
ON LATTICE-FREE BOOSTED MMI TRAINING OF HMM AND CTC-BASED
FULL-CONTEXT ASR MODELS

Xiaohui Zhang?, Vimal Manohar?, David Zhang, Frank Zhang, Yangyang Shi,
Nayan Singhal, Julian Chan, Fuchun Peng, Yatharth Saraf, Mike Seltzer

Facebook AI, USA

ABSTRACT

Hybrid automatic speech recognition (ASR) models are typically
sequentially trained with CTC or LF-MMI criteria. However,
they have vastly different legacies and are usually implemented
in different frameworks. In this paper, by decoupling the con-
cepts of modeling units and label topologies and building proper
numerator/denominator graphs accordingly, we establish a gen-
eralized framework for hybrid acoustic modeling (AM). In this
framework, we show that LF-MMI is a powerful training cri-
terion applicable to both limited-context and full-context mod-
els, for wordpiece/mono-char/bi-char/chenone units, with both
HMM/CTC topologies. From this framework, we propose three
novel training schemes: chenone(ch)/wordpiece(wp)-CTC-bMMI,
and wordpiece(wp)-HMM-bMMI with different advantages in train-
ing performance, decoding efficiency and decoding time-stamp
accuracy. The advantages of different training schemes are eval-
uated comprehensively on Librispeech, and wp-CTC-bMMI and
ch-CTC-bMMI are evaluated on two real world ASR tasks to show
their effectiveness. Besides, we also show bi-char(bc) HMM-MMI
models can serve as better alignment models than traditional non-
neural GMM-HMMs.

Index Terms— LF-MMI, CTC, HMM, modeling units, boost

1. INTRODUCTION

State-of-the-art Automatic Speech Recognition (ASR) systems use
Deep Neural Networks (DNN) of various architectures for acoustic
modeling (AM). Early success using DNNs for ASR came from
hybrid DNN-hidden markov models (DNN-HMM) [1]. These were
typically trained using frame-level cross entropy (CE) criterion
to predict senones [1] obtained from a previous Gaussian Mix-
ture Model(GMM)-HMM system. Sequence-level training criteria
like Maximum Mutual Information (MMI) [2] have been shown to
improve the performance of these frame-level trained DNN-HMM-
based ASR systems [3, 4]. Since then, various approaches have been
shown to be able to train neural network purely through sequence
training without initially pre-training using a frame-level criterion –
lattice-free MMI (LF-MMI) [5, 6], connectionist temporal classifi-
cation (CTC) [7], recurrent neural network transducer (RNN-T) [8],
attention-based sequence-to-sequence (seq2seq) models [9, 10].

RNN-T and seq2seq models consist of an acoustic encoder that
is jointly trained with a neural decoder, which can be considered to
be a neural language model (LM). These models can be used to de-
code audio without using an external LM, and thus can be termed

The authors would like to thank Dan Povey, Yiming Wang, Yiwen Shao,
Michael Picheny, and Zhijian Ou for insightful discussions and suggestions.

? Equal contribution.

as “end-to-end”. As opposed to this, CTC-based models and hy-
brid DNN-HMM are “encoder-only” models in the sense that they
do not have an explicit jointly trained neural decoder. Having a sin-
gle “end-to-end” model might be simpler, but in general these mod-
els are known to be data-hungry [11, 12] and require thousands of
hours of data to achieve competitive performance. RNN-T models
are also known to benefit from pre-training encoders or alignments
from CTC [13] or hybrid DNN-HMM [14] models for accuracy or
efficiency improvements [13, 14, 15, 16]. On the other hand, hy-
brid models use an external LM for decoding and are often explic-
itly trained to work with an LM [5, 17, 18]. They are appealing for
their modularity which allows to easily replace or extend the lexi-
con or LM for different applications, while this is still a challenge
for end-to-end systems [19]. Hybrid models also explicitly model
silence which makes them ideal candidates for pre-processing and
segmenting audio as well as for applications that require highly ac-
curate decoding token time-stamps.

While hybrid DNN-HMM and CTC models are very similar,
they have vastly different legacies and are usually implemented
in very different frameworks. For e.g., though LF-MMI was pro-
posed in a DNN-HMM framework with senone/chenone[20] mod-
eling units, this combination of topology and modeling units is not
mandatory. On the other hand, CTC models conventionally refers
to a model whose modeling units follow the CTC topology and
trained with the Maximum-Likelihood (ML) criteria, which is just
the numerator part of the MMI criteria [6]. However, CTC models
can also be trained discriminatively with sMBR [21], or MMI 1 cri-
teria. Intrinsically HMM and CTC are just different label topologies
(Sec. 3). By decoupling the concepts of modeling units (charac-
ter/wordpiece/chenone etc.) and label topologies, we introduce a
single generalized framework for training hybrid models. This ma-
jor contribution of our paper allows systematic comparisons (Sec.
6.1) of different modeling units and label topologies to gain deep
understandings of their properties, and makes it easier to develop
training schemes with novel combinations of them.

From this framework, together with the boost factor [22, 23] for
LF-MMI, we propose three new training schemes: 1,2) wp-CTC-
bMMI and ch-CTC-bMMI (CTC-bMMI with chenone/wordpiece
units), with overall better WERs than HMM-bMMI, whose effec-
tiveness is also confirmed by two real-world server-side/on-device
ASR applications. 3) wp-HMM-bMMI, which enables both large-
stride (8) inference and accurate token time-stamps, thanks to si-
lence modeling. On the HMM side, we also show HMM-MMI
models with bi-character units (bc-HMM-MMI) can serve as a bet-
ter flat-start trained alignment model than Gaussian Mixture Models
(GMM), especially on noisy data.

1The CTC-CRF criterion in [18] is equivalent to LF-MMI as in [6] as both
used uniform transition scores constant over the linear chain.

2. LF-BMMI TRAINING

LF-MMI [5] criterion was extended to include boosting [22] in [23,
24]. Here, we present it again in the generalized hybrid model frame-
work for different modeling units and label topologies.

