Adversarial Attacks on Linear Contextual Bandits
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Abstract

Contextual bandit algorithms are applied in a wide range of domains, from adver-
tising to recommender systems, from clinical trials to education. In many of these
domains, malicious agents may have incentives to force a bandit algorithm into a
desired behavior. For instance, an unscrupulous ad publisher may try to increase
their own revenue at the expense of the advertisers; a seller may want to increase the
exposure of their products, or thwart a competitor’s advertising campaign. In this
paper, we study several attack scenarios and show that a malicious agent can force
a linear contextual bandit algorithm to pull any desired arm T' — o(T’) times over
a horizon of T steps, while applying adversarial modifications to either rewards
or contexts with a cumulative cost that only grow logarithmically as O(logT).
We also investigate the case when a malicious agent is interested in affecting the
behavior of the bandit algorithm in a single context (e.g., a specific user). We
first provide sufficient conditions for the feasibility of the attack and an efficient
algorithm to perform an attack. We empirically validate the proposed approaches
in synthetic and real-world datasets.

1 Introduction

Recommender systems are at the heart of the business model of many industries like e-commerce or
video streaming [9} [11]. The two most common approaches for this task are based either on matrix
factorization [33]] or bandit algorithms [24], which both rely on a unaltered feedback loop between
the recommender system and the user. In recent years, a fair amount of work has been dedicated to
understanding how targeted perturbations in the feedback loop can fool a recommender system into
recommending low quality items.

Following the line of research on adversarial attacks in supervised learning [6} [12] [18] 23| 26],
attacks on recommender systems have been focused on filtering-based algorithms [8l [32] and offline
contextual bandits [30]. The question of adversarial attacks for online bandit algorithms has only been
studied quite recently [[19} 27, [17,[13]], and solely in the multi-armed stochastic setting. Although
the idea of online adversarial bandit algorithms is not new (see EXP3 algorithm in [3]]), the focus is
different from what we are considering in this article. Indeed, algorithms like EXP3 or ExP4 [21]] are
designed to find optimal actions in hindsight in order to adapt to any rewards stream.
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The opposition between adversarial and stochastic bandit settings has sparked interests in studying a
middle ground. In [7], the learning algorithm has no knowledge of the type of feedback it receives
(either stochastic or adversarial). In [28} 25, [14} 29, 20], the rewards are assumed to be corrupted
by adversarial rewards. The authors focus on building algorithms able to find the optimal actions
even in the presence of some non-random perturbations. This setting is different from what is studied
in this article because those perturbations are bounded and agnostic to arms pulled by the learning
algorithm, i.e the adversary corrupt the rewards before the algorithm chooses an arm.

In the broader Deep Reinforcement Learning (DRL) literature, the focus is placed on modifying the
observations of different states to fool a DRL system at inference time [16} 134] or the rewards [31].

Contribution. In this work, we first follow the research direction opened by [19] where the attacker
has the objective of fooling a learning algorithm into taking a specific action as much as possible.
For example in a news recommendation problem, as described in [24]], a bandit algorithm chooses
between K articles to recommend to a user, based on some information about them, called context.
We assume that an attacker sits between the user and the website, they can choose the reward (i.e.,
click or not) for the recommended article observed by the recommending algorithm. Their goal is to
fool the bandit algorithm into recommending some articles to most users. The contributions of our
work can be summarized as follow:

e We extend the work of [[19}27] to the contextual linear bandit setting showing how to perturb
rewards for both stochastic and adversarial algorithms, forcing any bandit algorithms to pull
a specific set of arms, o(T") times for logarithmic cost for the attacker.

e We analyze, for the first time, the setting in which the attacker can only modify the context
x associated with the current user (the reward is not altered). The goal of the attacker is
to fool the bandit algorithm into pulling arms in a target sets for most users (i.e., contexts)
while minimizing the total norm of their attacks. We show that the widely known LINUCB
algorithm [[1,[21]] is vulnerable to this new type of attack.

e We present a harder setting for the attacker, where the latter can only modify the context
associated to a specific user. This situation may occur when a malicious agent has infected
some computers with a Remote Access Trojan (RAT). The attacker can then modify the
history of navigation of a specific user and, as a consequence, the information seen by the
online recommender system.We show how the attacker can attack the two very common
bandit algorithms LINUCB and Linear Thompson Sampling (LINTS) [3] and, in certain
cases, force them to pull a set of arms most of the time when a specific context (i.e., user) is
presented to the algorithm (i.e., visits a website).

2 Preliminaries

We consider the standard contextual linear bandit setting with K € N arms. At each time ¢,
the agent observes a context z; € RY, selects an action a; € [1,K] and observes a reward:
Tt.a, = (0a,»T¢) + 1, where for each arm a, 0, € R9 is a feature vector and nk, is a conditionally
independent zero-mean, o2-subgaussian noise. The contexts are assumed to be sampled stochastically
except in App. D}

Assumption 1. There exist L > 0 and D C R4, such that for all t, x; € D and, Vx € D,Va €
[1, K], ||z|l2 < Land (04, x) € (0,1]. In addition, we assume that there exists S > 0 such that
[10al]2 < S for all arms a.

The agent minimizes the cumulative regret after T' steps Rt = Zthl (Oax,x¢) — (ba,, ), Where
ay = argmax, (0., x+). A bandit learning algorithm 2 is said to be no-regret when it satisfies
Rr = o(T), i.e., the average expected reward received by 2 converges to the optimal one. Classical
bandit algorithms (e.g., LINUCB (Alg. [T) and LINTS (Alg. [2)) compute an estimate of the unknown
parameters 0, using past observations. Formally, for each arm a € [K| we define S¢ as the set of
times up to t — 1 (included) where the agent played arm a. Then, the estimated parameters are obtained
through regularized least-squares regression as @\fl = (XmXJa + /\I)_leY}}a, where A > 0,
Xta = (Ti)ies: € R4*ISa] and Yia = (Tia)icst € RIS:|. Denote by Vi = M + Xt,aXt—"—a the
design matrix of the regularized least-square problem and by ||z||y = VTV the weighted norm
w.r.t. any positive matrix V' € R%*?, We define the confidence set:

Cia={0 R 0= Brally,, < Bra} (1)



where (3, , = a\/d log (14 L2(1 + |SL])/A)/8) + S+/A, which guarantees that 6, € C; 4, for all

t > 0, w.p. 1 — 4. This uncertainty is used to balance the exploration-exploitation trade-off either
through optimism (e.g., LINUCB) or through randomization (e.g., LINTS).

3 Online Adversarial Attacks on Rewards

The ultimate goal of a malicious agent is to force a bandit algorithm to perform a desired behavior.
An attacker may simply want to induce the bandit algorithm to perform poorly—ruining the users’
experience—or to force the algorithm to suggest a specific arm. The latter case is particularly
interesting in advertising where a seller may want to increase the exposure of its product at the
expense of the competitors. Note that the users’ experience is also compromised by the latter attack
since the suggestions they will receive will not be tailored to their needs. Similarly to [27,[19], we
focus on the latter objective, i.e., to fool the bandit algorithm into pulling arms in AT, a set of target
arms, for T — o(T') time steps (independently of the user).

A way to obtain this behavior is to dynamically modify the reward in order to make the bandit
algorithm believe that a' is optimal, for some a' € Af. Clearly, the attacker has to pay a price in
order to modify the perceived bandit problem and fool the algorithm. If there is no restriction on
when and how the attacker can alter the reward, the attacker can easily fool the algorithm. However,
this setting is not interesting since the attacker may pay a cost higher than the loss suffered by the
attacked algorithm. An attack strategy is considered successful when the total cost of the attack is
sublinear in 7.

