark currently produces steady-state workloads,
and future work will capture time variation and periodicity.

4.3 Workload Generation
Our benchmark generates workloads in two phases for preparation
and execution. The first phase ensures the data store is in a desired
initial state (e.g., containing a baseline social graph, having caches
warmed up). The second phase produces requests based on the
given workload configuration.

In the preparation phase, we generate the baseline social graph
that subsequent requests operate on. Since the execution phase
randomly draws from these nodes and associations, we need to
ensure the starting graph is sufficiently large. Otherwise, we may
observe unintended contention as a result of our setup (since the
probability of picking the same keys is higher in a small pool). We
create all nodes in the baseline graph and preallocate association
tuples (id1, type, id2). However, we do not write all associa-
tions during the preparation phase to enable testing of uniqueness
and other type constraints. We may also choose to warm up the
cache during this phase by batch reading certain sets of data items.

In the execution phase, workload generation is a straightforward
application of the parameters in Table 2. Transaction size, shard
placement, operation type, request size, association type, precondi-
tion, and read tier are chosen from their respective distributions.
For preconditions that depend on a prior read (e.g., write to an
object if it has a previously observed value), the benchmark applies
them only on keys that have been queried by each client thread.



Table 3: We open-source three workloads that focus on dif-
ferent aspects of TAO’s request patterns.

Workload Description

T — Transaction Current transactional workload
A — Application Speculative transactional workload
O — Overall Comprehensive TAO workload

0 200 400 600
Request Latency (ms)

10°5

10°3

Fr
eq
ue
nc
y

Workload T.2

0 200 400 600
Request Latency (ms)

10°4

10°3

10°2

Fr
eq
ue
nc
y

Workload T.1

0 200 400 600

Request Latency (ms)

10°4

10°3

10°2

Fr
eq
ue
nc
y

Workload T.1

Production
Benchmark

0 200 400 600

Request Latency (ms)

10°6

10°4

10°2
Fr
eq
ue
nc
y

Workload T.2

Production
Benchmark

(a) (b)

Figure 11: Workloads T.1 and T.2 write transaction latency
distributions. Our synthetic workloads have similar distri-
butions compared to those from production.

4.4 Extensibility
We open source Workloads T, A, and O based on production traces
(Table 3). Workload T is the transactional workload, which repre-
sents all requests to keys involved in existing write transactions.
Workload A is the application workload that captures requests
with transactional intent from the higher-level Ent framework.
This workload can be considered a speculative workload because
it groups together operations that do not yet use the transactional
API in production but may use them in the future. Finally, Workload
O is the overall TAO workload, which is notably read-heavy.

Our benchmark can also be used to model additional workloads.
By tuning the set of parameters we identify in Section 3.4, users can
experiment with different profiles, reproduce worst-case scenarios,
and test new features. We describe Meta use cases in Section 6.

Finally, our benchmark can be easily deployed on different sys-
tems. In addition to our internal TAO adapter layer, we currently
provide drivers for Cloud Spanner [7], CockroachDB [41], Plan-
etScale [10], TiDB [32], and YugabyteDB [11] as well as MySQL [5]
and PostgreSQL [11]. Since our benchmark API is a subset of most
database interfaces, extending to new systems is simple. Most of
TAOBench’s requests can be translated directly into the correspond-
ing SQL queries. Our data schema mirrors that of TAO, consisting
of an objects table and an associations table. We index on id for
objects and on the (id1, type, id2) tuple for associations. For
preconditions, we apply a WHERE clause for constraints.

5 VALIDATION
We proceed to experimentally validate that TAOBench can accu-
rately downscale production workloads. We compare the perfor-
mance of several workload configurations and show that our bench-
mark’s generated request patterns have request latencies and con-
tention rates in line with those from production.

Table 4: The limited difference between latency metrics for
our generated and production requests across two transac-
tional workloads demonstrates that our benchmark accu-
rately reproduces realistic request patterns.

Workload T.1 Benchmark Production % diff.

Mean 155.6 ms 145.9 ms 6.43%
Median (P50) 139.0 ms 130.0 ms 6.69%
P99 389.0 ms 359.8 ms 7.80%
Chi-square (𝑝 = 0.01) 𝑍 = 1.99 𝜒24 = 13.28 𝐻0 true

Workload T.2 Benchmark Production % diff.

Mean 114.5 ms 103.4 ms 10.2%
Median (P50) 107.0 ms 96.0 ms 10.8%
P99 278.0 ms 274.0 ms 1.45%
Chi-square (𝑝 = 0.01) 𝑍 = 1.27 𝜒25 = 15.09 𝐻0 true

Table 5: The contention breakdown for the two workloads is
similar for both synthetic and production requests.

Workload T.1 Benchmark Production % diff.

Obj. lock conflict 0.138% 0.151% 9.00%
Assoc lock conflict 0.00315% 0.00357% 12.5%
Overall contention 0.141% 0.155% 9.46%

Workload T.2 Benchmark Production % diff.