The MMI criterion [2] for training acoustic models can be
viewed as maximizing the conditional likelihood of the refer-
ence W (r) given the acoustic observation sequence O(r). This
maximizes the joint likelihood of the reference and acoustic ob-
servation sequence, i.e. numerator likelihood, and minimizes the
marginal likelihood O(r), i.e. denominator likelihood. As in [5],
the denominator is approximated by marginalizing over all state
sequences in a denominator graph GDen (hence “lattice-free”) con-
structed using an n-gram token LM, which in our case can be
phone/character/wordpiece LM. The numerator likelihood is com-
puted by marginalizing over all sequences in a numerator graph
GNum(W

(r)) that is similar but constrained to the reference word
sequence. In this paper, we assume MMI/bMMI training is always
lattice-free, hence omitting “LF” most of the time.

The boosted MMI [22, 3] criterion was introduced to improve
training performance by encouraging the criterion to give higher
likelihoods to more “accurate” paths. This is achieved by boosting
the likelihoods of paths in the denominator graph proportional to the
number of errors it contains. The LF-bMMI criterion can be written
as:

FLF-bMMI =
∑
r

log

∑
π∈GNum(W (r)) P

(
O(r) | π

)κ
P(π)∑

π′∈GDen
P(O(r) | π′)κP(π′)e−bA(W (r),π′)

,

(1)
where κ is acoustic weight and A(W (r), π′) is the accuracy func-
tion for the path π′ measured against the reference W (r). The ac-
curacy function can be defined in several ways such as using phone
edit distance to the reference [22]. But implementation-wise, in the
lattice-free training framework, it is easiest to define this as a sum of
per-frame accuracy values. Therefore, as in [24], we use numerator
posterior derived from the numerator graph as a proxy for the per-
frame state-level accuracy values. Besides, the intuition of boosted
MMI can also be interpreted by Max-Margin learning [25] [26].

2.1. Full-sequence training
The LF-(b)MMI criterion was originally designed at the sequence-
level. For efficiency on GPUs, the original Kaldi implementation [5]
applies it on equally-sized chunks of around 1.5s each. However, in
our application we need to apply LF-bMMI criterion to full-context
models like BLSTMs and Transformers, and sequence lengths of up
to 2 minutes. We leveraged PyChain’s LF-MMI implementation for
sequence-training with variable length sequences, and added boost-
ing [22] for training with boosted MMI.

3. LABEL TOPOLOGIES AND MODELING UNITS

In this section, we describe the label topologies and modeling units
used in our models. A label topology defines the mapping between a
label sequence and neural network output units (i.e. modeling units).
For DNN-HMM systems, in this paper, we consider only the 1-state
and 2-state-with-skip (which we call as chain) HMM topologies [6].
For CTC systems, a CTC topology [7, 18] is used which adds a spe-
cial blank (φ) output unit. The CTC topology defines a mappingB−1

that maps a label sequence l = l1, . . . lL to all output unit sequences
π such l is obtained by de-duplicating π and removing blank sym-
bols. An intuitive understanding of the difference between CTC and

(a) CTC topology

(b) 1-state HMM topology

Fig. 1: Numerator FSTs (mapping output units to modeling units) of
‘I’, ‘ a’, ‘m’ in CTC and 1-state HMM topology; φ means blank.

1-state HMM topology2 can be obtained by looking at the examples
in Fig.1. We see that the CTC topology allows blank (φ) units be-
tween any tokens, e.g. a and m. The silence label (<sil>) which
we see in the 1-state HMM topology is different from blank in that
it is a real label similar to any other wordpiece. In our systems, we
make the modeling choice to optionally allow it between words in
order to model the real acoustics of silence [27]. We also point out
that explicit silence modeling can help achieve more accurate token
time-stamps during decoding, which is an advantage of HMM-based
models, especially when time-constraints are used in training targets.
Notably, we can use both blank and silence in the same model, which
is the case for chenone-CTC models as pointed out in Table 1. On
the other hand, we hypothesize that CTC-based models can achieve
better training performance as it benefits more from SpecAugment
due to the blank tokens, verified in our experiments. The blank to-
kens, which signify “no output” are ideal to represent the perturba-
tions due to feature masking, while HMM-based models are forced
to model masked features using non-silence units (except between
words where silence can be predicted). However the cost is less ac-
curate decoding time-stamps due to the peaky behavior [28] caused
by dominance of blank tokens at output during decoding.

We consider the following 4 types of labels:
• Mono-character (mono-char): This is the simplest case where

the labels are characters which are context-independent.
• Bi-character (bi-char): In this case, the characters are mod-

eled separately for each left-context. We do a basic text-based
clustering based on the raw counts of the character n-grams
seen in the training transcripts, to let infrequent bi-characters
share a modeling unit within each cluster.

• Tri-character (tri-char): In this case, the characters are mod-
eled separately for each left and right context. We use stan-
dard decision-tree based clustering of states [29] and share
modeling units across states within each cluster. We refer to
tri-char based modeling units as chenones [20].

• Wordpiece (wp): In this case, wordpieces are constructed us-
ing Sentencepiece [30] modeling from training transcripts.

4. NUMERATOR AND DENOMINATOR PREPARATION

4.1. HMM topology
Chenone units: We use the approach for denominator graph prepa-
ration from [5], except for replacing phoneme with character i.e. by
composing an {3,4}-gram character LM with tri-character context-
dependency transducer and HMM transducer. The n-gram LM was

2The chain topology can be obtained from Fig.1b by replacing input to-
kens on all self-loops by a ‘2nd version’ of each token (e.g. ‘I’→‘I2’).

estimated using the alignments from a previous flatstart trained hy-
brid LFMMI bi-char system [6]. Numerator graph preparation also
follows the same approach from [5] and we apply time-constraints
using alignments from the same flatstart-trained hybrid system.
Bi/mono-char units: The denominator graph preparation follows
the similar approach as described for chenone units in the previ-
ous section but using a bi-character context-dependency for the bi-
char systems and no context-dependency for the mono-char systems.
Also the character LM has to be estimated from transcripts rather
than alignments, with randomly inserted silence phones [6]. Numer-
ator graph in this case is a full HMM with self-loops following [6].
Wordpiece units: The denominator and numerator graph preparation
mimic the approach for mono-char units as described in the previous
section. The word sequences are converted to wordpieces using a
“wordpiece lexicon” constructed using mappings from a Sentence-
piece model [31] trained on the text. Since the number of wordpieces
is usually much larger than the number of characters, to decrease the
denominator graph size, we use a {2,3}-gram LM on wordpieces
for the denominator. An example for numerator FST for wordpiece
units with HMM topology is shown in Figure 1b.