In this section, we show that under Assumption ??, there exists an attack algorithm that is successful
against any bandit algorithm, stochastic or adverserial.

Setting. We assume that the attacker has the same knowledge as the bandit algorithm 2( about the
problem (i.e., knows ¢ and L). The attacker is assumed to be able to observe the context x;, the arm
a; pulled by 2, and can modify the reward received by 2(. When the attacker modifies the reward ¢ q,
into ¢ 4, the instantaneous cost of the attack is defined as ¢; := ’rmt —Tt,a, | The goal of the attacker

is to fool algorithm 2A such that the arms in AT are pulled 7' — o(7") times and Zthl a = o(T).
We also assume that the action for the arms in the target set is strictly positive for every context

x € D. That is to say that A := mingep {(x, 0,1 () — MAX e At 4zal (1) (T 9a>} > 0 where

al(z) = argmax, 41 (, 0,) for every z € D.

Attack idea. We leverage the idea presented in [27] and [19] where the attacker lowers the reward
of arms a ¢ AT so that algorithm 2 learns that an arm of the target set is optimal for every context.
Since 2 is assumed to be no-regret, the attacker only needs to modify the rewards o(T") times to
achieve this goal. Lowering the rewards has the effect of shifting the vectors (6,)q¢ 4+ to new vectors
(0),)ag 4+ such that for all arms a ¢ A" and all contexts = € D, there exists an arm a' € AT such
that (9, z) < (8,1, ). Since rewards are assumed to be bounded (see Asm.[I), this objective can be
achieved by simply forcing the reward of non-target arms a ¢ A' to the minimum value. Contextual
ACE (see Fig.[2) implements a soft version of this idea by leveraging the knowledge of the reward
distribution. At each round ¢, Contextual ACE modifies the reward perceived by 2 as follows:

e = Ml{a,gaty + 7t {a,cat) 2

where 7 is a o-subgaussian random variable generated by the attacker independently of all other
random variables. Contextual ACE transforms the original problem into a stationary bandit problem
in which there is a targeted arm that is optimal for all contexts and all non targeted arms have expected
reward of 0. The following propostion shows that the cumulative cost of the attack is sublinear.

Proposition 1. Forany ¢ € (0,1/K], when using Contextual ACE algorithm (Alg. |I|) with perturbed
rewards 7', with probability at least 1 — K6, algorithm 2 pulls an arm in A for T — o(T) time steps
and the total cost of attacks is o(T).

The proof of this proposition is provided in App. While Prop. [T]holds for any no-regret algorithm

2A, we can provide a more precise bound on the total cost by inspecting the algorithm. For example, we

can show (see App. [E), that, with probability at least 1 — K8, the number of times LINUCB [1] pulls
TL2 \\ 2

arms not in A is at most 375 41 N;(T) < CELCapt (d log (’\+52d )) . This directly translates

into a bound on the total cost.




Comparison with ACE [27]. In the stochastic setting, the ACE algorithm [27]] leverages a bound
on the expected reward of each arm in order to modify the reward. However, the perturbed reward
process seen by algorithm £l is non-stationary and in general there is no guarantee that an algorithm
minimizing the regret in a stationary bandit problem keeps the same performance when the bandit
problem is not stationary anymore. Nonetheless, transposing the idea of the ACE algorithm to our
setting would give an attack of the following form, where at time ¢, Alg. 2 pulls arm a; and receives
rewards 77, :

77 a, = (Tt.a, + max(—1,min(0, Cy 0,))) L{a, ¢t} + rtar Lia,cary

with Cp 4, = (1 — ) mingic a1 mingec, 0, 2¢) — maxgec, ., (0, z¢). Note that C, , is defined as
in Eq. using the non-perturbed rewards, i.e., Yi o = (T'iq,)ies: -

Bounded Rewards. The bounded reward assumption is necessary in our analysis to prove a formal
bound on the total cost of the attacks for any no-regret bandit algorithm, otherwise we need more
information about the attacked algorithm. In practice, the second attack on the rewards, 72, can be
used in the case of unbounded rewards for any algorithms. The difficulty for unbounded reward is that
the attacker has to adapt to the environment reward but in order to do so the reward process observed
by the bandit algorithm becomes non-stationary under the attack. Thus, there is no guarantee that an
algorithm like LINUCB will pull a target arm as the proof relies on the environment observed by
the bandit algorithm being stationary. To sum up, it is possible to construct an attack which does not
assume bounded rewards but this comes at the price of a formal proof of the total cost for the attacker
or knowing the bandit algorithm. We observe empirically that the total cost of attack is sublinear
when using 72.

[19] does not assume that rewards are bounded when studying attacks. But their attacks are only
designed for e-greedy and LINUCB while we provide an efficient attack for any algorithms in the
linear contextual case. If the bandit algorithm is LINUCB then using the following attack:

~3 _ . .
Ttﬂt - (Tt,at + aITIggT 9?(1:1% <0, It) B QIEHC?ii <9’$t>> ]l{at¢AT} + rtvat]l{atEAT} (3)

with C; , defined as in Eq. (I). The attacker can fool LINUCB algorithm into pulling arms AT o(T’)
times while keeping the total cost logarithmic in 7.

Constrained Attack. When the attacker has a constraint on the instantaneous cost of the attack,
using the perturbed reward 7! may not be possible as the cost of the attack at time ¢ is not decreasing
over time. Using the perturbed reward 72 offers a more flexible type of attack with more control on
the instantaneous cost thanks to the parameter . But it still suffers from a minimal cost of attack
from lowering rewards of arms not in AT,

Defense mechanism. The attack based on reward 77 is hardly detectable without prior knownledge
about the problem. In fact, the reward process associated to 7 is stationary and compatible with the
assumption about the true reward (e.g., subgaussian). While having very low rewards is reasonable in
advertising, it can make the attack easily detectable in some other problems. On the other hand, the
fact that 75 is a non-stationary process makes this attack easier to detect. When some data are already
available on each arm, the learner can monitor the difference between the average rewards per action
computed on new and old data.

4 Online Adversarial Attacks on Contexts

In this section, we consider the attacker to be able to alter the context x; perceived by the algorithm
rather than the reward. The attacker is now restricted to change the type of users presented to the
learning algorithm £, hence changing its perception of the environment. We show that under the
assumption that the attacker knows a lower-bound to the reward of the target set, it is possible to fool
LINUCB.

Setting. As in Sec.[3] we consider the attacker to have the same knowledge about the problem as 2.
The main difference with the previous setting is that the attacker attacks before the algorithm. We
adopt a white-box [12] setting attacking LINUCB. The goal of the attacker is unchanged: they aim at
forcing the algorithm to pull arms in At for 7' — o(T") time steps while paying a sublinear total cost.
We denote by T, the context after the attack and by ¢; = ||z; — T¢||2 the instantaneous cost.
Difference between attacks on contexts and rewards. Perturbing contexts is fundamentally differ-
ent from perturbing the rewards. The attacker only modifies the context that is shown to the bandit



Input: attack parameter: o

For time? = 1,2,...,T do For time ¢ = 1,2,..., T do

L Alg.' 2l chooses arm a¢ based on context ¢ 1. Attacker observes the context x;, computes potential

2. Environment genfcratest rewarq:. Tt,ay ? arm a} and sets T; = x; + (a(ze) — D)y ﬂ{aggm}
(Oay,z¢) + me with n,, conditionally o*- ‘

2. Alg. 2 chooses arm a+ based on context Z+

3. Environment generates reward: 7¢,q, = (6a,, T+)+n¢
with 7; conditionally o2-subgaussian

subgaussian

3. Attacker observes reward Ttéaz and feeds the
perturbed reward ft{a ,(or7i, )to2A

4. Alg. 2 observes reward 7¢ 4,

Figure 1: Contextual ACE algorithm . . .
Figure 2: ConicAttack algorithm.

algorithm. The true context, which is used to compute the reward, remains unchanged. In other
words, the attacker cannot modify the reward observed by the bandit algorithm. Instead, the attack
algorithm described in this section fools the bandit algorithm by making the rewards appear small
relative to the contexts and requires more assumptions on the bandit algorithm than in Sec.
Attack Idea. The idea of the attack in this setting is similar to the attack of Sec.[3] The attacker
builds a bandit problem where arm an af € AT is optimal for all contexts by lowering the perceived
value of all other arms not in Af.