Obj. lock conflict 0.0434% 0.0452% 4.06%
Assoc lock conflict 0.112% 0.114% 1.77%
Unique assoc exists 0.403% 0.443% 9.46%
Overall contention 0.558% 0.602% 7.59%

5.1 Implementation
We implement an internal adapter in C++ for our benchmark to
send requests to TAO. Each thread acts as an individual TAO client,
mirroring how Meta’s applications access this system. Our exper-
imental setup imitates that of production with the following ex-
ceptions. First, we send requests to a separate TAO (cache and
database) deployment that is smaller than and isolated from the
one in production. To simulate cross-region performance, we inject
network latency based on empirically determined communication
times between Meta data centers; our evaluation below shows that
this approximation is sufficient for producing realistic workloads.
We also exclude the portion of reads that would hit the client-side
cache since we focus on the validation of TAO requests.

5.2 Validation Results
We evaluate two transactional workloads to show that our gener-
ated workloads match those in production. Workload T.1 involves
transactions that update an object along with an incoming unique
association. Workload T.2 focuses on write transactions that update
multiple shards. We choose these two workloads because they have
different latency and contention profiles, so they provide varying
points of comparison.



Table 6: We use TAOBench to find the latency and con-
tention profiles of a new transactional use case.

Workload T.3

Latency Contention

Mean 133.1 ms Obj. lock conflict 0.172%
Median (P50) 107.5 ms Assoc lock conflict 0.00576%
P99 385.0 ms Overall contention 0.178%

Request latency. We find that the per operation type latency
distributions of our synthetic workload and those from produc-
tion to be statistically indistinguishable. While TAOBench injects
network latencies based on empirical request times between Meta
data centers, these latencies are not workload specific. Thus, we
can compare the resulting end-to-end request latency profiles with
those in production to validate our benchmark. Here, we focus on
write transaction latency (Figure 11) and omit other operation types
due to space constraints since they have similar takeaways. There
are limited differences between the key metrics of these distribu-
tions (Table 4). In particular, our benchmark is able to accurately
reproduce latency tails, which have important performance impli-
cations [21]. Finally, the chi-squared goodness-of-fit test confirms
that these distributions are not significantly different.

Contention. Next, we verify that the contention rates (the per-
centage of operations that conflict over a key when attempting
to acquire a lock) of our workloads are also statistically indistin-
guishable from those observed in production (Table 5). Workload
T.1 transactions, which access both objects and associations, have
similar contention rates for both types of operations. Workload
T.2 additionally contains a precondition, which requires the corre-
sponding association to remain unique. We find that transactions
abort due to precondition conflict and other types of contention at
rates similar to those from production.

6 LESSONS AND EXPERIENCES
In this section, we describe the impact of TAOBench at Meta. Our
benchmark has been used to test new features, optimizations, relia-
bility (hotspots, worst-case scenarios, etc.), and speculative work-
loads since June 2021. We discuss four examples: 1) analyzing new
transaction use cases, 2) assessing contention under longer lock
hold times, 3) evaluating new APIs, and 4) quantifying the perfor-
mance of high fan-out transactions. Prior to our benchmark, TAO
developers had only a limited stress-testing tool, which could not
reproduce realistic workloads or assess new request patterns. We
leverage this framework to implement our benchmark, which now
allows developers to simulate a wider range of workloads.

6.1 New Transaction Use Cases
Our benchmark enables end-to-end testing early in the develop-
ment process. Since transactional workloads impact overall write
availability (2PL blocks other writes), it is important for applica-
tions to thoroughly evaluate the effects of adopting transactions.
Before our benchmark, engineers could only run a small portion of
these requests in the final pre-production stage. At this phase, any
issues, such as contention hotspots, could delay rollouts.

0 100 200 300
Avg. Additional Lock Hold Time (ms)

0
20
40
60
80
100

Av
g.

Er
ro
rR

at
e
(%
)

Write Transactions

Contention
Timeout

3K 15K30K
Avg. Additional Lock Hold Time (ms)

0
20
40
60
80
100

Av
g.

Er
ro
rR

at
e
(%
)

Write Transactions

Contention
Timeout

0 30 60 90 120 150 180 210 240 270 300

Avg. Additional Lock Hold Time (ms)

0

20

40

60

80

100

Av
g.

Er
ro
rR

at
e
(%
)

Write Transactions

Contention
Timeout

0 30 60 90 120 150 180 210 240 270 300

Avg. Additional Lock Hold Time (ms)

0

20

40

60

80

100

Av
g.

Er
ro
rR

at
e
(%
)

Write Transactions

Contention
Timeout

3K 15K 30K
Avg. Additional Lock Hold Time (ms)

0

20

40

60

80

100

Av
g.

Er
ro
rR

at
e
(%
)

Write Transactions

Contention
Timeout

0 30 60 90 120 150 180 210 240 270 300

Avg. Additional Lock Hold Time (ms)

0

20

40

60

80

100

Av
g.

Er
ro
rR

at
e
(%
)

Write Transactions

Contention
Timeout

Figure 12: Write transaction error rate over lock hold time.
Contention (lock conflict) increases as transactions occupy
locks for longer periods of time. After a certain threshold,
more and more write transactions timeout.

A Meta application team used our benchmark to evaluate the
impact of adding a new transaction use case (Workload T.3), which
creates an object and adds an association. While Workload T.3 has
a similar request structure to Workload T.1 from Section 5 (though
the former creates objects and associations rather than updating
them), our benchmark shows that the latency of Workload T.3 is
lower than that of Workload T.1 (Tables 4 and 6). On the other hand,
Workload T.3 has 26.2% more lock conflicts compared to Workload
T.1. Subsequently, a limited rollout to internal test users revealed
the same breakdown of errors, demonstrating that our benchmark
is able to successfully anticipate production issues.