4.2. CTC topology
Chenone units: For chenone units with CTC topology, we first ob-
tain the chenone sequence from a previous flatstart trained hybrid
LFMMI bi-char system as in the case of HMM topology described
in the chenone-HMM case, and remove repetitions to obtain a label
sequence with chenones as the labels. We treat chenones similar to
regular characters and compose the sequence with the CTC topology
transducer [18]. Note that unlike the chenone HMM case, there’s
no time constraints on numerator FSTs here. For the denominator
graph, we first obtain the denominator graph for a 1-state HMM
topology as in HMM case, and then convert it to a CTC compati-
ble topology by splitting each state into two states and adding two
arcs for consuming blank tokens, in the same way as done in [32] for
constructing decoding graph for chenone-based CTC models.
Wordpiece units: For wordpiece units with CTC topology, the nu-
merator graph (e.g. 1b) is created in the same way as the chenone
case. The wordpiece sequence is generated on-the-fly by tokeniz-
ing the reference sequence into wordpieces using a SentencePiece
model [31]. The denominator graph is created by composing a n-
gram wordpiece LM with the CTC topology transducer. The n-gram
wordpiece LM is estimated from training transcripts tokenized into
wordpieces using a Sentencepiece model.

We summarized the main properties of the combinations of
HMM/CTC topology with different modeling units which we’ll
study in Table 1. Among them, wp-HMM, wp-CTC and ch-CTC are
novel schemes in terms of MMI training.

5. PRE-TRAINING WITH CE/ML MODELS

To improve LF-bMMI training performance, we can pre-train the
model with either frame-level CE criterion or sequence level ML
criterion [6]3. ch-HMM models (i.e. HMM topology with chenone
units) are the only one for which we use frame-level alignments.
For these, we use CE pre-training with the labels obtained from
frame-level alignments. For other models, we use sequence-level
pre-training with ML criterion. Note that in the case of CTC topol-
ogy, this is equivalent to the CTC training criterion. In all these
cases, the neural network outputs are locally normalized by a soft-
max layer.

3Strictly speaking CE is frame-level ML. We make CE comparable to ML
since we always refer ML to “sequence-level ML” in our paper for simplicity.

When fine-tuning a neural network pre-trained with CE or ML
criterion, we empirically found removing softmax and using the log-
its directly helped performance. However, we subtract the log of the
model priors from the logits just as we would when using the model
for decoding [1]. We estimate the model priors [33] on a small subset
of training data as opposed to the conventional approach of obtaining
it from frame-level alignments [1]. This approach is more general as
it allows to estimate model priors even for CTC-based systems with
blank tokens and for wordpiece-based systems. We additionally ap-
ply an acoustic scale κ on the neural network outputs before it is
combined with the graph scores from the numerator or denomina-
tor graphs. In theory, the LF-bMMI objective is normalized at the
sequence-level and hence it is capable of learning the linear offset
corresponding to the log-priors as well as the acoustic scale. We
indeed find that when the model is trained from scratch, we do not
need to explicitly supply the log priors or an acoustic scale of 1.0
suffices. But when fine-tuning a pre-trained network, we found that
we need to match the priors and acoustic scale to the optimal values
during decoding. Using a mis-matched prior or acoustic scale leads
to slower convergence.

6. EXPERIMENTS

6.1. Comprehensive Analysis on Librispeech
Here we perform a series of analysis of LF-bMMI training with dif-
ferent modeling units, label topologies and various configurations
on Librispeech [34]. We use the standard (960h) training and (dev-
clean, dev-other sets for training and evaluation respectively. We
use the official 4-gram LM pruned to 3-gram with a threshold of
1e−9) built into HLG/HCLG graphs for decoding. For the AM, we
use a 25M-parameters TDNN-BLSTM network with 2 BLSTM [35]
layers (640 hidden units) in each recurrence direction and 3 TDNN
layers [36, 37] (640 hidden units) interleaved between input and first
BLSTM layer, and between the 2 BLSTM layers. Unless specified,
we use stride (i.e. input frame rate / output frame rate) 8 for wp-
CTC/HMM and stride 4 for ch-CTC/HMM models, since previous
studies [32] have shown wordpieces units can work reasonably well
with stride 8, while chenone units cannot because of their short dura-
tion. Regarding modeling units, for mc-HMM, we use 29 characters.
For bc-HMM, we use 870 bi-char units from text-based clustering.
For ch-HMM/ch-CTC systems, we use a set of 1632 chenones cor-
responding to a tree built from alignments from a bc-HMM model.
For wp-HMM/wp-CTC systems, we use a set of 511 wordpieces
built from a Sentencepiece model, balancing performance between
strides 4 and 8. Unless specified, we always conduct MMI training
without pre-training, with 0 as the boost factor, LD as the SpecAug-
ment policy, and 1-state topology for HMM-based systems.

6.1.1. Basic results and the effect of ML/CE pre-training
We first do comparison of the WERs of LF-MMI training for
wp-HMM/CTC and ch-HMM/CTC with their corresponding non-
discriminatively trained ML/CE baselines, and then investigate the
effect of pre-training with ML/CE for LF-MMI training. Regarding
the choice between ML/CE training, since ch-HMM is the only one
with frame-level targets, it’s natural to go with CE for ch-HMM, and
ML for others. From results in Table 2, comparing with ML base-
lines, we can see that wp/ch-CTC-MMI both have around 8 − 15%
relative improvements on dev-other and 4 − 7% relative improve-
ments on dev-clean, and pre-training MMI with ML helps provide
a better initialization resulting in both faster convergence and better
final WER. For wp-HMM, the ML WER is significantly worse and
doesn’t help for pre-training MMI, which is similar to the finding on

Table 1: Properties of combinations of different modeling units and label topologies (‘mc’ = ‘mono-char’, ‘bc’ = ‘bi-char’, ‘ch’=‘chenone’)

Model wp-HMM mc/bc-HMM ch-HMM ch-CTC wp-CTC

Label topology HMM CTC
Acoustic-based clustering N Y N

Time-constrained Num. FST N Y N
Explicit silence modeling Y N

Training criterion ML / MMI CE / MMI ML / MMI

Table 2: dev-clean/other ML/CE vs. MMI WER and the effect of ML/CE pre-training for MMI (#ep means # epochs to reach the best WER).