Here, the attacker cannot modify the reward, but they can scale the contexts in order to decrease
the predicted rewards in the original context, thanks to the linear reward assumption. At time ¢, the
attacker receives the context x; and computes the attack.

Thanks to the white-box setting, he computes the arm a; that Alg. 2 would pull if presented
with context ;. If a; ¢ AT then the attacker changes the context to Z; = g, with oy, >
maxgep Mingi e ot (Ba, , )/ (041, ). This factor is chosen such that for a ridge regression computed
on the dataset (ax;, (0, x;)); outputs a parameter close to 8/« therefore the attacker needs to choose
a such that for every context « € D, (z,0/a) < maxgreat (2, 0,1, ).

In other words, the attacker performs a dilation of the incoming context every time alg. 2( does not pull
arm an arm in AT, The fact that the decision rule used by LINUCB is invariant by dilation guarantees
that the attacker will not inadvertently lower the perceived rewards for arms in AT. Because the
rewards are assumed to be linear, presenting a large context ax and receiving the reward associated
with the normal context x will skew the estimated rewards of LINUCB. The attack protocol is
summarized in Alg.

In order to compute the parameter « used in the attack, we make the following assumption concerning
the performance of the arms in the target set:

Assumption 2. For all x € D, there exists a' € AT, such that 0 < v < (x,0,+) and v is known to
the attacker.

Knowing v. For advertising and recommendation systems, knowing v is not problematic. Indeed
in those cases, the reward is the probability of impression of the ad (r € [0, 1]). The attacker has
the freedom to choose one of multiple target arms with strictly positive click probability in every
context. This freedom is an important aspect for the attacker since it allows the attacker to cherry
pick the target ad(s). In particular, the attacker can estimate v based on data from previous campaigns
(only for the target ad). For instance, a company could have run many ad campaigns for one of their
products and try to get the defender’s system to advertise it.

An issue is that the norm of the attacked context can be greater that the upper bound L of
Assumption To prevent this issue, we choose a context-dependent multiplicative constant
a(z) = min{2/v, L/||z||2} which amounts to clip the norm of the attacked context to L. In
Sec.[6l we show that this attack is effective for different size of target arms sets. We also show that in
the case of contexts such that ||z||2 < vL/2 that the cost of attacks is logarithmic in the horizon T

Proposition 2. Using the attack described in Fig.[2]and assuming that |||l < vL/2 for all contexts
x € D, forany § € (0,1/K), with probability at least 1 — K0, the number of times LINUCB does not

2 2 3
pull an arm in AT before time T is at most ngzm N;(T) < 32K? (% + o02dlog (%))
with N;(T) the number of times arm j has been pulled during the first T' steps, The total cost for the

3
attacker is bounded by: Zthl o < 84K* (oT/\2 + o%dlog (W)) with o = 2/v.

v




The proof of Proposition 2] (see App.[A.2) assumes that the attacker can attack at any time step, and
that they can know in advance which arm will be pulled by Alg. 2 in a given context. Thus it is not
applicable to random exploration algorithms like LINTS [3]] and e-GREEDY.

Norm Clipping. Clipping the norm of the attacked contexts is not beneficial for the attacker. It
means that the attack for a specific context was violating the assumption used by the bandit algorithm
that contexts are bounded by L. Prop.[2]provides a theoretical grounding for the proposed attack, but
in practice the contexts are bounded by L. Although, we can not prove a bound on the cumulative
cost of attacks in general, we show in Sec. [f that attacks are still successful for multiple datasets
where contexts are not bounded by v L /2. We also observed empirically that randomized algorithms
are more robust to attacks (see Sec. [6).

5 Offline attacks on a Single Context

Previous sections focused on the man-in-the-middle (MITM) attack either on reward or context. The
MITM attack allows the attacker to arbitrarily change the information observed by the recommender
system at each round. This attack may be difficulty feasible in practice, since the exchange channels
are generally protected by authentication and cryptographic systems. In this section, we consider
the scenario where the attacker has control over a single user u. As an example, consider the case
where the device of the user is infected by a malware (e.g., Trojan horse), giving full control of the
system to the malicious agent. The attacker can thus modify the context of the specific user (e.g., by
altering the cookies) that is perceived by the recommender system. We believe that changes to the
context (e.g., cookies) are more subtle and less easily detectable than changes to the reward (e.g.,
click). Moreover, if the reward is a purchase, it cannot be altered easily by taking control of the user’s
device. Clearly, the impact of the attacker on the overall performance of the recommender system
depends on the frequency of the specific user, that is out of the attacker’s control. It may be thus
impossible to obtain guarantees on the cumulative regret of algorithm 2(. For this reason, we mainly
focus on the study of the feasibility of the attack.

The attacker targets a specific user (i.e., the infected user) associated to a context 2f. Similarly to
Sec. [} the objective of the attacker is to find the minimal change to the context presented to the
recommender system 2 such that 2 selects an arm in Af. 2 observes a modified context # instead
of zf. After selecting an arm a,, 2 observes the true noisy reward r; o, = (6,,, zT> + nf“. We still
study a white-box setting: the attacker can access all the parameters of 2I. '

In this section, we show under which condition it is possible for an attacker to fool both optimistic
and posterior sampling algorithms, LINUCB and LINTS.

5.1 Optimistic Algorithms

LINUCB chooses the arm to pull by maximizing an upper-confidence bound on the expected reward.
For each arm @ and context x, the UCB value is given by maxgec, , (z,0) = (x,0%) + B.al |51

(see Sec. . The objective of the attacker is to force LINUCB to pull an arm in At once presented
with context 1. This means to find a perturbation of context z' that makes any arm in Af the most
optimistic arm. Clearly, we would like to keep the perturbation as small as possible to reduce the
cost for the attacker and the probability of being detected. Formally, the attacker needs to solve the
following non-convex optimization problem:

i t f
min s.t max max (x' +y,60) + & < max max (x' +y,0
min vl max max (a4 9,0) + €< mox max (o y0)

where £ > 0 is a parameter of the attacker and CN’t,a ={0]16—- QAZHVt < Bi,a } is the confidence

set constructed by LINUCB. We use the notation C, V' to stress the fact that LINUCB observes only
the modified context. In contrast to Sec. [3|and[4] the attacker may not be able to force the algorithm
to pull any of the target arms in AT, In other words, Problem E] may not be feasible. However, we are
able to characterize the feasibility of (d).

Theorem 1. Problem (@) is feasible at time t iff. 30 € UaTeATCNt,aT, 0 & Conv( Uagat (Za) (5).

The condition given by Theorem [I]says that this attack can be done when there exists a vector « for
which an arm in AT is assumed to be optimal according to LINUCB. The condition mainly stems
from the fact that optimizing a linear product on a convex compact set will reach its maximum on
the edge of this set. In our case this set is the convex hull of the confidence ellipsoids of LINUCB.