6.2 Contention
In another use case, engineers at Meta wanted to understand how
TAO would perform if locks were held for extended periods of time
(e.g., due to network delays, regional overload, or disaster recov-
ery). Using our benchmark, they were able to quickly evaluate a
representative workload. TAO’s performance is shown in Figure 12:
longer locking periods lead to higher conflict rates because greater
request times increase the probability that writes contend over the
same keys. Beyond a certain threshold, transactions time out before
they can acquire locks. Given that most web requests complete
in under 30 seconds, slower transactions have decreasing utility
to the application. Thus, failing fast is preferable so that occupied
resources can freed for other purposes. This example demonstrates
that we can use TAOBench to assess different design choices under
varying scenarios, including ones that are challenging or infeasible
to assess in production.

6.3 New APIs
In order to optimize for application concurrency, TAO provides
the ability to atomically check a set of preconditions on writes
(semantically equivalent to compare-and-swap). Applications typi-
cally read data items, execute some business logic, and (possibly
much later) write with the precondition that the data items have
not changed. This request pattern imitates optimistic transactions,
except that the initial reads may be executed by other code paths or
products. The chance of failure for the write increases as the latency
between the read and subsequent write grows. The asynchronous
nature, geo-distribution, and shared data ownership of the system
can exacerbate this issue by introducing longer delays and races
between these operations.



0 30 60 90 120 150 180 210 240 270 300

Avg. Wait Time (ms)

0

5%

10%

Er
ro
rR

at
e

Preconditioned Writes

0 30 60 90 120 150 180 210 240 270 300

Avg. Additional Lock Hold Time (ms)

0

20

40

60

80

100

Av
g.

Er
ro
rR

at
e
(%
)

Write Transactions

Contention
Timeout

Figure 13: Write error rate over wait time. The error rate of
writes preconditioned on a previous read increases as the
time between these two operations grows.

0 200 400 600
Request Latency (ms)

10°6

10°4

10°2

Fr
eq
ue
nc
y

Latency Distribution

0 25 50 75 100
Number of Operations

10°6

10°4

10°2

100

Fr
eq
ue
nc
y

Transaction Size Distribution

(a) (b)

0 200 400 600

Request Latency (ms)

10°6

10°4

10°2

Fr
eq
ue
nc
y

Latency Distribution

Cross-shard
High fan-out

0 200 400 600

Request Latency (ms)

10°6

10°4

10°2

Fr
eq
ue
nc
y

Latency Distribution

Cross-shard
High fan-out

Figure 14: Transaction size and latency distributions. We
find that the high fan-out write transaction workload spans
many keys (a), which can lead to increased latency (b).

We evaluate the impact of increasing latency between a read and
a preconditioned write with our benchmark by measuring the write
failure rate. Using our benchmark, we inject wait time between
these two operations for a generated workload based on existing
single-shard transactions with preconditions. We find that the error
rate doubles if we increase the average wait time from 30 ms to 150
ms (Figure 13). Given that a cross-region request can take hundreds
of milliseconds to complete, higher latency between these oper-
ations can significantly lower the success rate of preconditioned
writes. These errors can become more problematic as additional
cross-shard use cases are adopted and the write rate increases.

Adding a new operation on TAO could reduce error rates by
enabling the read and preconditioned write to be completed in the
primary region database. For example, TAO currently supports a
counter increment API (within the object update operation) that
allows the read and subsequent write to be completed by the TAO
writer in the primary region of the key rather than by a remote
TAO client or writer. This decreases the likelihood that the read
will return stale information, enabling higher success rates for the
increment. Our benchmark will enable engineers to explore specific
use cases in detail and measure the impact of adding new APIs.

6.4 High Fan-Out Transactions
Finally, we describe how TAOBench is used to evaluate high fan-
out transactions. A significant portion of applications that seek to
adopt transactions want to opt-in existing groups of writes that
could benefit from atomicity guarantees. These operations are cur-
rently encapsulated in Ent changesets [25], which represent write
transaction boundaries TAO developers are considering supporting

Table 7: High fan-out transactions have greater latency and
higher contention that the existing cross-shard transaction
workload.While expected, these results suggest the need for
further optimizations to efficiently support larger requests.

Latency Cross-shard High fan-out % diff.

Mean 103.4 ms 128.5 ms 21.6%
Median (P50) 96.0 ms 119.0 ms 21.4%
P99 274.0 ms 363.0 ms 27.9%

Contention Cross-shard High fan-out % diff.

Obj. lock conflict 0.0452% 0.0591% 26.7%
Assoc lock conflict 0.114% 0.101% 12.1%
Unique assoc exists 0.443% 0.547% 21.0%
Overall contention 0.602% 0.707% 16.0%

in the long-term.5 As Figure 14a shows, some of these transactions
touch many keys, which may lead to slower requests and higher
conflict rates. To help teams at Meta assess the impact of moving
to the transactional API, we quantify the performance impact of
high fan-out transactions using our benchmark.