Loss wp-HMM wp-CTC ch-CTC
WER #ep WER #ep WER #ep

ML 7.2 / 17.3 69 4.6 / 11.5 58 4.1 / 10.7 55
MMI 4.3 / 11.0 60 4.4 / 10.6 121 3.8 / 9.1 153

ML→MMI 4.4 / 11.0 66 4.1 / 10.2 89 3.7 / 9.0 143

Loss ch-HMM
WER #ep

CE 4.2 / 10.6 60
MMI 4.0 / 9.5 54

CE→MMI 3.8 / 9.1 48

mc-HMM in [6]. For ch-HMM, MMI achieves 5 − 10% improve-
ment comparing with CE, and pre-training with CE further brings
4% improvements.

6.1.2. The effect of boost
Here we study the contribution of the boost factor for bMMI training.
From Table 3 we can see that the boost improves WERs for all four
systems. For wp-HMM, wp-CTC, ch-CTC, the relative WER gain
is around 2 − 7% on dev-clean and 2 − 4% on dev-other. For ch-
HMM, the gain is large: 10% on dev-clean and 6% on dev-other.
We suspect the reason is that ch-HMM is the only system with time-
constraints on the numerator FSTs, and thereby the frame posteriors
are more accurate, which the boosting mechanism relies on.

Table 3: dev-clean/other bMMI WER with different boost values

boost wp-HMM wp-CTC ch-HMM ch-CTC
0 4.3 / 11.0 4.4 / 10.6 4.0 / 9.5 3.8 / 9.1

0.3 4.2 / 11.0 4.2 / 10.4 3.7 / 9.2 3.7 / 9.1
0.5 4.2 / 10.7 4.3 / 10.3 3.6 / 8.9 3.6 / 8.7
1.0 4.2 / 10.9 4.4 / 10.9 3.6 / 9.3 3.6 / 8.9

6.1.3. The effect of SpecAugment
Here we study the effect of SpecAugment for different systems. We
study two SpecAugment policies – LD, Large. LD is same as in
[38] but with maximum time mask width of p = 0.2. Large
(T = 30,mT = 10) is a more aggressive policy which was shown
in [32] to help performance on Librispeech. From Table 4, we see
that without SpecAugment, for both wordpiece and chenone units,
HMM and CTC models have similar WERs. However, we see that
CTC models benefit more from SpecAugment compared to the corre-
sponding HMM models, verifying our hypothesis on the advantage
of CTC which better models feature masking with blank tokens.

Table 4: dev-clean/other MMI WERs with different SpecAugment
policies

Policy wp-HMM wp-CTC ch-HMM ch-CTC
None 4.8 / 13.0 4.8 / 13.1 4.5 / 11.6 4.5 / 11.7
LD 4.3 / 11.0 4.4 / 10.6 4.0 / 9.5 3.8 / 9.1
Large 4.4 / 10.8 4.3 / 10.3 3.9 / 9.2 3.8 / 8.9

6.1.4. Comparing different modeling units
Here we fix the label topology to be 1-state HMM, and compare
the WER and RTF4 performance of different modeling units, both
wordpiece and character-based units. For wordpiece, we train mod-
els with strides 8 and 4. For character-based units we couldn’t get
reasonable convergence performance with stride 8 and hence stick to
stride 4. From Table 5, we can see that the WER of bi-char is better
than mono-char by a large gap (13 − 15% relative), while the rela-
tive improvement of tri-char on top of bi-char is smaller (2 − 7%).
This implies that even text-based simple clustering can provide quite
useful context dependency information. Looking at wordpiece units,
we can see that with stride 4, its performance is better than bi-char
and close to tri-char, showing wordpieces can also be powerful mod-
eling units without relying on decision tree building. Furthermore,
at stride 8, we can see its performance is still 6 − 10% better than
mono-char at stride 4. Unfortunately, the RTFs we report here for
wordpiece-based models are much worse than the mono-char case.
This is due to increased number of modeling units (29 chars→ 511
wordpieces), and hence more confusable paths during graph search.
However, in real applications where we use much larger AMs so
that AM inference dominates the computation, the RTF advantage
of stride 8 wordpiece systems would amplified as verified in a previ-
ous study [12], where a stride 8 wp-CTC model had better RTF than
a stride 3 ch-HMM model using the same encoder. We also mea-

Table 5: dev-clean/other MMI WER, RTF and TSE of different units
with the same (1-state) HMM topology

Unit wordpiece mono-char bi-char chenone
Stride 8 4
WER 4.4 / 11.1 3.9 / 10.1 4.9 / 11.8 4.2 / 10.3 4.1 / 9.6
RTF 0.020 0.046 0.006 0.005 0.011
TSE 86 66 74 47 28

sure decoding time-stamp accuracy of different models. The metric
is the mean absolute error (MAE) between the start/end time-stamps
of decoded hypothesized words and reference words, with incorrect
words ignored. The reference time-stamps were obtained by align-
ing the audio with the reference using a bc-HMM system. In table 5,
we report this metric as time-stamp-error (TSE, in ms) on dev-other.

4When we measure RTF, we optimize the decoding beam so that the WER
is 1% worse than the optimal WER. Otherwise we always use a beam of 30.

We see that the ch-HMM model has the smallest TSE, confirming
time-constraints in training targets helps the model to learn more ac-
curate alignments.

