
CraftAssist: A Framework for Dialogue-enabled Interactive Agents

Jonathan Gray * Kavya Srinet * Yacine Jernite Haonan Yu Zhuoyuan Chen Demi Guo Siddharth Goyal
C. Lawrence Zitnick Arthur Szlam

Facebook AI Research

{jsgray,ksrinet}@fb.com

Abstract
This paper describes an implementation of a bot
assistant in Minecraft, and the tools and platform
allowing players to interact with the bot and to
record those interactions. The purpose of build-
ing such an assistant is to facilitate the study of
agents that can complete tasks specified by dia-
logue, and eventually, to learn from dialogue in-
teractions.

1. Introduction
While machine learning (ML) methods have achieved
impressive performance on difficult but narrowly-defined
tasks (Silver et al., 2016; He et al., 2017; Mahajan et al.,
2018; Mnih et al., 2013), building more general systems
that perform well at a variety of tasks remains an area of
active research. Here we are interested in systems that
are competent in a long-tailed distribution of simpler tasks,
specified (perhaps ambiguously) by humans using natural
language. As described in our position paper (Szlam et al.,
2019), we propose to study such systems through the de-
velopment of an assistant bot in the open sandbox game of
Minecraft1 (Johnson et al., 2016; Guss et al., 2019). This
paper describes the implementation of such a bot, and the
tools and platform allowing players to interact with the bot
and to record those interactions.

The bot appears and interacts like another player: other
players can observe the bot moving around and modifying
the world, and communicate with it via in-game chat. Fig-
ure 1 shows a screenshot of a typical in-game experience.
Neither Minecraft nor the software framework described
here provides an explicit objective or reward function; the
ultimate goal of the bot is to be a useful and fun assistant
in a wide variety of tasks specified and evaluated by human
players.

* Equal contribution
1Minecraft features: c©Mojang Synergies AB included cour-

tesy of Mojang AB

Figure 1. An in-game screenshot of a human player using in-game
chat to communicate with the bot.

Longer term, we hope to build assistants that interact and
collaborate with humans to actively learn new concepts and
skills. However, the bot described here should be taken as
initial point from which we (and others) can iterate. As the
bots become more capable, we can expand the scenarios
where they can effectively learn.

To encourage collaborative research, the code, data, and
models are open-sourced2. The design of the framework
is purposefully modular to allow research on components
of the bot as well as the whole system. The released data
includes the human actions used to build 2,586 houses,
the labeling of the sub-parts of the houses (e.g., walls,
roofs, etc.), human rewordings of templated commands,
and the mapping of natural language commands to bot in-
terpretable logical forms. To enable researchers to inde-
pendently collect data, the infrastructure that allows for
the recording of human and bot interaction on a Minecraft
server is also released. We hope these tools will help em-
power research on agents that can complete tasks specified
by dialogue, and eventually, learn form dialogue interac-
tions.

2https://github.com/facebookresearch/
craftassist

https://github.com/facebookresearch/craftassist
https://github.com/facebookresearch/craftassist


CraftAssist: A Framework for Dialogue-enabled Interactive Agents

Figure 2. An in-game screenshot showing some of the block types
available to the user in creative mode.

2. Minecraft
Minecraft3 is a popular multiplayer open world voxel-
based building and crafting game. Gameplay starts with
a procedurally generated world containing natural features
(e.g. trees, mountains, and fields) all created from an
atomic set of a few hundred possible blocks. Addition-
ally, the world is populated from an atomic set of animals
and other non-player characters, commonly referred to as
“mobs”.

The game has two main modes: “creative” and “survival”.
In survival mode the player is resource limited, can be
harmed, and is subject to more restrictive physics. In
creative mode, the player is not resource limited, cannot
be harmed, and is subject to less restrictive physics, e.g.
the player can fly through the air. An in-depth guide
to Minecraft can be found at https://minecraft.
gamepedia.com/Minecraft.

In survival mode, blocks can be combined in a process
called “crafting” to create other blocks. For example, three
wood blocks and three wool can be combined to create an
atomic “bed” block. In creative mode, players have access
to all block types without the need for crafting.

Compound objects are arrangements of multiple atomic ob-
jects, such as a house constructed from brick, glass and
door blocks. Players may build compound objects in the
world by placing or removing blocks of different types in
the environment. Figure 2 shows a sample of different
block types. The blocks are placed on a 3D voxel grid.

3https://minecraft.net/en-us/

Each voxel in the grid contains one material. In this paper,
we assume players are in creative mode and we focus on
building compound objects.

Minecraft, particularly in its creative mode setting, has
no win condition and encourages players to be creative.
The diversity of objects created in Minecraft is astound-
ing; these include landmarks, sculptures, temples, roller-
coasters and entire cityscapes. Collaborative building is a
common activity in Minecraft.

Minecraft allows multiplayer servers, and players can col-
laborate to build, survive, or compete. It has a huge player
base (91M monthly active users in October 2018) 4, and
players actively create game mods and shareable content.
The multiplayer game has a built-in text chat for player to
player communication. Dialogue between users on multi-
user servers is a standard part of the game.

3. Client/Server Architecture
Minecraft operates through a client and server architecture.
The bot acting as a client communicates with the Minecraft
server using the Minecraft network protocol5. The server
may receive actions from multiple bot or human clients,
and returns world updates based on player and mob ac-
tions. Our implementation of a Minecraft network client
is included in the top-level client directory.