Although it is possible to use an optimization algorithm for this class of non-convex problems—e.g.,
DC programming [35]—they are still slow compared to convex algorithms. Therefore, we present a
simple convex relaxation of the previous problem for a single target arm a! € AT that still enjoys
some empirical performance compared to Problem (). The final attack can then be computed as the
minimum of the attacks obtained for each a € A, The relaxed problem is the following for each
T f.
a' € A"
min s.t ma; max (z! ,0 — 0ty < —
yEeRd ||yH2 a;ﬁa'ﬁa)éAT 0€Ct},(a< + Y aT> - g (6)
Since the RHS of the constraint in Problem (4) can be written as maxgec, . (0, 2" + y) for any y,
the relaxation here consists in using (6, 2t + y) as a lower-bound to this maximum for any 6 € Ciat-
For the relaxed Problem (6)), the same type of reasoning as for Problem (@) gives that Problem (6)) is

feasible if and only if 0,1 () & Conv (U#atagm Ct,a).

If Condition (3)) is not met, no arm at € At can be pulled by LINUCB. Indeed, the proof of Theorem
E] shows that the upper-confidence of every arm in A' is always dominated by another arm for any
context. In other words, if any arm in A is optimal for some contexts then the condition is satisfied a
linear number of times for LINUCB (for formal proof of this fact see ApplA.4).

5.2 Random Exploration algorithms

The previous subsection focused on LINUCB, however we can obtain similar guarantees for algo-
rithms with random exploration such as LINTS. In this case, it is not possible to guarantee that a
specific arm will be pulled for a given context because of the randomness in the arm selection process.
The objective is to guarantee that an arm from AT is pulled with probability at least 1 — §. Similarly
to the previous subsection, the problem of the attacker can be written as:

min |y]| s.t P (ElaJr e At Va g At (at 44,0, — 0,4) < —§> >1-0 (7
yeRd

where the 6, for different arms a are independently drawn from a normal distribution with mean
0. (t) and covariance matrix v2V,~1(¢) with v = o/9dIn(T'/5). Solving this problem is not easy
and in general not possible, even for a single arm. For a given x and arm a, the random variable

(x,0,) is normally distributed with mean 11, (2) := (04 (t), ) and variance o2(z) := ”QHJCH%’/JI(@'

We can then write (z, §a> = o () + 04(x) Z, with (Z,) ~ N(0, I ). For the sake of clarity, we
drop the variable « when writing 1, (x) and o, ().
Let’s imagine (just for this paragraph) that AT = {a'} then the constraint in Problem (7) becomes

[1 —Ez, (Hag At @ <w) )} < § where @ is the cumulative distribution function of a

Oa
normally distributed Gaussian random variable. Unfortunately, computing exactly this expectation is
an open problem.
In the more general case where |Af| > 1, rewriting the constraints of Pb. is not possible.

Following the idea of [27]], for every single target arm a € AT, a possible relaxation of the constraint
in Problem is, to ensure that there exists an arm a’ € AT such that for every arm a ¢ A,

1—-@ ((/,Laf —pa — &)/ (/o2 + 0'24()> < ﬁ, where |Af| is the cardinal of AT. Thus the
relaxed version of the attack on LINTS for a single arm a' is:
;161%@ [lyl| st Va¢ At (xT +y, 0,0 —0,) —E>vd! (1 — 7K—§\AT|> HzT +y||‘—/‘;1+‘7;1
®)

Problem (8) is similar to Problem (6)) as the constraint is also a Second Order Cone Program but with
different parameters (see App.[C). As in section[5.1] we compute the final attack as the minimum of
the attacks computed for each arm in Af.

6 Experiments

In this section, we conduct experiments on the attacks on contextual bandit problems with simulated
data and two real-word datasets: MovieLens25M [15]] and Jester [[10]. The synthetic dataset and the
data preprocessing step are presented in Appendix [B.T]



6.1 Attacks on Rewards

We study the impact of the reward attack for 4 contextual algorithms: LINUCB, LINTS, e-GREEDY
and EXP4. As parameters, we use L. = 1 for the maximal norm of the contexts, § = 0.01, v =

o\/dIn(t/8))/2, ey = 1/+/t at each time step ¢ and A = 0.1. We choose only a unique target arm

a'. For EXP4, we use N = 10 experts with NV — 2 experts returning a random arm at each time, one
expert choosing arm a' every time and one expert returning the optimal arm for every context. With
this set of experts the regret of bandits with expert advice is the same as in the contextual case. To
test the performance of each algorithm, we generate 40 random contextual bandit problems and run
each algorithm for 7' = 10° steps on each. We report the average cost and regret for each of the 40
problems. Figure (Top) shows the attacked algorithms using the attacked reward 7! (reported as
stationary CACE) and the rewards 72 (reported as CACE).

These experiments show that, even though the reward process is non-stationary, usual stochastic
algorithms like LINUCB can still adapt to it and pull the optimal arm for this reward process (which is
arm a'). The true regret of the attacked algorithms is linear as a' is not optimal for all contexts. In the
synthetic case, for the algorithms attacked with the rewards 72, over 1M iterations and v = 0.22, the
target arm is drawn more than 99.4% of the time on average for every algorithm and more than 97.8%
of the time for the stationary attack 7' (see Table [2[in App. . The dataset-based environments
(see Figure [3|(Left)) exhibit the same behavior: the target arm is pulled more than 94.0% of the time
on average for all our attacks on Jester and MovieLens and more than 77.0% of the time in the worst
case (for LINTS attacked with the stationary rewards) (see Table[2).

6.2 Attacks on Contexts

We now illustrate the effectiveness of the attack in Alg.[2l We study the behavior of attacked LINUCB,
LINTS, e-GREEDY with different size of target arms set (|AT|/K € {0.3,0.6,0.9} with K the total
number of arms). We test the performance of LINUCB with the same parameters as in the previous
experiments. Yet since the variance is much smaller in this case, we generate a random problem and
run 20 simulations for each algorithm. The target arms are chosen randomly and we use the exact
lower-bound on the reward of those arms to compute v..

Table 1: Percentage of iterations for which the algorithm pulled an arm in the target set AT (with
a target set size of 0.3K arms) (Left) Online attacks using ContextualConic (C'C') algorithm. Per-
centages are averaged over 20 runs of 1M iterations. (Right) Offline attacks with exact (Full) and
Relaxed optimization problem. Percentages are averaged over 40 runs of 1M iterations.

Synthetic ~ Jester ~ Movilens Synthetic ~ Jester ~ MovieLens

LINUCB 2891%  26.59%  31.13% LINUCB 0.07%  0.01%  0.39%
- LINUCB Relaxed  13.76%  97.81% 4.09%

CC LinUCB 98‘550% 98.36%  99.61% LINUCB Full 88.30%  99.98%  99.99%
€-GREEDY 25.7% 25.85%  31.78% N o7 o7 20
£-GREEDY 0.01% 0.00% 0.03%

CCe-GREEDY — 89.71%  99.85%  99.92% . Grpppy Full  99.95%  99.95%  99.97%
LINTS 27.2% 26.10%  33.24% LINTS 0.02% 0.01% 0.05%
CCLINTS 30.93% 97.26%  98.82% LINTS Relaxed 18.21%  80.48% 5.56%

Table(Left) shows the percentage of times an arm in Af, for |AT| = 0.3 K, has been selected by the
attacked algorithm. We see that, as expected, CC LINUCB reaches a ratio of almost 1, meaning the
target arms are indeed pulled a linear number of times. A more surprising result (at least not covered
by the theory) is that e-GREEDY exhibits the same behavior. Similarly to LINTS, e-GREEDY exhibits
some randomness in the action selection process. It can cause an arm af € AT to be chosen when the
context is attacked and interfere with the principle of the attack. We suspect that is what happens for
LINTS. Fig. ]3| (Bottom) shows the total cost of the attacks for the attacked algorithms . Despite the
fact that the estimate of ,+ can be polluted by attacked samples, it seems that LINTS can still pick
up a' as being optimal for some dataset like MovieLens and Jester but not on the simulated dataset.