6.1.5. The effect of HMM topology
Here we compare the impact of 1-state vs chain HMM topology for
wp-HMM and ch-HMM models. For wp-HMM, in the chain case,
the set of modeling units gets doubled from the 511 wordpieces as
in the 1-state case. For ch-HMM, we choose a 3008-sized tree for
the chain case, which is around two times of the 1632-leaves tree for
the 1-state case. From Table 6, we can see the impact on ch-HMM
models is minor. However the impact on wp-HMM is obvious on
dev-other, where chain topology brings 5% WER gain, which agrees
with the finding in [6]. We believe the reason behind the observation
is that: The richer representation provided by chain topology, better
modeling intra-class variations, contributes more to wordpiece units
which are longer than chenones.

Table 6: dev-clean/other MMI WER of wp-HMM and ch-HMM
with 1-state and chain HMM topology

wp-HMM ch-HMM
Topo. 1-state chain 1-state chain
WER 4.3 / 11.0 4.3 / 10.5 4.0 / 9.5 4.0 / 9.4

6.1.6. The effect of denominator LM order
Here we investigate the impact of denominator LM order on denom-
inator FST size and training speed for wordpiece/chenone systems
(wp-CTC/ch-HMM). From Table 7 we can see that due to a large set
of units which the den. LM is built upon, and the large CTC topology
transducer (For a reference, den. FST w/ a 3-gram den. LM for wp-
HMM is 5.2M), den. FST size in the wordpiece case is much larger
than the chenone case, so that when increasing the order from 2 to 3,
per-epoch training time increased by 110%, while it only increases
by 12% when changing order from 3 to 4 for ch-HMM. In terms of
total training time, when increasing den. LM orders, wp-CTC train-
ing becomes much more expensive, while ch-HMM training even
becomes cheaper. Considering the WER improvement for wp-CTC
still looks worthwhile, we decide to stick with order 3 for wordpiece
systems and 4 for chenone systems in other experiments.

6.1.7. Benchmarking the 4 main systems with their optimal setup
Here we conduct a comprehensive WER/RTF/TSE benchmark of the
4 main systems we have studied: wp-HMM, wp-CTC, ch-HMM, ch-
CTC with their optimal training setup: optimal boost value for each,
SpecAugment Large policy for all, pre-training for all except wp-
HMM, chain topology for wp/ch-HMM. From Table 8, we can see
as expected, ch-HMM achieves the best TSE performance thanks
to silence modeling and time-constraints used in training, ch-CTC
achieves the best WER (thanks to blank+SpecAugment), and also

Table 7: dev-clean/other MMI WER, denominator LM order/FST
size, and training speed for wp-CTC and ch-HMM

wp-CTC ch-HMM
den. LM order 2 3 3 4
den. FST size 4.2MB 10.2MB 3.8MB 4.6MB
WER 4.8 / 11.4 4.4 / 10.6 4.3 / 9.9 4.0 / 9.5
epochs 112 121 84 54
per-epoch hrs 0.38 0.8 1 1.12

RTF. For wp-HMM and wp-CTC, they perform similarly well on
RTF/WER (with wp-CTC’s WER at stride 4 being a bit better), while
wp-HMM’s TSE is much better again thanks to silence modeling.
This shows that wp-HMM, which doesn’t rely on alignments, is an
appealing choice when we need a large-stride & flat-start trained
model providing accurate timestamps. Besides, though ch-CTC has
worse TSE than ch-HMM (due to lack of time-constraints in training
and CTC’s peaky behavior), the gap is much smaller than that of wp-
CTC/HMM, showing that silence modeling (which ch-CTC has but
wp-CTC doesn’t) can effectively improve time-stamp accuracy, even
for CTC-based models.

Table 8: dev-clean/other bMMI WER/RTF/TSE of optimal systems

wp-HMM wp-CTC ch-HMM ch-CTC
Stride 8 4 8 4
WER 4.0/10.1 3.9/9.7 4.0/10.1 3.7/9.4 3.5/8.5 3.3/8.3
RTF 0.023 0.053 0.027 0.052 0.015 0.011
TSE 59 45 162 112 25 51

6.2. CTC-bMMI training for real-world large-scale ASR tasks
Here we apply the proposed CTC-bMMI training scheme with word-
piece/chenone units (i.e. wp-CTC-bMMI and ch-CTC-bMMI) in
two real world large scale ASR tasks and compare with the corre-
sponding ML baselines to confirm its effectiveness. In the first ap-
plication, we adopt wp-CTC-bMMI for training a large full-context
Transformer model, for server-side ASR. In the second application,
we adopt ch-CTC-bMMI for training a small limited-context stream-
able5 Emformer [39] using convolution operations similar to Con-
former [40], for on-device ASR. We focus on CTC-bMMI rather
than HMM-bMMI because the emphasis in the applications here is
on WER rather than the token time-stamp accuracy.

6.2.1. wp-CTC-bMMI for training large Transformer models
Here, we compare CTC-bMMI with the standard CTC (i.e. CTC-
ML) and RNN-T criteria on a real-world large scale English video
ASR task. The training data consist of de-identified public videos
with no personal identifiable information (PII), where only the audio
part is used. Besides a development set, there are 3 test sets under
different audio conditions: clean, noisy and extreme. These test sets
are further segmented by into audio chunks that are no longer than 45
seconds. Decoding is performed on these chunks unless otherwise
specified. Training data are segmented into chunks with a maximum
duration of 10s. Besides 39.4K hours of supervised training data
(including two speed perturbed copies), we prepared 2.2M hours of
unsupervised training data, with transcriptions obtained by decoding
de-identified public videos by our internal ASR models. Several data
filters are applied to keep the most useful data, e.g. confidence filter,
word-per-second filter and country filter, etc. No human effort is
involved in transcribing these unsupervised data. In total, we have
1.5M hours of semi-supervised training data.