Implementing the Minecraft protocol enables a bot to con-
nect to any Minecraft server without the need for installing
server-side mods, when using this framework. This pro-
vides two main benefits:

1. A bot can easily join a multiplayer server along with
human players or other bots.

2. A bot can join an alternative server which implements
the server-side component of the Minecraft network
protocol. The development of the bot described in this
paper uses the 3rd-party, open source Cuberite server.
Among other benefits, this server can be easily modi-
fied to record the game state that can be useful infor-
mation to help improve the bot.

4. Assistant v0
This section outlines our initial approach to building a
Minecraft assistant, highlighting some of the major design
decisions made:

4https://www.gamesindustry.biz/articles/
2018-10-02-minecraft-exceeds-90-million-
monthly-active-users

5We have implemented protocol version 340, which corre-
sponds to Minecraft Computer Edition v1.12.2, and is described
here: https://wiki.vg/index.php?title=Protocol&oldid=14204

https://minecraft.gamepedia.com/Minecraft
https://minecraft.gamepedia.com/Minecraft
https://minecraft.net/en-us/
https://github.com/facebookresearch/craftassist/tree/master/client
https://cuberite.org/
https://www.gamesindustry.biz/articles/2018-10-02-minecraft-exceeds-90-million-monthly-active-users
https://www.gamesindustry.biz/articles/2018-10-02-minecraft-exceeds-90-million-monthly-active-users
https://www.gamesindustry.biz/articles/2018-10-02-minecraft-exceeds-90-million-monthly-active-users
https://wiki.vg/index.php?title=Protocol&oldid=14204


CraftAssist: A Framework for Dialogue-enabled Interactive Agents

Figure 3. A simplified block diagram demonstrating how the
modular system reacts to incoming events (in-game chats and
modifications to the block world)

• a modular architecture

• the use of high-level, hand-written composable ac-
tions called Tasks

• a pipelined approach to natural language understand-
ing (NLU) involving a neural semantic parser

A simplified module-level diagram is shown in Fig-
ure 3, and the code described here is available at:
https://github.com/facebookresearch/craftassist. See Sec-
tion 8 for a discussion of these decisions and our future
plans to improve the bot.

Rather than directly modelling the action distribution as a
function of the incoming chat text, our approach first parses
the incoming text into a logical form we refer to as an ac-
tion dictionary, described later in section 5.2.1. The action
dictionary is then interpreted by a dialogue object which
queries the memory module – a symbolic representation of
the bot’s understanding of the world state – to produce an
action and/or a chat response to the user.

The bot responds to commands using a set of higher-level
actions we refer to as Tasks, such as move to location X ,
or build a Y at location Z. The Tasks act as abstractions
of long sequences of low-level movement steps and indi-
vidual block placements. The Tasks are executed in a stack
(LIFO) order. The interpretation of an action dictionary by
a dialogue object generally produces one or more Tasks,
and the execution of the Task (e.g. performing the path-

finding necessary to complete a Move command) is per-
formed in a Task object in the bot’s task stack.

4.1. Handling an Example Command

Consider a situation where a human player tells the bot:
“go to the blue house”. The Dialogue Manager first
checks for illegal or profane words, then queries the se-
mantic parser. The semantic parser takes the chat as input
and produces the action dictionary shown in figure 4. The
dictionary indicates that the text is a command given by a
human, that the high-level action requested is a MOVE, and
that the destination of the MOVE is an object that is called a
“house” and is “blue” in colour. More details on action dic-
tionaries are provided in section 5.2.1. Based on the output
of the semantic parser, the Dialogue Manager chooses the
appropriate Dialogue Object to handle the chat, and pushes
this Object to the Dialogue Stack.

In the current version of the bot, the semantic parser is a
function of only text – it is not aware of the objects present
in the world. As shown in figure 3, it is the job of the
Dialogue Object6 to interpret the action dictionary in the
context of the world state stored in the memory. In this
case, the Dialogue Object would query the memory for ob-
jects tagged ”blue” and ”house”, and if present, create a
Move Task whose target location is the actual (x, y, z) co-
ordinates of the blue house. More details on Tasks are in
section 5.1.2

Once the Task is created and pushed onto the Task stack, it
is the Move Task’s responsibility, when called, to compare
the bot’s current location to the target location and produce
a sequence of low-level step movements to reach the target.

Input: [0] "go to the blue house"
Output:
{
"dialogue_type": "HUMAN_GIVE_COMMAND",
"action": {
"action_type": "MOVE",
"location": {
"location_type": "REFERENCE_OBJECT",
"reference_object": {
"has_colour": [0, [3, 3]],
"has_name": [0, [4, 4]]

}}}}

Figure 4. An example input and output for the neural semantic
parser. References to words in the input (e.g. ”house”) are writ-
ten as spans of word indices, to allow generalization to words not
present in the dictionary at train-time. For example, the word
”house” is represented as the span beginning and ending with
word 3, in sentence index 0.