We find that there is a significant increase in latency (Table 7),
especially tail latency, for the high fan-out workload compared
to current cross-shard transactions (Figure 14b). There is also an
increase in contention errors. While unsurprising, these results
demonstrate that high fan-out transactions will be more challeng-
ing to support and are inline with past work showing that large
transactions can lead to significant performance degradation [31].
The ability to test this high fan-out workload will allow engineers to
evaluate future optimizations in application use cases, concurrency
control mechanisms, and implementation strategies.

7 DISTRIBUTED DATABASE EVALUATION
In this section, we present TAOBench results for five widely used
distributed database services: Cloud Spanner [7], CockroachDB
(CRDB) [41], PlanetScale [10], TiDB [32], and YugabyteDB [12].
Specifically, we evaluate Workload A (write transaction-heavy, ap-
plication workload) andWorkload O (read-heavy, overall workload).
We omit Workload T due to space constraints.

Our goal is not to provide comparisons of these databases nor
to draw any conclusion about their relative performance. Instead,
we aim to illustrate that TAOBench provides effective workloads
to evaluate these systems. Our benchmark enables researchers and
engineers to explore tradeoffs on social network request patterns
and can be used to guide the development of these systems.

Systemdetails.The five systemswe evaluate are geo-distributed
SQL databases. Spanner supports its own SQL query language while
CRDB and YugabyteDB are compatible with PostgreSQL. Plan-
etScale and TiDB support MySQL. In terms of architecture, CRDB
and TiDB run separate compute and storage tiers. Spanner im-
plements distributed SQL layers above its transactional key-value
store; YugabyteDB does so above a distributed document store.
PlanetScale supports sharded MySQL instances with varying iso-
lation levels within a shard and Read Committed across shards.

5This workload is captured by the write transactions in Workload A (Section 4.4).



0 20K 40K 60K
Observed�roughput (reqs / s)

0

100

200

300

La
te
nc
y
(m

s)

Reads Writes Read transactions Write transactions

(a) Cloud Spanner (b) CRDB (c) PlanetScale (d) TiDB (e) YugabyteDB

0 10K 20K 30K 40K
Observed�roughput (reqs / s)
0

100

200

300

La
te
nc
y
(m

s)

0 20K 40K 60K 80K 100K
Observed�roughput (reqs / s)
0

100

200

300

La
te
nc
y
(m

s)

0 5K 10K 15K
Observed�roughput (reqs / s)
0

100

200

300

La
te
nc
y
(m

s)

0 10K 20K 30K 40K
Observed�roughput (reqs / s)
0

100

200

300
La
te
nc
y
(m

s)

0 10K 20K 30K
Observed�roughput (reqs / s)
0

100

200

300

La
te
nc
y
(m

s)

0 20K 40K 60K
Observed�roughput (reqs / s)
0

100

200

300

La
te
nc
y
(m

s)

0 10K 20K 30K
Observed�roughput (reqs / s)
0

100

200

300

La
te
nc
y
(m

s)

0 20K 40K 60K 80K
Observed�roughput (reqs / s)
0

100

200

300

La
te
nc
y
(m

s)

0 5K 10K 15K
Observed�roughput (reqs / s)
0

50

100

La
te
nc
y
(m

s)

0 10K 20K 30K
Observed�roughput (reqs / s)
0

50

100

La
te
nc
y
(m

s)

Figure 15: Performance of Workload A (top row) and O (bottom row) for the five databases. We observe significant differences
between the two workloads. Note that the axes are different and that the systems are evaluated under varying conditions, so
they are not directly comparable.

For replication, Spanner uses Paxos [34] while the other systems
except PlanetScale use Raft [37]; PlanetScale uses MySQL semisyn-
chronous replication. For concurrency control, CRDB, PlanetScale,
and YugabyteDB leverage variations of multi-version concurrency
control (MVCC). CRDB supports Serializability, and YugabyteDB
supports Snapshot Isolation (SI) and Serializability. Spanner re-
lies on synchronized clocks to generate monotonically increasing
timestamps to ensure Strict Serializability for its transactions. TiDB
implements optimistic and pessimistic locking protocols to provide
Read Committed, Repeatable Read, and SI.

7.1 Experimental Setup
We evaluate our benchmark against similarly-sized, hosted cloud
clusters for the five systems. All clusters except Spanner have 48
cores. Since the number of cores per Spanner machine is not pub-
licly available, we use a six node cluster of a similar price point
with 12 TB of total storage. We use a three node cluster for CRDB
with 18 TB of total storage. Our three node YugabyteDB cluster
has 2.4 TB of total storage and provides SI. Our PlanetScale cluster
has eight shards with four cores each, and the remaining cores are
allocated to gateways nodes for load balancing; each shard provides
Serializability. For TiDB, we run three TiDB nodes and three TiKV
nodes with SI. While each database can be geo-distributed, we use
clusters that are replicated in three availability zones within one
region, where the client machine also resides. We received exten-
sive assistance from CRDB, PlanetScale, TiDB, and YugabyteDB
engineers in this benchmarking effort. For Spanner, we followed
publicly available “best practice” guides [8] when tuning the data-
base. We launch our benchmark on a separate 64 core machine, with
clients running in a closed-loop. During experiments, we observe
that the CPU of our client machine stays below 15%, indicating that
the benchmarking client is never the bottleneck.