6.3 Offline attacks on a Single Context

We now move to the setting described in Sec. [5|and test the same algorithms as in Sec.[6.2] We run
40 simulations for each algorithm and each attack type. The target context =1 is chosen randomly and
the target arm as the arm minimizing the expected reward for 2 1. The attacker is only able to modify
the incoming context for the target context (which corresponds to the context of one user) and the
incoming contexts are sampled uniformly from the set of all possible contexts (of size 100). Table/[T]
(Right) shows the percentage of success for each attack. We observe that the non-relaxed attacks on
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Figure 3: Total cost of attacks on rewards for the synthetic (Left, v = 0.22), Jester (Center, v = 0.5)
and MovieLens (Right, v = 0.5) environments. Bottom, total cost of ContextualConic attacks on the
synthetic (Left), Jester (Center) and MovieLens (Right) environments.

€-GREEDY and LINUCB work well across all datasets. However, the relaxed attack for LINUCB and
LINTS are not as successful, on the synthetic dataset and MovieLens25M. The Jester dataset seems
to be particularly suited to this type of attacks because the true feature vectors are well separated from
the convex hull formed by the feature vectors of the other arms: only 5% of Jester’s feature vectors
are within the convex hull of the others versus 8% for MovieLens and 20% for the synthetic dataset.
As expected, the cost of the attacks is linear on all the datasets (see Figure[6]in App.[B.4). The cost is
also lower for the non-relaxed than for the relaxed version of the attack on LINUCB. Unsurprisingly,
the cost of the attacks on LINTS is the highest due to the need to guarantee that a! will be chosen
with high probability (95% in our experiments).

7 Conclusion

We presented several settings for online attacks on contextual bandits. We showed that an attacker
can force any contextual bandit algorithm to almost always pull an arbitrary target arm o with
only sublinear modifications of the rewards. When the attacker can only modify the contexts, we
prove that LINUCB can still be attacked and made to almost always pull an arm in A by adding
sublinear perturbations to the contexts. When the attacker can only attack a single context, we derive
a feasibility condition for the attacks and we introduce a method to compute some attacks of small
instantaneous cost for LINUCB, e-GREEDY and LINTS. To the best of our knowledge, this paper is
the first to describe effective attacks on the contexts of contextual bandit algorithms. Our numerical
experiments, conducted on both synthetic and real-world data, validate our results and show that the
attacks on all contexts are actually effective on several algorithms and with more permissible settings.



Broader Impact:

Adversarial attacks have been a major concerns in the machine learning community for some time
[6, 12, 18 23, 26] as they delve deeply into the robustness of such machine learning systems.
Although, adversarial attacks have only been recently studied for bandits and reinforcement learning
algorithms [30} [16]. Those settings are applied to a wide range of applications such as recommender
systems or cooling down data centers [22].

In adversarial attacks on supervised algorithms and cryptography, it is well-accepted that the study
and publication of attack schemes helps build trustful secure systems [4]. While there is a risk
that our methods could be used by malicious attackers, we believe that they will also prompt some
practitioners to ensure such modifications of the rewards or contexts of their data can be detected or
even prevented.
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A  Proofs

In this appendix, we present the proofs of different theoretical results presented in the paper.

A.1 Proof of Proposition

Proposition. For any § € (0,1/K), when using Contextual ACE algorithm (Alg. 1) with perturbed
rewards 7', with probability at least 1 — K6, algorithm 2 pulls an arm in A for T — o(T) time steps
and the total cost of attacks is o(T).

Proof. Let us consider the contextual bandit problem .4;, with K arms with contexts x € D such
that every arm in o’ € A" has mean reward (6,+, z) and all other arms has mean 0. Then the regret
of algorithm 2 for this bandit problem is upper-bounded with probability at least 1 — § by a function
fa(T) such that fo(T') = o(T). In addition, the reward process fed to Alg. 2 by the attacker is a
stationary reward process with o2-subgaussian noise. Therefore, the number of times algorithm 2(
pulls an arm not in A' is upper-bounded by fo (T')/ min,ep A(z) where for every context z € D,
let af (x) := arg max,c 41 (,0,) and A(z) = (z, 0a1(z)> = MAX,at oql (1) (T ba)

In addition, the total cost of the attack is upper-bounded by max,cpi, k] maxeep |(x, 0o )| (T —

N4+ (T)) where N 4+(T) is the number of times an arm in A has been pulled up to time 7". Thanks
to the previous argument, 7' — N4+ (T) < fo(T)/ mingep A(z). O

A.2  Proof of Proposition

Proposition. Using the attack described in Alg. 2| for any § € (0,1/ K], with probability at least
1 — K6, the number of times LINUCB does not pull an arm in A" is at most:

) A+ TL2a2\\*

2 2

j¢ At

with N;(T') the number of times arm j has been pulled after T steps, ||0,|| < S for all arms a, X the
regularization parameter of LINUCB and for all x € D, ||z||2 < L. The total cost for the attacker

is bounded by:
T 3
64K2 [ A A+ TL*o?
E e < (2 + U2dlog (M)>
«
t=1

v %)

Proof. Let a; be the arm pulled by LINUCB at time ¢. For each arms a, let 6, (t) be the result of the
linear regression with the attacked context and 6, (¢, A /a?) the one with the unattacked context and a
regularization of a% At any time step ¢, we can write, for all a AT:

-1
t

¢
Mg+ Z a2xlxlT Z rLOT L

éa(t):
1=0,a;=a k=0,ar=a
—1
1A : :
= @Id—i— Z TRT) Z ThT)
k=0,ar=a k=0,ar=a
_ Da(t,1/0?)

a
We also note that, since the contexts are not modified for arms in af € AT: 6,:(t) = 0,1 (¢, \). In
addition, for any context z and arm a ¢ AT, the exploration term used by LINUCB becomes:

1

~lally, ©)
where Vi p = Mg+ 31— 41—q @*zia] and V' = NIy + 34 o —, ] For a time ¢, if

presented with context z; LINUCB pulls arm a; ¢ AT, we have:

« <<é¢ﬂ (1), $t> + Bat (t)”xt”Va_T:,lt) < <éat (t, )\/a2)7.’£t> + Ba, (t)thH\"/a—t}t

ey =
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As o = % > mingte At 7 % we deduce that on the event that the confidence sets (Theorem 2 in

2
eahfft
[1]) hold for arm a*:
2 < (0, (t,0/0®),20) + Ba, (D lI2llg -1, < (Buys 22) + 280, ()l o
Thus, 1 <2 — (0,,,2t) < 284, (t)”xtHV—lt. Therefore,

T T
Z Tig,¢aty < Z min(2fa, (O)]|zelly-1, 1) a,gaty
t=1 t=1

T T
<320 | S ey Y. min(L ]2 )
JgAT t=1 t=1,a;=j it

But using Lemma 11 from [1]] and the bound on the §;(T") for all arms j, we have with Jensen
inequality:

T T 2 2
a?TL
> Largary <4 KD Lyg,gandlog (1 + g )

t=1 t=1
X (WS + 0\/2 log(1/6) + dlog(1 + OZQ)ZLQ ))
O
A.3 Proof of Theorem I
Theorem. For any & > 0, Problem (@) is feasible if and only if:
e | Carn  0&Cowv | | Cra (10)

ateAt ag At

where for every arm a, Cy o == {0 | ||0 — 0, Oy, , < Ba(t)} with 04(t) the least squares estimate
for arm a built by LINUCB and

t t
Va,t =g+ Z ﬂ{a;:u}xlxz’ + Z ﬂ{cu:a}jlj:;r

I=1,x;#xt I=1,z;=x"
the design matrix of LINUCB at time t for all arms a (where T, is the modified context)

Proof. The proof of Theorem [I)is decomposed in two parts.