6The code implementing the dialogue object that would handle
this scenario is in interpreter.py

https://github.com/facebookresearch/craftassist
https://github.com/facebookresearch/craftassist/blob/master/python/craftassist/dialogue_objects/interpreter.py


CraftAssist: A Framework for Dialogue-enabled Interactive Agents

Figure 5. A flowchart of the bot’s main event loop. On every loop,
the bot responds to incoming chat or block-change events if nec-
essary, and makes progress on the topmost Task on its stack. Note
that dialogue context (e.g. if the bot has asked a question and is
awaiting a response from the user) is stored in a stack of Dialogue
Objects. If this dialogue stack is not empty, the topmost Dialogue
Object will handle an incoming chat.

A flowchart of the bot’s main event loop is shown in fig-
ure 5, and the implementation can be found in the step
method in craftassist agent.py.

5. Modules
This section provides a detailed documentation of each
module of the system as implemented, at the time of this
release.

5.1. Task Stack

5.1.1. TASK PRIMITIVES

The following definitions are concepts used throughout the
bot’s Tasks and execution system:

BlockId: A Minecraft building material (e.g. dirt, di-
amond, glass, or water), characterized by an 8-bit id and
4-bit metadata7

Location: An absolute position (x, y, z) in the world

Schematic: An object blueprint that can be copied into
the world: a map of relative (x, y, z) 7→ BlockId

BlockObject: A real object that exists in the world: a set

7See https://minecraft-ids.grahamedgecombe.com/

of absolute (x, y, z)

Mob: A moving object in the world (e.g. cow, pig, sheep,
etc.)

5.1.2. TASKS

A Task is an interruptible process with a clearly defined
objective. A Task can be executed step by step, and must
be resilient to long pauses between steps (to allow tasks to
be paused and resumed if the user changes their priorities).
A Task can also push other Tasks onto the stack, similar to
the way that functions can call other functions in a standard
programming language. For example, a Build may first re-
quire a Move if the bot is not close enough to place blocks
at the desired location.

The following is a list of basic Tasks:

Move(Location) Move to a specific coordinate in the
world. Implemented by an A* search which destroys and
replaces blocks if necessary to reach a destination.

Build(Schematic, Location) Build a specific schematic
into the world at a specified location.

Destroy(BlockObject) Destroy the specified BlockObject.

Dig(Location, Size) Dig a rectangular hole of a given Size
at the specified Location.

Fill(Location) Fill the holes at the specified Location.

Spawn(Mob, Location) Spawn a Mob at a given Location.

Dance(Movement) Perform a defined sequence of moves
(e.g. move in a clockwise pattern around a coordinate)

There are also control flow actions which take other Tasks
as arguments:

Undo(Task) This Task reverses the effects of a specified
Task, or defaults to the last Task executed (e.g. destroy the
blocks that resulted from a Build)

Loop(StopCondition, Task) This Task keeps executing
the given Task until a StopCondition is met (e.g keep dig-
ging until you hit a bedrock block)

5.2. Semantic Parser

The core of the bot’s natural language understanding is
performed by a neural semantic parser called the Text-to-
Action-Dictionary (TTAD) model. This model receives an
incoming chat / dialogue and parses it into an action dictio-
nary that can be interpreted by the Dialogue Object.

A detailed report of this model is available at (Jernite et al.,
2019). The model is a modification of the approach in
(Dong & Lapata, 2016)). We use bi-directional GRU en-
coder for encoding the sentences and multi-headed atten-

https://github.com/facebookresearch/craftassist/blob/master/python/craftassist/craftassist_agent.py


CraftAssist: A Framework for Dialogue-enabled Interactive Agents

tion over the input sentence.

5.2.1. ACTION DICTIONARIES

An action dictionary is an unambiguous logical form of the
intent of a chat. An example of an action dictionary is
shown in figure 4. Every action dictionary is one of four
dialogue types:

1. HUMAN GIVE COMMAND: The human is giving
an instruction to the bot to perform a Task, e.g. to
Move somewhere or Build something. An action dic-
tionary of this type must have an action key that
has a dictionary with an action type specifying
the Task, along with further information detailing the
information for the Task (e.g. “schematic” and “loca-
tion” for a Build Task).

2. GET MEMORY: The human is asking a question or
otherwise probing the bot’s understanding of the envi-
ronment.

3. PUT MEMORY: The human is providing information
to the bot for future reference or providing feedback to
the bot, e.g. assigning a name to an object “that brown
thing is a shed”.

4. NOOP: No action is required.

There is a dialogue object associated with each dialogue
type. For example, the GetMemoryHandler interprets
a GET MEMORY action dictionary, querying the memory,
and responding to the user with an answer to the question.

For HUMAN GIVE COMMAND action dictionaries,
with few exceptions, there is a direct mapping from “ac-
tion type” values to Task names in section 5.1.2.

5.3. Dialogue Manager & Dialogue Stack

The Dialogue Manager is the top-level handler for incom-
ing chats. It performs the following :

1. Checking the chat for obscenities or illegal words

2. Calling the neural semantic parser to produce an ac-
tion dictionary

3. Routing the handling of the action dictionary to an ap-
propriate Dialogue Object

4. Storing (in the Dialogue Stack) persistent state and
context to allow multi-turn dialogues

The Dialogue Stack is to Dialogue Objects what the Task
Stack is to Tasks. The execution of a Dialogue Object
may require pushing another Dialogue Object onto the

Stack. For example, the Interpreter Object, while
handling a Destroy command and determining which
object should be destroyed, may ask the user for clarifi-
cation. This places a ConfirmReferenceObject ob-
ject on the Stack, which in turn either pushes a Say object
to ask the clarification question or AwaitResponse ob-
ject (if the question has already been asked) to wait for the
user’s response. The Dialogue Manager will then first call
the Say and then call the AwaitResponse object to help
resolve the Interpreter object.