7.2 Results
Our experimental results illustrate the benefits of using TAOBench
to highlight system performance on different social network work-
loads (Figure 15). Throughput and latency for the five systems vary

across Workloads A and O, with higher performance on the lat-
ter due to its read-heavy nature. As expected, latency rises as we
increase target throughput. While in all cases this growth can be
attributed to the system reaching high CPU utilization (>90%) and
becoming overloaded with requests, latency degradation varies for
the five databases due to varying design decisions and implemen-
tation tradeoffs. For example, Spanner shows nearly no change in
latency until high load, while PlanetScale exhibits gradually increas-
ing latency as load grows. We also find that different TAOBench
workloads can elucidate performance differences on the same sys-
tem. For example, PlanetScale has higher write transaction latency
than read transaction latency on Workload A but the opposite on
Workload O. While expanding on the reasons behind these differ-
ences is beyond the scope of this paper, our results demonstrate that
TAOBench can be useful for evaluating the performance impact of
various systems tradeoffs and guiding future optimizations.

7.3 System Impact
As a direct result of running our benchmark, we were able to assist
several of these databases in identifying issues and performance
improvement opportunities. For PlanetScale, we found that we
were unable to run INSERT INTO . . . SELECT queries, which
are used to enforce uniqueness constraints on associations. Due to
our benchmarking effort, PlanetScale prioritized support for these
requests, and this functionality is now generally available.

TAOBench was also able to reveal bugs and optimization op-
portunities for YugabyteDB. When we initially ran our benchmark
on this system, we found that performance was unexpectedly low.
We flagged this anomalous behavior for their engineers, who then
profiled the system during TAOBench runs and discovered a perfor-
mance bottleneck: a Postgres monitoring extension using exclusive
locks [13]. This example illustrates how TAOBench’s ability to
reproduce workloads on demand enables detailed investigations.

We also helped YugabyteDB identify an optimization for scans,
which are called during the benchmark preparation phase. We
noticed these queries were unusually slow and sometimes led to
out-of-memory errors. Using our benchmark, YugabyteDB engi-
neers found that their system did not push down filters on scans to



Postgres but instead materialized all rows from the relevant table
into memory. The subsequent fix [14] resulted in substantial per-
formance and memory overhead improvements for these queries.

8 RELATED WORK
Social network benchmarks. There are a number of existing so-
cial network benchmarks. LinkBench [16], which derives its work-
load from requests of a single MySQL instance that underlies TAO
at Meta, is the only benchmark we are of aware of that is based on
production traces. However, it lacks graph level transactions, does
not provide data colocation information, and only captures a small
subset of the full social graph workload.

A range of other benchmarks are based on production storage
data (e.g., graph characteristics) rather than request traces. Big-
DataBench [46] uses a small subset (fewer than 5K nodes and 90K
associations) of the Meta social graph to generate a workload for
graph analytics benchmarking. The Epinions benchmark [1] in
OLTP-Bench is derived from data of a consumer review website
and focuses on a single application. The Twitter benchmark [2] from
the same testbed is based on a snapshot of the micro-blogging site
from 2009. It lacks transactions as well as colocation information.

LDBC [29] has developed a synthetic social network benchmark
that targets graph databases. This benchmark focuses on complex,
processing-intensive queries rather than serving workloads. Graph-
alytics [23] is a benchmark with six graph processing algorithms
that uses synthetic data from LDBC. Terevinto et al. [45] and Cao
et al. [22] describe social network benchmarks that are not open-
source. As we detail in Section 2.1, none of these benchmark work-
loads satisfy all five of the crucial properties needed for a compre-
hensive evaluation tool.

OLTP benchmarks. A plethora of benchmarks are available
for evaluating OLTP workloads. The TPC-C benchmark [27], de-
signed to represent a wholesale supplier’s transaction processing
requirements, is the industry standard for measuring OLTP system
performance. The Yahoo! Cloud Serving Benchmark (YCSB) [26] is
a popular microbenchmarking framework developed to measure
the performance and scalability of cloud serving systems. Its work-
loads represent simple key-value store applications and involve
individual reads and writes as well as range scans. Other common
transactional benchmarks include AuctionMark [42], SEATS [43],
and SmallBank [44]. OLTP-Bench [28] presents a unified frame-
work that includes 15 different workloads. While there is overlap
between OLTP and social network workloads, the skew, high cor-
relation, and read-heavy of the latter motivates the need for a new
domain-specific benchmark.

9 CONCLUSION
In this work, we present TAOBench, a new benchmark that gener-
ates workloads modeled on a real-world social network. We char-
acterize the request patterns of the social graph data store at Meta,
identify key parameters to design and construct a benchmark, and
validate that this benchmark accurately simulates production re-
quest patterns. We report on how TAOBench is used internally
to evaluate new features, optimizations, and reliability. We also
present benchmarking results from five distributed databases to
demonstrate that TAOBench can be used to investigate system

tradeoffs and address performance issues. While current workloads
focus on Meta’s social graph (one of our key contributions is to
make these workloads accessible to the general research commu-
nity), our simple model can be easily adapted to other systems.
TAOBench’s goal is to serve as a broad platform for social network
evaluation, and we encourage other social networks to contribute
workloads to this open-source framework.