We use the same Transformer encoder architecture for each
model, consisting of 24 layers, each with 12 attention heads, 768
embedding dimensions, and 3072 feed-forward dimensions. The
encoder part has roughly 170M parameters. The input is the same as
all other experiments: 80-dimensional log-Mel filter bank features
at a 10ms frame rate. A stride of 8 is applied at the input layer by

5Though the emphasis of our paper is bMMI for full-context ASR model
training, we intentionally choose a limited-context scenario to show our
method can work for streamable models as well.

concatenating every 8 feature frames and then project to a dimen-
sion of 768, the same as the Transformer embedding dimension. For
the RNN-T model, a predictor network consists of 512-dimensional
embeddings for each token followed by two LSTM layers with 512
hidden nodes, then a linear projection to 1024-dimensional features
before the joiner. For the joiner, the combined embeddings from the
encoder and the predictor first go through a tanh activation and then
another linear projection to the target number of wordpieces. We
use the same set of 511 wordpieces as modeling units for all models,
and use the same 4-gram LM for decoding CTC and CTC-bMMI
models. In improve help convergence, for CTC(-ML) training we
used CTC loss at intermediate layers. For RNN-T training we used
CE loss at intermediate layers. The CTC-bMMI model is pre-trained
by the CTC model. The boost value used is 2. Experiment results
could be found in Table 9. We see that the CTC-bMMI model has
large (4 − 7%) WER improvements over CTC especially on the
noisy and extreme sets and is almost on-par with the RNN-T model
even without neural LM rescoring. RTF-wise, all models are similar.

Table 9: Comparing training criteria for Transformer-based ASR

Loss clean noisy extreme RTF
CTC 8.53 12.10 18.46 0.089

CTC-bMMI 8.24 11.61 17.19 0.090
RNN-T 8.01 11.49 17.04 0.094

6.2.2. ch-CTC-bMMI for training small Emformer models
Here we study the effectiveness of CTC-bMMI using chenone mod-
eling units in an on-device English ASR scenario, with CTC(-ML)
as baselines. Training data are two subsets of the data used in Sec.
6.2.1, containing 7000 and 1000 hours of videos correspondingly.
We use the same test data as in Sec. 6.2.1. The model is an Em-
former [39] model supporting streaming speech recognition using
block processing. In training, attention mask and “right context hard
copy” are used to constrain the look ahead context for self-attention.
In this experiment, each block consists of 1.4 seconds left context,
600 ms center chunk size, and 40 ms look-ahead context size. The
algorithmic latency [39] of the acoustic model is 340 ms. A stride
of 4 is applied at the input layer by concatenating every 8 feature
frames and then project to a dimension of 256, used as input to the
stack of 12 Emformer layers. Each Emformer layer has a multi-head
self-attention layer with four heads, input size 256, a feed-forward
layer with hidden dim 1024, and a depth separable convolution layer
with kernel size 15. The model has roughly 18M parameters. From
the results in Table 10, we can see that in the 1000h condition, CTC-
bMMI has 20−30% relative WER improvement over CTC, which is
much larger than the gain (11− 16%) in the 7000h condition, show-
ing discriminative training helps more when we have less data, and
when the models are smaller (comparing with Table 9).

Table 10: Comparing training criteria for Emformer-based ASR

Criterion clean noisy extreme training hours
CTC 25.38 32.18 39.65 1000hCTC-bMMI 17.63 23.36 31.02
CTC 18.44 23.97 31.38 7000hCTC-bMMI 15.45 20.59 27.71

6.3. bc-HMM-MMI for alignment model training
Here, we study an important application of HMM-MMI models
with bi-char units (bc-HMM-MMI): alignment generation. Ac-
curate alignments are important for ASR, in terms of both audio
segmentation and providing training targets for main/auxiliary ASR

Table 11: Alignment model and CE model WERs, on Tagalog video
(noisy) and Librispeech (dev-other)

Alignment Model CE CE w/ seed

Tagalog Video GMM 61.7 38.0 -
bc-HMM-MMI 27.5 32.6 31.9

Librispeech GMM 30.1 11.3 -
bc-HMM-MMI 10.0 11.2 10.6

training tasks even for RNN-T [14, 15]. In order to train an align-
ment model from scratch, people have been mainly relying on
GMM-HMMs, e.g. from Kaldi [41]. However, single-stage trained,
HMM-based neural models, e.g. bc-HMM-MMI models, can be
more appealing candidates (used in Kaldi OCR recipes[42] already),
which may provide more accurate alignments especially on noisy
data, and moreover, enable an all-neural acoustic modeling pipeline.
To the best of our knowledge, there’s no prior literature confirming
this by benchmarking bc-HMM-MMI models with GMM-HMMs.
Here we conduct this benchmark by training a bc-HMM-MMI neu-
ral model and a GMM model (following the Kaldi recipe) with the
same data and graphemic lexicon, evaluate their WERs, and then
generate alignments on the same training data, on top which we then
train two CE neural models and evaluate their WERs for measuring
the alignment quality. The two CE models and the bc-HMM-MMI
alignment model all have the same architecture as the one used in
6.1, except the stride is 3 here. Using the same architecture enables
us to show another advantage of bc-HMM-MMI alignment models:
Besides generating alignments, it can also serve as a pre-trained
seed model for the following modeling stage to improve training
performance, which can’t be done with GMMs. We conduct the
experiments on Librispeech where we train models on the full 960h
data and evaluate WERs on dev-other, and a Tagalog Video ASR
task (whose description is the same as 6.2.1) where we train models
on 1000h Tagalog videos and evaluate WERs on the noisy test set.
From the results shown in Table 11, we can see that the bc-HMM-
MMI neural alignment model achieves on-par alignment quality as
GMM evaluated by CE WER. On Tagalog Video ASR, which is
much noiser than Librispeech, the bc-HMM-MMI model is capable
of generating much better alignmetns, reducing CE WER by 14%
relatively. Besides, pre-traing the CE models with bc-HMM-MMI
seed models indeed bring down CE WERs further, by 2% (Tagalog)
or 5% (Librispeech) relatively. This shows besides serving as a
strong alignment model, a bc-HMM-MMI model can also serve as
as a seed model for downstream modeling tasks.