5.4. Memory

The data stored in the bot’s memory includes the locations
of BlockObjects and Mobs (animals), information about
them (e.g. user-assigned names, colour etc), the histori-
cal and current state of the Task Stack, all the chats and
relations between different memory objects. Memory data
is queried by DialogueObjects when interpreting an action
dictionary (e.g. to interpret the action dictionary in figure 4,
the memory is queried for the locations of block objects
named “house” with colour “blue”).

The memory module is implemented using an in-memory
SQLite8 database. Relations and tags are stored in a single
triple store. All memory objects (including triples them-
selves) can be referenced as the subject or object of a mem-
ory triple.

How are BlockObjects populated into Memory? At
this time, BlockObjects are defined as maximally con-
nected components of unnatural blocks (i.e. ignoring
blocks like grass and stone that are naturally found in the
world, unless those blocks were placed by a human or bot).
The bot periodically searches for BlockObjects in its vicin-
ity and adds them to Memory.

How are tags populated into Memory? At this time, tag
triples of the form (BlockObject id, "has tag",
tag) are inserted as the result of some PUT MEMORY
actions, triggered when a user assigns a name or descrip-
tion to an object via chat or gives feedback (e.g. “that ob-
ject is a house”, “that barn is tall” or “that was really cool”).
Some relations (e.g. has colour, indicating BlockOb-
ject colours) are determined heuristically. Neural network
perception modules may also populate tags into the mem-
ory.

5.5. Perception

The bot has access to two raw forms of visual sensory in-
put:

8https://www.sqlite.org/index.html



CraftAssist: A Framework for Dialogue-enabled Interactive Agents

2D block vision9 By default, this produces a 64x64 im-
age where each “pixel” contains the block type and distance
to the block in the bot’s line of sight. For example, instead
of a pixel containing RGB colour information representing
“brown”, the bot might see block-id 17, indicating “Oak
Wood”.

3D block vision10 The bot has access to the underlying
block map: the block type at any absolute position nearby.
This information is not available to a human player inter-
acting normally with the Minecraft game – if it is impor-
tant to compare a bot’s sensorimotor capabilities to a hu-
man’s (e.g. in playing an adversarial game against a human
player), avoid the use of the get blocks function which
implements this capability.

Other common perceptual capabilities are implemented us-
ing ML models or heuristics as appropriate:

Semantic segmentation A 3d convolutional neural net-
work processes each Block Object and outputs a tag for
each voxel, indicating for example whether it is part of
a wall, roof, or floor. The code for this model is in
python/craftassist/vision/semantic segmentation/

Relative directions Referring to objects based on their
positions relative to other objects is performed heuristically
based on a coordinate shift relative to the speaker’s point of
view. For example, referencing “the barn left of the house”
is handled by searching for the closest object called “barn”
that is to the speaker’s left of the “house”.

Size and colour Referring to objects based on their size
or colour is handled heuristically. The colour of a Block
Object is based on the colours of its most common block
types. Adjectives referring to size (e.g. “tiny” or “huge”)
are heuristically mapped to ranges of block lengths.

6. Data
This section describes the datasets we are releasing with
the framework.

6.1. The semantic parsing dataset

We are releasing a semantic parsing dataset of English-
language instructions and their associated “action dictio-
naries”, used for human-bot interactions in Minecraft. This
dataset was generated in different settings as described be-
low:

9The implementation of 2D block vision is found at
agent.cpp#L328

10The implementation of 3D block vision is found at
agent.cpp#L321

• Generations: Algorithmically generating action trees
(logical forms over the grammar) with associated sur-
face forms using templates. (The script for generating
these is here: generate dialogue.py)

• Rephrases: We asked crowd workers to rephrase
some of the produced instructions into commands in
alternate, natural English that does not change the
meaning of the sentence.

• Prompts: We presented crowd workers with a de-
scription of an assistant bot and asked them for ex-
amples of commands they’d give the bot.

• Interactive: We asked crowd workers to play creative
mode Minecraft with our bot, and used the data from
the in-game chat.

The dataset has four files, corresponding to the settings
above:

1. generated dialogues.json : This file has 800000 di-
alogue - action dictionary pairs generated using our
generation script. More can be generated using the
script.

2. rephrases.json: This file has 25402 dialogue - action
dictionary pairs. These are paraphrases of dialogues
generated by our grammar.

3. prompts.json: This file contains 2513 dialogue - ac-
tion dictionary pairs. These dialogues came from the
prompts setting described above.

4. humanbot.json: This file contains 708 dialogue - ac-
tion dictionary pairs. These dialogues came from the
interactive setting above.

The format of the data in each file is:

• A dialogue is represented as a list of sentences, where
each sentence is a sequence of words separated by
spaces and tokenized using the spaCy tokenizer (Hon-
nibal & Johnson, 2015).