ACKNOWLEDGMENTS
We thank Matt Pugh, Tushar Pankaj, and the VLDB reviewers for
their insightful feedback; Emmanuel Geay, Evan Liang, Neil Chao,
Eric Kuecks, Soham Shah, Amin Saeidi, Anthony Simpson, Zhuo
(Gordon) Huang, Rahul Tekawade, and Scott Pruett for their contri-
butions to the data and systems in this paper. We are also grateful
to Andy Pavlo for connecting us to individuals at companies of
the various databases we evaluate. Audrey Cheng is supported in
part by the NSF CISE Expeditions Award CCF-1730628, a Face-
book Next-Generation Data Infrastructure Research Award, and
gifts from Alibaba Group, Amazon Web Services, Ant Group, Capi-
talOne, Ericsson, Meta, Futurewei, Google, Intel, Microsoft, Nvidia,
Scotiabank, Splunk, and VMware.

REFERENCES
[1] 2013. Epinions.com Benchmark in OLTP-Bench. https://github.com/

oltpbenchmark/oltpbench/tree/master/src/com/oltpbenchmark/benchmarks/
epinions/

[2] 2013. Twitter Benchmark in OLTP-Bench. https://github.com/oltpbenchmark/
oltpbench/tree/master/src/com/oltpbenchmark/benchmarks/twitter/

[3] 2014. Manhattan, our real-time, multi-tenant distributed database for Twitter
scale. https://blog.twitter.com/engineering/en_us/a/2014/manhattan-our-real-
time-multi-tenant-distributed-database-for-twitter-scale.html

[4] 2015. HBaseCon 2015 General Session: Zen - A Graph Data Model on HBase.
https://www.slideshare.net/HBaseCon/keynote-3-pinterest-49043320

[5] 2020. MySQL Transactional and Locking Statements. https://dev.mysql.com/
doc/refman/8.0/en/sql-transactional-statements.html

[6] 2022. Apache HBase. https://hbase.apache.org/
[7] 2022. Cloud Spanner. https://cloud.google.com/spanner
[8] 2022. Cloud Spanner best practices. https://cloud.google.com/spanner/docs/best-

practice-list
[9] 2022. DGraph. https://github.com/dgraph-io/dgraph
[10] 2022. PlanetScale. https://planetscale.com/
[11] 2022. TAOBench. https://github.com/audreyccheng/taobench
[12] 2022. Yugabyte DB. https://www.yugabyte.com
[13] 2022. YugabyteDB Postgres Monitoring Issue. https://github.com/yugabyte/

yugabyte-db/issues/10805
[14] 2022. YugabyteDB Row Comparison Issue. https://github.com/yugabyte/

yugabyte-db/issues/11463
[15] Atul Adya, Barbara Liskov, and Patrick O’Neil. 2000. Generalized Isolation Level

Definitions. (2000), 67–78.
[16] Timothy G Armstrong, Vamsi Ponnekanti, Dhruba Borthakur, and Mark

Callaghan. 2013. LinkBench: A Database Benchmark Based on the Facebook
Social Graph. In Proceedings of the 2013 ACM SIGMOD International Conference
on Management of Data. 1185–1196.

[17] Sumita Barahmand and Shahram Ghandeharizadeh. 2013. BG: A Benchmark to
Evaluate Interactive Social Networking Actions. In CIDR. Citeseer.

[18] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. 1987. Concurrency
Control and Recovery in Database Systems. Addison-Wesley.

[19] ByteDance Official Tech Blog. 2020. Design and Implementation of ByteDance’s
Trillion-Edge, 10M+ QPS Graph Database and Computation System. https:
//blog.csdn.net/ByteDanceTech/article/details/104509642

[20] Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter Dimov,
Hui Ding, Jack Ferris, Anthony Giardullo, Sachin Kulkarni, Harry Li, et al. 2013.
TAO: Facebook’s Distributed Data Store for the Social Graph. In 2013 USENIX
Annual Technical Conference (USENIX ATC ’13). 49–60.

[21] Matthew Burke, Audrey Cheng, and Wyatt Lloyd. 2020. Gryff: Unifying Con-
sensus and Shared Registers. In 17th USENIX Symposium on Networked Systems
Design and Implementation (NSDI ’20). 591–617.

[22] Zhichao Cao, Siying Dong, Sagar Vemuri, and David HCDu. 2020. Characterizing,
Modeling, and Benchmarking RocksDB Key-Value Workloads at Facebook. In