First, let us assume that Equation (T0) is satisfied. Then, let us define af € A" such that 6 €
Cyi ot \ Conv (Ua¢ 41 Ct,a), then by the theorem of separation of convex sets applied to C; ,+ and {6}.

There exists a vector v and ¢; < co such that for all y € Conv (Ua;éaf Ct,a):
<y,'U> S c1 < C2 S <0,1)> .

Hence, for £ > 0 we have that for v = £y that:

Co2—Cq

(y,0) +£ < (0,0)

So the problem is feasible.
Secondly, let us assume that an attack is feasible. Then there exists a vector y such that:

max max (y,0) > c¢; := max max 0 11
at€At 0EC, (y,0) > ex angfeeCt,a<y’> (i

Let us reason by contradiction. We assume that | J, 4+ C; .+ C Conv (Ua¢ a1 Cr,a) and consider

0 € L)‘TCWT such that (y,0") = Tnax GIEI}:?); (y,0)
ac ’
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As we assumed U,c a1 Crat © Conv (U, a1 Croa)s there exists n € N*, Ay,---, A, > 0 and
01, ---,0, € Ua¢AT Ct,q such that

0" = Zn:)\lel and zn:)\z =1
i=1 =1
Thus
0,0 => Ni{y.6i) <Y Ai=a (12)
% =1

We assumed that the problem is feasible, so ¢; < (y, 6*) according to to Eq. It contradicts Eq.
O

A.4 Condition of Sec.[3]

Figure 4: Tllustrative example of condition (3)). The target arm is arm 3 or 5 and the dashed black
line is the convex hull of the other confidence sets. The ellipsoids are the confidence sets C; , for
each arm a. If we consider only arms {1, 2, 4,5}, and we use 5 as the target arm, the condition () is
satisfied as there is a 8 outside the convex hull of the other confidence sets. On the other hand, if we
consider arms {1, 2, 3,4} and we use 3 as the target arm, the condition is not satisfied anymore.

Let us assume that there is an arm in a’ € AT which is optimal for some contexts. More formally,
there exists a subspace V' C D such that:

Ve € V,3al(x) € AT Va € [1, K]\ {al(z)} (2,0,1(5)) > (2,0a) .

We also assume that the distribution of the contexts is such that, for all ¢, i := P (z; € V) > 0. Then,
the regret is lower-bounded in expectation by:

T
E(Ry)=E (Z Liz,evy( <xt, 0,4t (2p) — 9at> )> > um(T) gél‘r/l ;n%z( )<9a1(m) — 04, 1)
t=1 aZa, (x

where m/(T) is the expected number of times ¢ < T such that condition (3)) is not met. LINUCB guar-
antees that E(R7) < O(v/T) for every T. Hence, m(T) < O ( VT Cr—— w>>.
aj(@)

pmingey maxa;éai(z) 0

This means that, in an unattacked problem, condition (3)) is met 7" — O(V/T) times. On the other
hand, when the algorithm is attacked the regret of LINUCB is not sub-linear as the confidence bound
for the target arm is not valid anymore. Hence we cannot provide the same type of guarantees for the
attacked problem.

B Experiments

B.1 Datasets and preprocessing

We present here the datasets used in the article and how we preprocess them for numerical experiments
conducted in Section
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We consider two types of experiments, one on synthetic data with a contextual MAB problems with
K = 10 arms such that for every arm a, 8, is drawn from a folded normal distribution in dimension
d = 30. We also use a finite number of contexts (10), each of them is drawn from a folded normal
distribution projected on the unit circle multiplied by a uniform radius variable (i.i.d. across all
contexts). Finally, we scale the expected rewards in (0, 1] and the noise is drawn from a centered
Gaussian distribution A(0,0.01).

The second type of experiments is conducted in the real-world datasets Jester [10] and MovieLens25M
[LS]. Jester consists of joke ratings on a continuous scale from —10 to 10 for 100 jokes from a total of
73421 users. We use the features extracted via a low-rank matrix factorization (d = 35) to represent
the actions (i.e., the jokes). We consider a complete subset of 40 jokes and 19181 users . Each
user rates all the 40 jokes. At each time, a user is randomly selected from the 19181 users and
mean rewards are normalized in [0, 1]. The reward noise is N (0,0.01). The second dataset we use
is MovieLens25M. It contains 25000095 ratings created by 162541 users on 62423 movies. We
perform a low-rank matrix factorization to compute users features and movies features. We keep only
movies with at least 1000 ratings, which leave us with 162539 users and 3794 movies. At each time
step, we present a random user, and the reward is the scalar product between the user feature and the
recommend movie feature. All rewards are scaled to lie in [0, 1] and a Gaussian noise A (0, 0.01) is
added to the rewards.

B.2 Attacks on Rewards

In this appendix, we present empirical evolution of the total cost and the number of draws for a unique
target arm as a function of the attack parameter  for the Contextual ACE attack with perturbed
rewards 72 on generated data.

5,000

4,000 - CACE LINUCB

--- CACE LINTS
CACE Expr4

-~ CACE e-creepy ~ 0.99

% 3,000 4

7

2,000

— CACE LinUCB

1,000 4 <. --- CACE LINTS
et CACE Expd
-+~ CACE &-GREEDY

T T T T T T 0.98 —— T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

g ¥

(a) Total cost (b) Number of draws

Figure 5: Total cost of attacks and number of draws of the target arm at 7' = 10° as a function of ~y
on synthetic data

Fig.[5] (left) shows that the total cost of attacks seems to be quite invariant w.r.t. 7y except when y — 0
because the difference between the target arm and the other becomes negligible. This is also depicted
by the total number of draws (Fig. 5} Right) as the number of draws plummets when v — 0.

B.3 Attacks on all Contexts
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Fig. shows the regret cost for all the attacks. This figure shows that even though the total cost of
attacks is linear for algorithms like LINTS in the synthetic dataset, the regret is linear. More generally,
we observe that the regret is linear for all attacked algorithms on all datasets.
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Table 2: Number of draws of the target arm a' at T = 109, for the synthetic data, v = 0.22 for the
Contextual ACE algorithm and for the Jester and MovieLens datasets v = 0.5.

Synthetic Jester Movilens
LINUCB 86, 731.6 23,548.16 25,017.31
CACE LINUCB 996,238.6 921,083.69 944,721.28
Stationary CACE LINUCB 995,578.88  862,095.67 931,531.6
£-GREEDY 111,380.44 21,911.54 3,165.81
CACE e-GREEDY 999,812.92 999,755.72 999, 776.82
Stationary CACE e-GREEDY  999,806.32 999,615.98 999, 316.76
LINTS 91,664.8 23,398.3 30,189.84
CACE LINTS 998,997.04  976,708.9 990, 250.67
Stationary CACE LINTS 977,850.96 784,715.62 845,512.98
Expr4 93, 860.4 29,147.01 17,985.78
CACE Expr4 992,793.36 989,214.36 936, 230.4
Stationary CACE Exp4 993,673.24 988,463.56 934, 304.23

B.4 Attack on a single context

The attacks are computed by solving the optimization problems [4] and [6] (Sec. [5). We choose the
libraries according to their efficiency for each problem we need to solve. For Problem (6] and Problem
we use CVXPY [2] and the ECOS solver. For Problem (4) we use the SLSQP method from the
Scipy optimize library [37] to solve the full LINUCB problem (Equation @) and QUADPROG to solve
the quadratic problem to attack e-GREEDY.