7. CONCLUSION

In this paper, we generalized the original chunk-wise HMM-based
LF-bMMI training framework to a new framework, where full-
context neural network training is enabled by full-sequence LF-
bMMI training, supporting both HMM and CTC as the label topol-
ogy, and mono-char/bi-char/chenone/wordpieces as modeling units.
Comprehensive studies were conducted on Librispeech to under-
stand the impact of boost factor, CE/ML pre-training, SpecAugment
and denominator LM order to different training schemes. From
this framework, we proposed wp-CTC-bMMI and ch-CTC-bMMI
training schemes with WER advantages, studied also in two large
scale real-world ASR tasks, and wp-HMM-bMMI training scheme
with advantages in large-stride inference, time-stamps accuracy,
and alignment-free training. In the future we would like to further
generalize LF-bMMI training to RNN-T-type of topologies.

8. REFERENCES

[1] George E. Dahl, Dong Yu, Li Deng, and Alex Acero,
“Context-dependent pre-trained deep neural networks for
large-vocabulary speech recognition,” IEEE Transactions on
Audio, Speech, and Language Processing, vol. 20, no. 1, pp.
30–42, 2012.

[2] L. Bahl, P. Brown, P. de Souza, and R. Mercer, “Maximum mu-
tual information estimation of hidden markov model parame-
ters for speech recognition,” in ICASSP ’86. IEEE Interna-
tional Conference on Acoustics, Speech, and Signal Process-
ing, 1986, vol. 11, pp. 49–52.

[3] K. Vesely, M. Hannemann, and L. Burget, “Semi-supervised
training of deep neural networks,” in ASRU 2013.

[4] George Saon and Brian Kingsbury, “Discriminative feature-
space transforms using deep neural networks,” in Thirteenth
Annual Conference of the International Speech Communica-
tion Association, 2012.

[5] Daniel Povey, Vijayaditya Peddinti, Daniel Galvez, Pegah
Ghahremani, Vimal Manohar, Xingyu Na, Yiming Wang, and
Sanjeev Khudanpur, “Purely sequence-trained neural networks
for asr based on lattice-free mmi,” in Interspeech, 2016.

[6] Hossein Hadian, Hossein Sameti, Daniel Povey, and Sanjeev
Khudanpur, “Flat-start single-stage discriminatively trained
hmm-based models for asr,” IEEE/ACM Transactions on Au-
dio, Speech, and Language Processing, vol. 26, no. 11, pp.
1949–1961, 2018.

[7] Alex Graves, Santiago Fernández, and Faustino Gomez, “Con-
nectionist temporal classification: Labelling unsegmented se-
quence data with recurrent neural networks,” in ICML 2006.

[8] Alex Graves, “Sequence transduction with recurrent neural
networks,” arXiv preprint arXiv:1211.3711, 2012.

[9] Dzmitry Bahdanau, Jan Chorowski, Dmitriy Serdyuk,
Philémon Brakel, and Yoshua Bengio, “End-to-end attention-
based large vocabulary speech recognition,” in 2016 IEEE In-
ternational Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), 2016, pp. 4945–4949.

[10] W. Chan, N. Jaitly, Q. Le, and O. Vinyals, “Listen, attend and
spell: A neural network for large vocabulary conversational
speech recognition,” in ICASSP, 2016.

[11] Chung-Cheng Chiu, Tara N. Sainath, Yonghui Wu, Rohit
Prabhavalkar, Patrick Nguyen, Zhifeng Chen, Anjuli Kan-
nan, Ron J. Weiss, Kanishka Rao, Ekaterina Gonina, Navdeep
Jaitly, Bo Li, Jan Chorowski, and Michiel Bacchiani, “State-of-
the-art speech recognition with sequence-to-sequence models,”
in 2018 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), 2018, pp. 4774–4778.

[12] Xiaohui Zhang, Frank Zhang, Chunxi Liu, Kjell Schubert, Ju-
lian Chan, Pradyot Prakash, Jun Liu, Ching-Feng Yeh, Fuchun
Peng, Yatharth Saraf, and Geoffrey Zweig, “Benchmarking lf-
mmi, ctc and rnn-t criteria for streaming asr,” in 2021 IEEE
Spoken Language Technology Workshop (SLT), 2021, pp. 46–
51.

[13] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton,
“Speech recognition with deep recurrent neural networks,” in
2013 IEEE International Conference on Acoustics, Speech and
Signal Processing, 2013, pp. 6645–6649.

[14] Chunxi Liu, Frank Zhang, Duc Le, Suyoun Kim, Yatharth
Saraf, and Geoffrey Zweig, “Improving rnn transducer based
asr with auxiliary tasks,” in 2021 IEEE Spoken Language Tech-
nology Workshop (SLT), 2021, pp. 172–179.

[15] Jay Mahadeokar, Yuan Shangguan, Duc Le, Gil Keren,
Hang Su, Thong Le, Ching-Feng Yeh, Christian Fuegen, and
Michael L Seltzer, “Alignment restricted streaming recurrent
neural network transducer,” in 2021 IEEE Spoken Language
Technology Workshop (SLT). IEEE, 2021, pp. 52–59.

[16] Albert Zeyer, André Merboldt, Ralf Schlüter, and Hermann
Ney, “A New Training Pipeline for an Improved Neural Trans-
ducer,” in Proc. Interspeech 2020, 2020, pp. 2812–2816.

[17] V. Manohar, H. Hadian, D. Povey, and S. Khudanpur, “Semi-
supervised training of acoustic models using Lattice-Free
MMI,” in ICASSP, 2018.

[18] Hongyu Xiang and Zhijian Ou, “Crf-based single-stage acous-
tic modeling with ctc topology,” in ICASSP 2019 - 2019 IEEE
International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), 2019, pp. 5676–5680.

[19] Duc Le, Mahaveer Jain, Gil Keren, Suyoun Kim, Yangyang
Shi, Jay Mahadeokar, Julian Chan, Yuan Shangguan, Chris-
tian Fuegen, Ozlem Kalinli, Yatharth Saraf, and Michael L.
Seltzer, “Contextualized streaming end-to-end speech recog-
nition with trie-based deep biasing and shallow fusion,” CoRR,
vol. abs/2104.02194, 2021.