https://github.com/oltpbenchmark/oltpbench/tree/master/src/com/oltpbenchmark/benchmarks/epinions/
https://github.com/oltpbenchmark/oltpbench/tree/master/src/com/oltpbenchmark/benchmarks/epinions/
https://github.com/oltpbenchmark/oltpbench/tree/master/src/com/oltpbenchmark/benchmarks/epinions/
https://github.com/oltpbenchmark/oltpbench/tree/master/src/com/oltpbenchmark/benchmarks/twitter/
https://github.com/oltpbenchmark/oltpbench/tree/master/src/com/oltpbenchmark/benchmarks/twitter/
https://blog.twitter.com/engineering/en_us/a/2014/manhattan-our-real-time-multi-tenant-distributed-database-for-twitter-scale.html
https://blog.twitter.com/engineering/en_us/a/2014/manhattan-our-real-time-multi-tenant-distributed-database-for-twitter-scale.html
https://www.slideshare.net/HBaseCon/keynote-3-pinterest-49043320
https://dev.mysql.com/doc/refman/8.0/en/sql-transactional-statements.html
https://dev.mysql.com/doc/refman/8.0/en/sql-transactional-statements.html
https://hbase.apache.org/
https://cloud.google.com/spanner
https://cloud.google.com/spanner/docs/best-practice-list
https://cloud.google.com/spanner/docs/best-practice-list
https://github.com/dgraph-io/dgraph
https://planetscale.com/
https://github.com/audreyccheng/taobench
https://www.yugabyte.com
https://github.com/yugabyte/yugabyte-db/issues/10805
https://github.com/yugabyte/yugabyte-db/issues/10805
https://github.com/yugabyte/yugabyte-db/issues/11463
https://github.com/yugabyte/yugabyte-db/issues/11463
https://blog.csdn.net/ByteDanceTech/article/details/104509642
https://blog.csdn.net/ByteDanceTech/article/details/104509642


18th USENIX Conference on File and Storage Technologies (FAST ’20). 209–223.
[23] Mihai Capotă, Tim Hegeman, Alexandru Iosup, Arnau Prat-Pérez, Orri Er-

ling, and Peter Boncz. 2015. Graphalytics: A Big Data Benchmark for Graph-
Processing Platforms. In Proceedings of the GRADES’15 (Melbourne, VIC, Aus-
tralia) (GRADES’15). Association for Computing Machinery, New York, NY, USA,
Article 7.

[24] Meeyoung Cha, Hamed Haddadi, Fabricio Benevenuto, and Krishna Gummadi.
2010. Measuring User Influence in Twitter: The Million Follower Fallacy. Pro-
ceedings of the International AAAI Conference on Web and Social Media 4, 1 (May
2010), 10–17.

[25] Audrey Cheng, Xiao Shi, Lu Pan, Anthony Simpson, Neil Wheaton, Shilpa
Lawande, Nathan Bronson, Peter Bailis, Natacha Crooks, and Ion Stoica. 2021.
RAMP-TAO: Layering Atomic Transactions on Facebook’s Online TAO Data
Store. Proceedings of the VLDB Endowment 14, 12 (2021), 3014–3027.

[26] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking Cloud Serving Systems with YCSB. In Proceedings
of the 1st ACM Symposium on Cloud Computing (Indianapolis, Indiana, USA)
(SoCC ’10). Association for Computing Machinery, New York, NY, USA, 143–154.
https://doi.org/10.1145/1807128.1807152

[27] The Transaction Processing Performance Council. 2010. TPC-C. http://www.
tpc.org/tpcc/

[28] Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino, and Philippe Cudre-
Mauroux. 2013. OLTP-Bench: An Extensible Testbed for Benchmarking Relational
Databases. Proceedings of the VLDB Endowment 7, 4, 277–288.

[29] Orri Erling, Alex Averbuch, Josep Larriba-Pey, Hassan Chafi, Andrey Gubichev,
Arnau Prat, Minh-Duc Pham, and Peter Boncz. 2015. The LDBC Social Net-
work benchmark: Interactive Qorkload. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data. 619–630.

[30] J. N. Gray. 1978. Notes on Data Base Operating Systems. In Operating Systems:
An Advanced Course, R. Bayer, R. M. Graham, and G. Seegmüller (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 393–481.

[31] Rachael Harding, Dana Van Aken, Andrew Pavlo, and Michael Stonebraker. 2017.
An Evaluation of Distributed Concurrency Control. Proc. VLDB Endow. 10, 5 (jan
2017), 553–564.

[32] Dongxu Huang, Qi Liu, Qiu Cui, Zhuhe Fang, Xiaoyu Ma, Fei Xu, Li Shen, Liu
Tang, Yuxing Zhou, Menglong Huang, et al. 2020. TiDB: A Raft-Based HTAP
Database. Proceedings of the VLDB Endowment 13, 12 (2020), 3072–3084.

[33] Avinash Lakshman and Prashant Malik. 2010. Cassandra: A Decentralized Struc-
tured Storage System. ACM SIGOPS Operating Systems Review 44, 2 (2010), 35–40.

[34] Leslie Lamport et al. 2001. Paxos Made Simple. ACM Sigact News 32, 4 (2001),
18–25.

[35] Yoshinori Matsunobu, Siying Dong, and Herman Lee. 2020. MyRocks: LSM-Tree
Database Storage Engine Serving Facebook’s Social Graph. Proc. VLDB Endow.
13, 12, 3217–3230.

[36] Meta. 2022. Meta Reports First Quarter 2022 Results. https:
//investor.fb.com/investor-news/press-release-details/2022/Meta-Reports-
First-Quarter-2022-Results/default.aspx

[37] Diego Ongaro and John Ousterhout. 2014. In Search of an Understandable
Consensus Algorithm. In 2014 USENIX Annual Technical Conference (USENIX ATC
’14). 305–319.