• Each json file is a list of dialogue - action dictionary
pair, where “action dictionary” is a nested dictionary
described in 5.2.1

For more details on the dataset see: (Jernite et al., 2019)

6.2. House dataset

We used crowd sourcing to collect examples of humans
building houses in Minecraft. Each user is asked to build a

https://github.com/facebookresearch/craftassist/tree/master/python/craftassist/vision/semantic_segmentation
https://github.com/facebookresearch/craftassist/blob/master/client/src/agent.cpp#L328
https://github.com/facebookresearch/craftassist/blob/master/client/src/agent.cpp#L321
https://github.com/facebookresearch/craftassist/blob/master/python/craftassist/ttad/generation_dialogues/generate_dialogue.py


CraftAssist: A Framework for Dialogue-enabled Interactive Agents

house on a fixed time budget (30 minutes), without any ad-
ditional guidance or instructions. Every action of the user
is recorded using the Cuberite server.

The data collection was performed in Minecraft’s creative
mode, where the user is given unlimited resources, has ac-
cess to all material block types and can freely move in
the game world. The action space of the environment is
straight-forward: moving in x-y-z dimensions, choosing a
block type, and placing or breaking a block.

There are hundreds of different block types someone could
use to build a house, including different kinds of wood,
stone, dirt, sand, glass, metal, ice, to list a few. An empty
voxel is considered as a special block type “air” (block
id=0).

We record sequences of atomic building actions for each
user at each step using the following format:

[t, userid, [x, y, z],
[block-id, meta-id], "P"/"B"]

where the time-stamp t is in monotonically increasing or-
der; [xt, yt, zt] is the absolute coordinate with respect to the
world origin in Minecraft; “P” and “B” refers to placing
a new block and breaking (destroying) an existing block;
each house is built by a single player in our data collection
process with a unique user-id.

There are 2586 houses in total. Details of this work is under
submission.

6.3. Instance segmentation data

For a subset of the houses collected in the house dataset
described above, we asked crowd workers to add semantic
segmentation labels for sub-components of the house. The
format of the data is explained below. There are two files:

• training data.pkl : This file contains data we used
for training our 3D semantic segmentation model.

• validation data.pkl: This file contains data used as
validation set for the model.

Each pickle file has a list of :

[schematic, annotated_schematic,
annotation_list, house_name]

where:

• schematic: The 3-d numpy array representing the
house, where each element in the array is the block id
of the block at that coordinate.

• annotated schematic: The 3-d numpy array represent-
ing the house, where each element in the array is the

id of the semantic annotation that the coordinate/block
belongs to (1-indexed annotation list).

• annotation list: List of semantic segmentation for the
house.

• house name: Name of the house.

There are 2050 houses in total and 1038 distinct labels of
subcomponents.

The datasets described above can be downloaded following
the instructions here

7. Related Work
A number of projects have been initiated to study Minecraft
agents or to build frameworks to make learning in
Minecraft possible. The most well known framework is
Microsoft’s MALMO project (Johnson et al., 2016). The
majority of work using MALMO consider reinforcement
learned agents to achieve certain goals e.g (Shu et al., 2017;
Udagawa et al., 2016; Alaniz, 2018; Oh et al., 2016; Tessler
et al., 2017). Recently the MineRL project (Guss et al.,
2019) builds on top of MALMO with playthrough data and
specific challenges.

Our initial bot has a neural semantic parser (Dong & La-
pata, 2016; Jia & Liang, 2016; Zhong et al., 2017) as its
core NLU component. We also release the data used to
train the semantic parser. There have been a number of
datasets of natural language paired with logical forms to
evaluate semantic parsing approaches, e.g. (Price, 1990;
Tang & Mooney, 2001; Cai & Yates, 2013; Wang et al.,
2015; Zhong et al., 2017). Recently (Chevalier-Boisvert
et al., 2018) described a gridworld with navigation instruc-
tions generated via a grammar. Our bot also needs to up-
date its understanding of an initial instruction during sev-
eral turns of dialogue with the user, which is reminiscent of
the setting of (Bordes et al., 2017).

In addition to mapping natural language to logical forms,
our dataset connects both of these to a dynamic environ-
ment. In (Tellex et al., 2011; Matuszek et al., 2013) seman-
tic parsing has been used for interpreting natural language
commands for robots. In our setup, the “robot” is embodied
in the Minecraft game instead of in the physical world. Se-
mantic parsing in a voxel-world recalls (Wang et al., 2017),
where the authors describe a method for building up a pro-
gramming language from a small core via interactions with
players. Our bot’s NLU pipeline is perhaps most similar
to the one proposed in (Kollar et al., 2018), which builds a
grammar for the Alexa virtual personal assistant.