" -10°
10°

10°

—— LINUCB Relaxed 1 e

— LINUCB Full
Ful

Time 10 Time 108 Time 105

(a) Synthetic data (b) Jester Dataset (c) MovieLens Dataset

Figure 6: Total cost of the attacks for the attacks one one context on our synthetic dataset, Jester and
MovieLens. As expected, the total cost is linear.

C Problem (8)) as a Second Order Cone (SOC) Program

Problem (6) and Problem (8) are both SOC programs. We can see the similarities between both
problems as follows. Let us define for every arm a ¢ A, the ellipsoid:

=)}

with A, (t) = V.- 1(t) + V(;l(t) with V,,(t) and V,, (¢) the design matrix built by LINTS and 0, (t)
the least squares estimate of 6, at time ¢. Therefore for an arm a, the constraint in Problem can be
written for any y € R? and some arm a' € AT as:

Coai= {0 € B ly = 0u(O)L g < v~ (1-

<:c* + v, é(ﬁ (t)> —&> max (z,x* +y)

zECtya
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Indeed for any = € R,

) 5
max (. 2) = (.0,(0)) + 00" (1 )5 mewa)
veCi,, K= 1A ) 1472 (pula<1

= <x,éa(t)> +od! (1 - K—6|AT|> HIZI‘l‘E;)S(l <z, A}l/z(t):c>

= () 400 (1 Y 1A el

Thus, the constraint is feasible if and only if:

0,1 (t) & Conv U C;_’a
ag At

D Attacks on Adversarial Bandits

In the previous sections, we studied algorithms with sublinear regret Ry, i.e., mainly bandit algorithms
designed for stochastic stationary environments. Adversarial algorithms like EXP4 do not provably
enjoy a sublinear stochastic regret R1 (as defined in the introduction) [H In addition, because this
type of algorithms are, by design, robust to non-stationary environments, one could expect them
to induce a linear cost on the attacker. In this section, we show that this is not the case for most
contextual adversarial algorithms. Contextual adversarial algorithms are studied through the reduction
to the bandit with expert advice problem. This is a bandit problem with K arms where at every
step, IV experts suggest a probability distribution over the arms. The goal of the algorithm is to
learn which expert gets the best expected reward in hindsight after 7" steps. The regret in this type

of problem is defined as R72’ = E (maxme[l’N]] S Z]K=1 Ef:i?j'rt,j - Tt,af,) where Effl)] is the

probability of selecting arm j for expert m. In the case of contextual adversarial bandits, the experts
first observe the context x; before recommending an expert m. Assuming the current setting with
linear rewards, we can show that if an algorithm 2, like EXP4, enjoys a sublinear regret RBTXp , then,
using the Contextual ACE attack with either 7! or 72, the attacker can fool the algorithm into pulling
arm a' a linear number of times under some mild assumptions. However, attacking contexts for this
type of algorithm is difficult because, even though the rewards are linear, the experts are not assumed
to use a specific model for selecting an action.

Proposition 3. Suppose an adversarial algorithm 2 satisfies a regret R7® of order o(T') for any

bandit problem and that there exists an expert m* such that T — ZtT:1 E (ES)* o ) = o(T) with

al* the optimal arim in A" at time t. Then attacking alg. A with Contextual ACE leads to pulling
arm o', T — o(T) of times in expectation with a total cost of o(T) for the attacker.

Proof. Similarly to the proof of Proposition 1} let’s define the bandit with expert advice problem,
Aj;, such that at each time ¢ the reward vector is (7} ,)q (With i € {1,2}). The regret of this
algorithm is: RS™ = E (maxme[[l_y N] S EWFi — f%,at) € o(T). The regret of the learner is:
E (maxmeHL N Zthl E,(,i) re — rt,at) where a; are the actions taken by algorithm .4; to minimize

R Then we have:

T
F>1,eXp (t) ~i ~i ~i
L EE1 D 9) ST N HININIRD SL I
t=1

'EXP4 enjoys a sublinear hindsight regret though. Showing a sublinear upper-bound for the stochastic regret
of EXP4 is still an open problem (see Section 29.1 in [21])
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Therefore,

T T K
~i ~i ,ex t ~i
E (Zrmz* —rw> <REPHE (SN, oty ~ B
t=1 ’ t=1 j=1
T
7,eXp (t) ~
<Ry 4+E (Za E" )rm>
=1 T
T
<REP 4R (Z( EWY . ))
1‘,:1 Rt %1

For strategy ¢« = 1, we have:
T T
<1
E (Zrt,az* rt at> ZE( tal* ]l{a EAT}) <T E (Z {ar= at*}>> A
t=1 ’ t=1 =1
where A := mingcp {<0aT(x)u T) — MaXge At qtat (2)(ar z)} with af(z) := argmax,c 41 (0q, ).
Then, as R; € o(T') and E (ZtT_l(l — Ey(r?* ot )) € o(T), we deduce that E(> ", 1

T —o(T).
For strategy 7 = 2, and § > 0, let us denote by Ej the event that all confidence intervals hold with
probability 1 — §. But on the event Fy, for a time ¢ where a; # ai)* and such that =1 < Cy 4, < 0:

{ai=al}) =

oy = e Cria, = (1) i min {0.20) 4 g+ {0ar ) = g (0,2,
t sat

< (1 - )<0a1*71’t> +77at,t
when Cy 4, > 0 (still on the event Ej):
tha, Tt,a, < (1 - 7)<0a1 0 -Tt> + Nay,t

because Cy,, > 0 means that (1 — ){(0,1 ,2;) > (1 — ) mingicar mingec, (0, 7:) >
t,* a

maxgee, ,, (0,2:) > (0a,x¢). But finally, when Cy o, < =1, 77, = 7ta, —1 < g, <

(1 =~)(0,+ ,x¢) + 1, But on the complementary event E, 77, < 7¢4,. Thus, given that
tx s

the expected reward is assumed to be bounded in (0, 1] (Assumption m):

T T
E (Z ftZ,aI,* Tf‘“) =E (Z(Ttv‘” o f?vat)]l{at?éal,*})

t=1 t=1

T
>E (Z min{’yﬁig(a:,@alj),A}]l{a#aIY*}ll{Eé}) —T6

Finally, putting everything together we have:

T
2 exp (t)
(Z’ygél%jl *>]1{at¢a;*}> <R} +E (Z( —-F e al )) + 0T (mln{fy argg{rqlT £n1n<cc Oai), A} + 1>

=1 t,*

m*,at

Hence, because Ry = o(T) and E (ZtT:l( - Y )) = o(T') we have that for § < 1/T, the

expected number of pulls of the optimal arm in A' is of order o(T’). In addition, the cost for the
attacker is bounded by:

T T
E (Z ct> =E <Z Laal .}
t=1 t=1

T
(_lamin(c’tﬂt’ 0))|> <E <Z ]l{at?éal }>
t=1 "
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The proof is similar to the one of Prop.[I] The condition on the expert in Prop. 3| means that there exists
an expert which believes an arm a € AT is optimal most of the time. The adversarial algorithm will

then learn that this expert is optimal. Algorithm EXP4 has a regret R.* bounded by /27K log(N),
thus the total number of pulls of arms not in A is bounded by /27K log(M)/~. This result also
implies that for adversarial algorithms like EXP3 [J5], the same type of attacks could be used to fool
2l into pulling arms in Af because the MAB problem can be seen as a reduction of the contextual
bandit problem with a unique context and one expert for each arm.