[38] Lin Qiao, Kapil Surlaker, Shirshanka Das, Tom Quiggle, Bob Schulman, Bhaskar
Ghosh, Antony Curtis, Oliver Seeliger, Zhen Zhang, Aditya Auradar, Chris Beaver,
Gregory Brandt, Mihir Gandhi, Kishore Gopalakrishna, Wai Ip, Swaroop Jgadish,
Shi Lu, Alexander Pachev, Aditya Ramesh, Abraham Sebastian, Rupa Shanbhag,
Subbu Subramaniam, Yun Sun, Sajid Topiwala, Cuong Tran, Jemiah Westerman,
and David Zhang. 2013. On Brewing Fresh Espresso: LinkedIn’s Distributed
Data Serving Platform. In Proceedings of the 2013 ACM SIGMOD International
Conference on Management of Data (New York, New York, USA) (SIGMOD ’13).
Association for Computing Machinery, New York, NY, USA, 1135–1146.

[39] Xiao Shi, Scott Pruett, Kevin Doherty, Jinyu Han, Dmitri Petrov, Jim Carrig,
John Hugg, and Nathan Bronson. 2020. FlightTracker: Consistency across Read-
Optimized Online Stores at Facebook. In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20). USENIX Association, 407–423.

[40] Roshan Sumbaly, Jay Kreps, Lei Gao, Alex Feinberg, Chinmay Soman, and Sam
Shah. 2012. Serving Large-Scale Batch Computed Data with Project Voldemort.
In Proceedings of the 10th USENIX Conference on File and Storage Technologies
(San Jose, CA) (FAST’12). USENIX Association, USA, 18.

[41] Rebecca Taft, Irfan Sharif, Andrei Matei, Nathan VanBenschoten, Jordan Lewis,
Tobias Grieger, Kai Niemi, Andy Woods, Anne Birzin, Raphael Poss, Paul Bardea,
Amruta Ranade, Ben Darnell, Bram Gruneir, Justin Jaffray, Lucy Zhang, and Peter
Mattis. 2020. CockroachDB: The Resilient Geo-Distributed SQL Database. In
Proceedings of the 2020 ACM SIGMOD International Conference on Management of
Data (Portland, OR, USA) (SIGMOD ’20). Association for Computing Machinery,
New York, NY, USA, 1493–1509.

[42] The H-Store team. 2013. AuctionMark: An OLTP Benchmark for Shared-
Nothing Database Management Systems. https://hstore.cs.brown.edu/projects/
auctionmark/

[43] The H-Store team. 2013. SEATS Benchmark. https://hstore.cs.brown.edu/
projects/seats/

[44] The H-Store team. 2013. SmallBank Benchmark. http://hstore.cs.brown.edu/
documentation/deployment/benchmarks/smallbank/

[45] Pablo Nicolas Terevinto, Miguel Pérez-Francisco, Josep Domenech, José A. Gil,
and Ana Pont. 2016. Benchmarking Online Social Networks. 2016 IEEE/ACM
International Conference on Advances in Social Networks Analysis and Mining
(ASONAM) (2016), 164–169.

[46] Lei Wang, Jianfeng Zhan, Chunjie Luo, Yuqing Zhu, Qiang Yang, Yongqiang He,
Wanling Gao, Zhen Jia, Yingjie Shi, Shujie Zhang, Chen Zheng, Gang Lu, Kent
Zhan, Xiaona Li, and Bizhu Qiu. 2014. BigDataBench: a Big Data Benchmark
Suite from Internet Services. In 2014 IEEE 20th International Symposium on High
Performance Computer Architecture (HPCA). 488–499.

[47] Jianjun Zheng, Qian Lin, Jiatao Xu, Cheng Wei, Chuwei Zeng, Pingan Yang, and
Yunfan Zhang. 2017. PaxosStore: High-Availability Storage Made Practical in
WeChat. Proc. VLDB Endow. 10, 12 (aug 2017), 1730–1741.

https://doi.org/10.1145/1807128.1807152
http://www.tpc.org/tpcc/
http://www.tpc.org/tpcc/
https://investor.fb.com/investor-news/press-release-details/2022/Meta-Reports-First-Quarter-2022-Results/default.aspx
https://investor.fb.com/investor-news/press-release-details/2022/Meta-Reports-First-Quarter-2022-Results/default.aspx
https://investor.fb.com/investor-news/press-release-details/2022/Meta-Reports-First-Quarter-2022-Results/default.aspx
https://hstore.cs.brown.edu/projects/auctionmark/
https://hstore.cs.brown.edu/projects/auctionmark/
https://hstore.cs.brown.edu/projects/seats/
https://hstore.cs.brown.edu/projects/seats/
http://hstore.cs.brown.edu/documentation/deployment/benchmarks/smallbank/
http://hstore.cs.brown.edu/documentation/deployment/benchmarks/smallbank/

	Abstract
	1 Introduction
	2 Motivation
	2.1 Desired Properties
	2.2 TAO

	3 Workload Characterization
	3.1 Methodology
	3.2 Operation Skew
	3.3 Write Transactions
	3.4 Workload Parameters

	4 Benchmark
	4.1 Request API
	4.2 Architecture
	4.3 Workload Generation
	4.4 Extensibility

	5 Validation
	5.1 Implementation
	5.2 Validation Results

	6 Lessons and Experiences
	6.1 New Transaction Use Cases
	6.2 Contention
	6.3 New APIs
	6.4 High Fan-Out Transactions

	7 Distributed Database Evaluation
	7.1 Experimental Setup
	7.2 Results
	7.3 System Impact

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