A task relevant to interactive bots is that of Visual Ques-
tion Answering (VQA) (Antol et al., 2015; Krishna et al.,
2017; Geman et al., 2015) in which a question is asked

https://github.com/facebookresearch/craftassist#datasets


CraftAssist: A Framework for Dialogue-enabled Interactive Agents

about an image and an answer is provided by the system.
Most papers address this task using real images, but syn-
thetic images have also been used (Johnson et al., 2017;
Andreas et al., 2016). The VQA task has been extended
to visual dialogues (Das et al., 2017) and videos (Tapaswi
et al., 2016). Recently, the tasks of VQA and navigation
have been combined using 3D environments (Gordon et al.,
2018; Das et al., 2018; Kolve et al., 2017; Anderson et al.,
2018) to explore bots that must navigate to certain locations
before a question can be answered, e.g., “How many chairs
are in the kitchen?” Similar to our framework, these papers
use synthetic environments for exploration. However, these
can be expanded to use those generated from real environ-
ments (Savva et al., 2019). Instead of the goal being the
answering of a question, other tasks can be explored. For
instance, the task of guiding navigation in New York City
using dialogue (de Vries et al., 2018), or accomplishing
tasks such as pushing or opening specific objects (Kolve
et al., 2017).

8. Discussion
In this work we have described the design of a bot and as-
sociated data that we hope can be used as a starting point
and baseline for research in learning from interaction in
Minecraft. In this section, we discuss some major design
decisions that were made for this bot, and contrast against
other possible choices. We further discuss ways in which
the bot can be improved.

8.1. Semantic Parsing

Rather than learning a mapping directly from (language,
state) to an action or sequence of actions, the bot de-
scribed in this paper first parses language into a program
over high level tasks, called action dictionaries (see sec-
tion 5.2.1). The execution of the program is scripted, rather
than learned.

This arrangement has several advantages:

1. Determining a sequence of actions, given a well-
specified intent, is usually simple in Minecraft. For
example, moving to a known but faraway object might
require hundreds of steps, but it is simple to use a
path-finding algorithm such as A* search to find the
sequence of actions to actually execute the move.

2. Training data for a semantic parsing model is easier to
collect, compared to language-action pairs that would
necessitate recording the actions of a human player.

3. If it was desired to learn the low-level actions needed
to complete a task, approaches such as reinforcement
learning could be employed that use the completion
of the task in the action dictionary as a reward without

having to address the ambiguities of tasks specified
through language.

4. It may be possible to transfer the natural language un-
derstanding capabilities of the bot to another similar
domain by re-implementing the interpretation and ex-
ecution of action dictionaries, without needing to re-
train the semantic parser.

On the other hand,

1. The space of objectives that can be completed by the
bot is limited by the specification of the action dictio-
naries. Adding a new capability to the bot usually re-
quires adding a new structure to the action dictionary
spec, adding code to the relevant Dialogue Object to
handle it, and updating the semantic parsing dataset.

2. A more end-to-end model with a simpler action space
might only require the collection of more data and
might generalize better.

3. The use of a pipelined approach (as described in this
paper) introduces the possibility for compounding er-
rors.

There is a huge space of possible interfaces into the high-
level actions we have proposed (and many other interesting
constructions of high level actions). In particular, we plan
to remove the strict separation between the parser and the
world state in our bot.

8.2. Symbolic Memory

As described in section 5.4, the bot’s memory is imple-
mented using a (discrete, symbolic) relational database.
The major advantages of this (compared to an end-to-end
machine-learned model that operates on raw sensory in-
puts) are:

1. Easier to convert semantic parses into fully specified
tasks that can query and write to the database.

2. Debugging the bot’s current understanding of the
world is easier.

3. Integrating outside information, e.g. crowd-sourced
building schematics, is more straightforward: doing
so requires pre-loading rows into a database table,
rather than re-training a generative model.

4. Reliable symbolic manipulations, especially lookups
by keyword.

On the other hand, such a memory can be brittle and lim-
ited. Even within the space of “discrete” memories, there



CraftAssist: A Framework for Dialogue-enabled Interactive Agents

are more flexible formats, e.g. raw text; and there have
been recent successes using such memories, for example
works using the Squad dataset (Rajpurkar et al., 2016). We
hope our platform will be useful for studying other sym-
bolic memory architectures as well as continuous, learned
approaches, and things in between.

8.3. Modularity for ML research

The bot’s architecture is modular, and currently many of
the modules are not learned. Many machine learning re-
searchers consider the sort of tasks that pipelining makes
simpler to be tools for evaluating more general learning
methodologies. Such a researcher might advocate more
end-to-end (or otherwise less “engineered”) approaches be-
cause the goal is not necessarily to build something that
works well on the tasks that the engineered approach can
succeed in, but rather to build something that can scale be-
yond those tasks.

We have chosen this approach in part because it allows us to
more easily build an interesting initial assistant from which
we can iterate; and in particular allows data collection and
creation. We do believe that modular systems are more
generally interesting, especially in the setting of compe-
tency across a large number of relatively easier tasks. Per-
haps most interesting to us are approaches that allow mod-
ular components with clearly defined interfaces, and het-
erogeneous training based on what data is available. We
hope to explore these with further iterations of our bot.

Despite our own pipelined approach, we consider research
on more end-to-end approaches worthwhile and interest-
ing. Even for researchers primarily interested in these, the
pipelined approach still has value beyond serving as a base-
line: as discussed above, it allows generating large amounts
of training data for end-to-end methods.

Finally, we note that from an engineering standpoint, mod-
ularity has clear benefits. In particular, it allows many re-
searchers to contribute components to the greater whole
in parallel. As discussed above, the bot presented here is
meant to be a jumping off point, not a final product. We
hope that the community will find the framework useful
and join us in building an assistant that can flexibly learn
from interaction with people.