[20] Duc Le, Xiaohui Zhang, Weiyi Zheng, Christian Fügen,
Geoffrey Zweig, and Michael L Seltzer, “From senones
to chenones: Tied context-dependent graphemes for hybrid
speech recognition,” ASRU, 2019.

[21] Haşim Sak, Andrew Senior, Kanishka Rao, Ozan İrsoy, Alex
Graves, Françoise Beaufays, and Johan Schalkwyk, “Learning
acoustic frame labeling for speech recognition with recurrent
neural networks,” in 2015 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 2015, pp.
4280–4284.

[22] Daniel Povey, Dimitri Kanevsky, Brian Kingsbury, Bhu-
vana Ramabhadran, George Saon, and Karthik Visweswariah,
“Boosted mmi for model and feature-space discriminative
training,” in 2008 IEEE International Conference on Acous-
tics, Speech and Signal Processing, 2008, pp. 4057–4060.

[23] Zhehuai Chen, Yanmin Qian, and Kai Yu, “Sequence discrim-
inative training for deep learning based acoustic keyword spot-
ting,” Speech Communication, vol. 102, pp. 100–111, 2018.

[24] Chao Weng and Dong Yu, “A comparison of lattice-free dis-
criminative training criteria for purely sequence-trained neural
network acoustic models,” in ICASSP 2019-2019 IEEE Inter-
national Conference on Acoustics, Speech and Signal Process-
ing (ICASSP). IEEE, 2019, pp. 6430–6434.

[25] Murali Karthick Baskar, Lukáš Burget, Shinji Watanabe, Mar-
tin Karafiát, Takaaki Hori, and Jan Honza Černockỳ, “Promis-
ing accurate prefix boosting for sequence-to-sequence asr,” in
ICASSP 2019-2019 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP). IEEE, 2019, pp.
5646–5650.

[26] Kevin Gimpel Noah A Smith, “Softmax-margin training for
structured log-linear models,” .

[27] Guoguo Chen, Hainan Xu, Minhua Wu, Daniel Povey, and
Sanjeev Khudanpur, “Pronunciation and silence probability
modeling for asr,” in Sixteenth Annual Conference of the Inter-
national Speech Communication Association, 2015.

[28] Albert Zeyer, Ralf Schlüter, and Hermann Ney, “Why does ctc
result in peaky behavior?,” arXiv preprint arXiv:2105.14849,
2021.

[29] S. J. Young, J. J. Odell, and P. C. Woodland, “Tree-based state
tying for high accuracy acoustic modelling,” in Proceedings
of the Workshop on Human Language Technology, USA, 1994,
HLT ’94, p. 307–312, Association for Computational Linguis-
tics.

[30] Taku Kudo and John Richardson, “SentencePiece: A simple
and language independent subword tokenizer and detokenizer
for neural text processing,” in Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language Process-
ing: System Demonstrations, Brussels, Belgium, Nov. 2018,
pp. 66–71, Association for Computational Linguistics.

[31] Taku Kudo and John Richardson, “Sentencepiece: A simple
and language independent subword tokenizer and detokenizer
for neural text processing,” arXiv preprint arXiv:1808.06226,
2018.

[32] Frank Zhang, Yongqiang Wang, Xiaohui Zhang, Chunxi Liu,
Yatharth Saraf, and Geoffrey Zweig, “Faster, Simpler and
More Accurate Hybrid ASR Systems Using Wordpieces,” in
Proc. Interspeech 2020, 2020, pp. 976–980.

[33] Vimal Manohar, Daniel Povey, and Sanjeev Khudanpur,
“Semi-supervised maximum mutual information training of
deep neural network acoustic models,” in Sixteenth Annual
Conference of the International Speech Communication Asso-
ciation, 2015.

[34] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Lib-
rispeech: An asr corpus based on public domain audio books,”
in ICASSP, 2015.

[35] Sepp Hochreiter and Jürgen Schmidhuber, “Long short-term
memory,” Neural computation, vol. 9, no. 8, pp. 1735–1780,
1997.

[36] Kevin J Lang, Alex H Waibel, and Geoffrey E Hinton, “A time-
delay neural network architecture for isolated word recogni-
tion,” Neural networks, vol. 3, no. 1, pp. 23–43, 1990.

[37] Vijayaditya Peddinti, Daniel Povey, and Sanjeev Khudanpur,
“A time delay neural network architecture for efficient model-
ing of long temporal contexts,” in Sixteenth Annual Conference
of the International Speech Communication Association, 2015.

[38] Daniel S Park, William Chan, Yu Zhang, Chung-Cheng Chiu,
Barret Zoph, Ekin D Cubuk, and Quoc V Le, “Specaugment: A
simple data augmentation method for automatic speech recog-
nition,” arXiv preprint arXiv:1904.08779, 2019.

[39] Yangyang Shi, Yongqiang Wang, Chunyang Wu, Ching-Feng
Yeh, and Others, “Emformer: Efficient Memory Transformer
Based Acoustic Model For Low Latency Streaming Speech
Recognition,” in Proc. ICASSP, 2021.

[40] Anmol Gulati, James Qin, Chung Cheng Chiu, and Others,
“Conformer: Convolution-augmented transformer for speech
recognition,” in Proc. INTERSPEECH, 2020.

[41] Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas Bur-
get, Ondrej Glembek, Nagendra Goel, Mirko Hannemann, Petr

Motlicek, Yanmin Qian, Petr Schwarz, Jan Silovsky, Georg
Stemmer, and Karel Vesely, “The kaldi speech recognition
toolkit,” in IEEE 2011 Workshop on Automatic Speech Recog-
nition and Understanding. Dec. 2011, IEEE Signal Processing
Society, IEEE Catalog No.: CFP11SRW-USB.

[42] Ashish Arora, Chun Chieh Chang, Babak Rekabdar, Bagher
BabaAli, Daniel Povey, David Etter, Desh Raj, Hossein Ha-
dian, Jan Trmal, Paola Garcia, et al., “Using asr methods for
ocr,” in 2019 International Conference on Document Analysis
and Recognition (ICDAR). IEEE, 2019, pp. 663–668.