E Contextual Bandit Algorithms

In this appendix, we present the different bandit algorithms studied in this paper. All algorithms
we consider except EXP4 uses disjoint models for building estimate of the arm feature vectors
(F)a)ae[[L k7~ Each algorithm (except EXP4) builds least squares estimates of the arm features.

Algorithm 1 Contextual LINUCB
Input: regularization A\, number of arms K, number of rounds 7', bound on context norms: L,
bound on norms 8,: D R
Initialize for every arm a, V1 (t) = $14, 04(t) = 0 and b, (t) = 0
fort=1,....,T do
Observe context x;

Compute 3, (t) = U\/d log <w> with N, () the number of pulls of arm a

Pull arm a; = argmax, (0a(t), z1) + Ba(t)||2e|[g-1 (4
Observe reward r; and update parameters 0, (t) and V"1 (t) such that:
Vo, (t 4+ 1) = Vo, () + 2], ba, (t+1) = ba, (t) + reay,  ba, (t+1) =V (t+ 1)be, (t+ 1)

end for

Algorithm 2 Linear Thompson Sampling with Gaussian prior

Input: regularization A\, number of arms K, number of rounds 7, variance v
Initialize for every arm a, V1 (t) = A and 0,() = 0, by (t) = 0
fort=1,...,Tdo

Observe context x;

Draw 0, ~ N (04(t), 02V, (1))

Pull arm a; = argmax,cq k] <9a, £t>

Observe reward r; and update parameters 0, (t) and V! (¢)

Vo, +1) = Vo, (t) + mex],  ba,(t+1) =bg,(t) +memy, Oo,(E+1) = Vajl(t + 1)b,, (t+1)

end for

F Semi-Online Attacks

[27] studies what they call the offline setting for adversarial attacks on stochastic bandits. They
consider a setting where a bandit algorithm is successively updated with mini-batches of fixed size B.
The attacker can tamper with some of the incoming mini-batches. More precisely, they can modify
the context, the reward and even the arm that was pulled for any entry of the attacked mini-batches.
The main difference between this type of attacks and the online attacks we considered in the main
paper is that we do not assume that we can attack from the start of the learning process: the bandit
algorithm may have already converged by the time we attack.

We can still study the cumulative cost for the attacker to change the mini-batch in order to fool a
bandit algorithm to pull a target arm a' (here we take AT = {a'}). Contrarily to [27], we call this
setting semi-online. We first study the impact of an attacker on LINUCB where we show that, by
modifying only (K — 1)d entries from the batch B, the attacker can force LINUCB to pull arm a',

20



Algorithm 3 e-GREEDY
Input: regularization A\, number of arms K, number of rounds 7', exploration parameter (¢);
Initialize, for all arms a, V,71(t) = AI; and 0, (t)=0,e: =1,0,(t) =0
fort=1,...,T do
Observe context x;
With probability e, pull a; ~ U ([1, K]), or pull a; = argmax (g, x¢)
Observe reward r, and update parameters 0, (¢) and V! (t)

Vat (t + 1) = Vat (t) + ‘Tth bat (t + 1) = bat (t) + rixy,
0o, (t+1) =V, 1 (t+ Dby, (t+ 1)

end for

Algorithm 4 Exp4

Input: number of arms K, experts: (Em)me[[l, NJ» parameter 7

Set Q1 = (1/N)jepi,n]
fort=1,...,T do

Observe context z; and probability recommendation (E,(,? )me[1,N]

Pull arm a; ~ P, where P; ; = Eivzl Qt7kE§f,1

Observe reward r; and define for all arms i 7 ; = 1 — Lq,—;3 (1 — 7¢)/Prs
Define X’t,k =>. E,(:,Lft,a

Update Q41,5 = exp(nQr.:)/ Z;\f:l exp(nQy ;) for all experts
end for

M'B — o(M'B) times with M’ the number of remaining batches updates. The cost of our attack is
v M B with M the total number of batches.

Cost of an attack: If presented with a mini-batch B, with elements (¢, a;, ;) composed of the
context x; presented at time ¢, the action taken a; and the reward received r;, the attacker modifies
element 4, namely (x}, a}, r}) into (&}, a;, ;). The cost of doing so is ¢} = ||z} — &2 + |7} — rf| +
1 4i 441y and the total cost for mini-batch Bisdefinedascs = ), p ct. Finally, we consider the
cumulative cost of the attack over M different mini-batches By, ..., By, Zl]\il cp,- The interaction
between the environment, the attacker and the learning algorithm is summarized in Alg.[3]

Algorithm 5 Semi-Online Attack Setting.

Input: Bandit alg. 2, size of a mini-batch: B
Sett =0
while True do
2 observe context x;
2 pulls arm a; and observes reward 7
Interaction (z, at, ¢) is saved in mini-batch B
if || = B then
Attacker modifies mini-batch B into B _
Update alg. 2 with poisoned mini-batch B
end if
end while

The attack presented here is based on the Ahlberg—Nilson—Varah bound [36]], which gives a control
on the sup norm of a matrix with dominant diagonal elements. More precisely, when presented with a
mini-batch B, the attacker needs to modify the contexts and the rewards. We assume that the attacker
knows the number of mini-batch updates M and has access to a lower-bound on the reward of the
target arm, v as in Assumption
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The attacker changes (K — 1) x d rows of the first mini-batch to rewards of 0 with a context d,e; for
each arm a # a! with (e;) the canonical basis of R%. Moreover, J, is chosen such that:

2M BL? 4p2 L2
5a>max<\/d+dMB7\/ﬁma‘;d+dMB) (13)
v v

with 8. = maxM5 3,(t) and M the number of mini-batch updates.

Proposition 4. After the first attack, with probability 1 — §, LINUCB always pulls arm aF,

Proof. After having poisoned the first mini-batch 13, the latter can be partitioned into two subsets, 3.
(with non-perturbed rows) and B,,.. (with the poisoned rows). The design matrix of arm a # a' for
every time ¢ after the poisoning is:

¢ d
Via = Mg+ Z ] + 52 Zeieg (14)

l=1,a;=a i=1

For every time ¢, non diagonal elements of V; , = (v; ;); ; are bounded by:

Virii=) v, <Y Z 2127 [|oo < AN, (kB) (15)

VE) j#il=1,a;=a

Whereas for all diagonal elements, v; ; > 52 > 7;. Thus V; q is strictly diagonal dominant and by the
Ahlberg—Nilson—Varah bound [36]:
1 1

V. lso - < 16
I ta H - mmi(||vi,l-|| —r;) ~ 62 —-dMB (16)

Then, for every arm a # a' and any context z € D and any time ¢ after the attack:

(Oats ) + Ba(®)l|]]y, -1 < Z (Vi 20) 2 + Ba(O)l]2][14/ 1Via oo

I=1,a;=a

< Vi loodNe (@) sup |[yl13 + Bmax Ve sup [[yll2y/ Vo oo < v
yeD yeD

We have shown that for any arm a # a and any time step ¢ after the attack, the upper confidence
bound computed by LINUCB is upper-bounded bu v the arm a'. Then, with probability 1 — J, the
confidence set for arm a' holds and, for all 2 € D, arm a' is chosen by LINUCB. The total cost of

this attack is d } .1 daL = O(V M B) O
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