9. Conclusion
We have described a platform for studying situated natural
language understanding in Minecraft. The platform con-
sists of code that implements infrastructure for allowing
bots and people to play together, tools for labeling data,
and a baseline assistant. In addition to the code, we are
releasing a diverse set of data we used for building the as-
sistant. This includes 2586 houses built in game, and the

actions used in building them, instance segmentations of
those houses, and templates and rephrases of templates for
training a semantic parser. In the future, we plan to con-
tinue to release data as it is collected. We hope that the
community will find the framework useful and join us in
building an assistant that can learn a broad range of tasks
from interaction with people.

References
Alaniz, S. Deep reinforcement learning with model learn-

ing and monte carlo tree search in minecraft. arXiv
preprint arXiv:1803.08456, 2018.

Anderson, P., Wu, Q., Teney, D., Bruce, J., Johnson, M.,
Sünderhauf, N., Reid, I., Gould, S., and van den Hen-
gel, A. Vision-and-language navigation: Interpreting
visually-grounded navigation instructions in real envi-
ronments. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2018.

Andreas, J., Rohrbach, M., Darrell, T., and Klein, D. Neu-
ral module networks. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pp.
39–48, 2016.

Antol, S., Agrawal, A., Lu, J., Mitchell, M., Batra, D.,
Lawrence Zitnick, C., and Parikh, D. Vqa: Visual ques-
tion answering. In Proceedings of the IEEE international
conference on computer vision, pp. 2425–2433, 2015.

Bordes, A., Boureau, Y., and Weston, J. Learning end-to-
end goal-oriented dialog. In 5th International Confer-
ence on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceed-
ings, 2017. URL https://openreview.net/
forum?id=S1Bb3D5gg.

Cai, Q. and Yates, A. Large-scale semantic parsing via
schema matching and lexicon extension. In Proceedings
of the 51st Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), vol-
ume 1, pp. 423–433, 2013.

Chevalier-Boisvert, M., Bahdanau, D., Lahlou, S.,
Willems, L., Saharia, C., Nguyen, T. H., and Ben-
gio, Y. Babyai: First steps towards grounded language
learning with a human in the loop. arXiv preprint
arXiv:1810.08272, 2018.

Das, A., Kottur, S., Gupta, K., Singh, A., Yadav, D., Moura,
J. M., Parikh, D., and Batra, D. Visual dialog. In Pro-
ceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, volume 2, 2017.

Das, A., Datta, S., Gkioxari, G., Lee, S., Parikh, D., and
Batra, D. Embodied question answering. In Proceedings

https://openreview.net/forum?id=S1Bb3D5gg
https://openreview.net/forum?id=S1Bb3D5gg


CraftAssist: A Framework for Dialogue-enabled Interactive Agents

of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), volume 5, pp. 14, 2018.

de Vries, H., Shuster, K., Batra, D., Parikh, D., We-
ston, J., and Kiela, D. Talk the walk: Navigating new
york city through grounded dialogue. arXiv preprint
arXiv:1807.03367, 2018.

Dong, L. and Lapata, M. Language to logical form
with neural attention. arXiv preprint arXiv:1601.01280,
2016.

Geman, D., Geman, S., Hallonquist, N., and Younes, L.
Visual turing test for computer vision systems. Proceed-
ings of the National Academy of Sciences, 2015.

Gordon, D., Kembhavi, A., Rastegari, M., Redmon, J., Fox,
D., and Farhadi, A. Iqa: Visual question answering in in-
teractive environments. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pp.
4089–4098, 2018.

Guss, W. H., Codel, C., Hofmann, K., Houghton, B., Kuno,
N., Milani, S., Mohanty, S. P., Liebana, D. P., Salakhut-
dinov, R., Topin, N., Veloso, M., and Wang, P. The min-
erl competition on sample efficient reinforcement learn-
ing using human priors. CoRR, abs/1904.10079, 2019.
URL http://arxiv.org/abs/1904.10079.

He, K., Gkioxari, G., Dollár, P., and Girshick, R. Mask
r-cnn. In Proceedings of the IEEE international confer-
ence on computer vision, pp. 2961–2969, 2017.

Honnibal, M. and Johnson, M. An improved non-
monotonic transition system for dependency parsing. In
Proceedings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 1373–1378,
Lisbon, Portugal, September 2015. Association for
Computational Linguistics. URL https://aclweb.
org/anthology/D/D15/D15-1162.

Jernite, Y., Srinet, K., Gray, J., and Szlam, A. Craftassist
instruction parsing: Semantic parsing for a minecraft as-
sistant, 2019.

Jia, R. and Liang, P. Data recombination for neural seman-
tic parsing. arXiv preprint arXiv:1606.03622, 2016.

Johnson, J., Hariharan, B., van der Maaten, L., Fei-Fei, L.,
Zitnick, C. L., and Girshick, R. B. CLEVR: A diagnos-
tic dataset for compositional language and elementary
visual reasoning. In CVPR, pp. 1988–1997. IEEE Com-
puter Society, 2017.

Johnson, M., Hofmann, K., Hutton, T., and Bignell, D. The
malmo platform for artificial intelligence experimenta-
tion. In IJCAI, pp. 4246–4247, 2016.

Kollar, T., Berry, D., Stuart, L., Owczarzak, K., Chung,
T., Mathias, L., Kayser, M., Snow, B., and Matsoukas,
S. The alexa meaning representation language. In Pro-
ceedings of the 2018 Conference of the North American
Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, Volume 3 (Industry
Papers), volume 3, pp. 177–184, 2018.

Kolve, E., Mottaghi, R., Gordon, D., Zhu, Y., Gupta, A.,
and Farhadi, A. Ai2-thor: An interactive 3d environment
for visual ai. arXiv preprint arXiv:1712.05474, 2017.

Krishna, R., Zhu, Y., Groth, O., Johnson, J., Hata, K.,
Kravitz, J., Chen, S., Kalantidis, Y., Li, L.-J., Shamma,
Shamma, D., Bernstein, M., and Fei-Fei, L. Visual
genome: Connecting language and vision using crowd-
sourced dense image annotations. International Journal
of Computer Vision, 2017.

Mahajan, D., Girshick, R., Ramanathan, V., He, K., Paluri,
M., Li, Y., Bharambe, A., and van der Maaten, L.
Exploring the limits of weakly supervised pretraining.
arXiv preprint arXiv:1805.00932, 2018.

Matuszek, C., Herbst, E., Zettlemoyer, L., and Fox, D.
Learning to parse natural language commands to a robot
control system. In Experimental Robotics, pp. 403–415.
Springer, 2013.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., and Riedmiller, M. Playing
atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Oh, J., Chockalingam, V., Singh, S., and Lee, H. Control
of memory, active perception, and action in minecraft.
arXiv preprint arXiv:1605.09128, 2016.

Price, P. J. Evaluation of spoken language systems: The atis
domain. In Speech and Natural Language: Proceedings
of a Workshop Held at Hidden Valley, Pennsylvania, June
24-27, 1990, 1990.

Rajpurkar, P., Zhang, J., Lopyrev, K., and Liang, P. Squad:
100,000+ questions for machine comprehension of text.
arXiv preprint arXiv:1606.05250, 2016.

Savva, M., Kadian, A., Maksymets, O., Zhao, Y., Wijmans,
E., Jain, B., Straub, J., Liu, J., Koltun, V., Malik, J.,
Parikh, D., and Batra, D. Habitat: A platform for embod-
ied ai research. arXiv preprint arXiv:1904.01201, 2019.

Shu, T., Xiong, C., and Socher, R. Hierarchical and in-
terpretable skill acquisition in multi-task reinforcement
learning. arXiv preprint arXiv:1712.07294, 2017.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
Van Den Driessche, G., Schrittwieser, J., Antonoglou, I.,

http://arxiv.org/abs/1904.10079
https://aclweb.org/anthology/D/D15/D15-1162
https://aclweb.org/anthology/D/D15/D15-1162


CraftAssist: A Framework for Dialogue-enabled Interactive Agents

Panneershelvam, V., Lanctot, M., et al. Mastering the
game of go with deep neural networks and tree search.
nature, 529(7587):484, 2016.

Szlam, A., Chen, Z., Goyal, S., Gray, J., Guo, D.,
Jernite, Y., Joulin, A., Kiela, D., Rothermel, D.,
Srinet, K., Synnaeve, G., Weston, J., Yu, H., and
Zitnick, C. L. Why build an assistant in minecraft?
https://research.fb.com/publications/
why-build-an-assistant-in-minecraft/,
2019.

Tang, L. R. and Mooney, R. J. Using multiple clause con-
structors in inductive logic programming for semantic
parsing. In European Conference on Machine Learning,
pp. 466–477. Springer, 2001.

Tapaswi, M., Zhu, Y., Stiefelhagen, R., Torralba, A., Urta-
sun, R., and Fidler, S. Movieqa: Understanding stories
in movies through question-answering. In Proceedings
of the IEEE conference on computer vision and pattern
recognition, 2016.

Tellex, S., Kollar, T., Dickerson, S., Walter, M. R., Baner-
jee, A. G., Teller, S., and Roy, N. Understanding natural
language commands for robotic navigation and mobile
manipulation. In Twenty-Fifth AAAI Conference on Ar-
tificial Intelligence, 2011.

Tessler, C., Givony, S., Zahavy, T., Mankowitz, D. J., and
Mannor, S. A deep hierarchical approach to lifelong
learning in minecraft. In AAAI, volume 3, pp. 6, 2017.

Udagawa, H., Narasimhan, T., and Lee, S.-Y. Fighting
zombies in minecraft with deep reinforcement learning.
Technical report, Technical report, Stanford University,
2016.

Wang, S. I., Ginn, S., Liang, P., and Manning, C. D. Nat-
uralizing a programming language via interactive learn-
ing. arXiv preprint arXiv:1704.06956, 2017.

Wang, Y., Berant, J., and Liang, P. Building a semantic
parser overnight. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguis-
tics and the 7th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers), vol-
ume 1, pp. 1332–1342, 2015.

Zhong, V., Xiong, C., and Socher, R. Seq2sql: Generating
structured queries from natural language using reinforce-
ment learning. arXiv preprint arXiv:1709.00103, 2017.

https://research.fb.com/publications/why-build-an-assistant-in-minecraft/
https://research.fb.com/publications/why-build-an-assistant-in-minecraft/

