
Serving distributed inference deep learning models
in serverless computing

Kunal Mahajan
Meta

kunalmahajan@fb.com

Rumit Desai
Meta

rumitdesai@fb.com

Abstract—Serverless computing (SC) in an attractive win-win
paradigm for cloud providers and customers, simultaneously
providing greater flexibility and control over resource utilization
for cloud providers while reducing costs through pay-per-use
model and no capacity management for customers. While SC has
been shown effective for event-triggered web applications, the use
of deep learning (DL) applications on SC is limited due to latency-
sensitive DL applications and stateless SC. In this paper, we
focus on two key problems impacting deployment of distributed
inference (DI) models on SC: resource allocation and cold start
latency. To address the two problems, we propose a hybrid
scheduler for identifying the optimal server resource allocation
policy. The hybrid scheduler identifies container allocation based
on candidate allocations from greedy strategy as well as deep
reinforcement learning based allocation model.

Index Terms—Serverless Computing, Distributed Inference,
Deep Learning, Cold start

I. INTRODUCTION

With abundance of existing data, continuous new data gen-
eration, and training larger deep learning models, the models
have high performance [1] at the expense of requiring bigger
machines in terms of CPU/GPU and memory. The individual
server hardware limitations necessitate distributed inference
models.

Distributed Inference models are created for inference
models that can not fit on one physical machine [2]. The
distributed learning model creates three major problems for the
developers. Developers need to configure, deploy, and manage
the resource allocations. They need to fine-tune the model’s
performance based on deployments. They need to optimize the
capacity utilization and minimize monetary costs for running
them on the cloud. All these problems divert developers from
their forte of developing and improving the models.

Serverless Computing (SC) is an emerging cloud ser-
vices paradigm, promising greater flexibility and reduced cost
through pay-per-use model for customers and simultaneously
allowing higher resource utilization for cloud providers [3],
[4]. While previous work has proposed using SC for inference
models, serving distributed inference models through SC and
the performance, cost tradeoffs associated has not been dis-
cussed [5], [6]. In this paper, we explore the problem space of
enabling distributed inference models on serverless computing
and propose a deep reinforcement learning based hybrid sched-
uler to maximize performance and increase resource utilization
for the cloud provider.

II. BACKGROUND

A. Serverless Computing

In Serverless Computing, developers provide a set of func-
tions, event triggers to execute the functions and memory
requirement to the cloud provider. The pricing is dependent on
how long the function runs, how many times it is invoked and
how much memory it consumes. SC is ideal for event triggered
applications as well as exploiting compute parallelism.

B. Distributed Inference Models

Fig. 1. Model Partitioning

Figure 1 illustrates how a distributed inference model is
created from a trained model. A distributed inference model
consists of multiple parts obtained from partitioning the trained
model [2], [7]. The number of partitions is dependent upon the
model developers and based on performance benchmarking
of the model [8], [9]. Typically all the partitions consists of
different embeddings/data.

Fig. 2. Inference request processing

An inference request arrives at the primary partition, de-
noted by partition 0 in Figure 2. The primary partition splits
the request across other partitions and waits for the other parti-
tion’s responses. Upon receiving all the response, the primary
partition will construct and return the inference response. Each
partition is deployed in a dedicated container. To serve an



inference request, all the partitions are executed. A partition
can be memory or compute intensive.

III. PROBLEM SPACE

To enable distributed inference models on serverless com-
pute, developers will need to provide all the model partitions
along with their memory requirements and set up the event
triggers to process the inference request and obtain inference
response. The implementation details of the setup, contributing
to the serving latency, has been addressed by related work
[10] and is not in the scope of this paper. Each partitioned
model is executed in a memory-bound container following the
Model-as-a-Service paradigm [11]. The amount of memory
determines the amount of CPU available to the container [12].
In this section, we focus on two main problems: resource
allocation and deploying recurrently trained DI models, both
impacting cloud provider’s capacity utilization and serving
latency.

A. DI models Resource Allocation in Serverless

The computing capacity provided for each serverless con-
tainer by the cloud provider is dependent on two resource
dimensions: memory and CPU [12]. The container allocations
on the server cannot exceed the maximum memory and CPU
available on the server. Each container will consist of a user-
defined memory size along with cloud-provider computed
CPU allotment. Given a set of containers and a set of
servers, container allocation on servers boils down to a bin-
packing problem. The solution of the bin-packing problem
will allow the cloud providers to obtain optimal resource
utilization, effectively increasing number of containers that can
be executed and increasing revenue. However, solving bin-
packing problem is computationally and time intensive. For
a cloud provider offering event triggered container execution
in serverless architecture, adding bin-packing solve latency
is not feasible for performance. Ideally, container allocation
decisions should be relatively instantaneous after the event
trigger and provide the optimal resource allocation.

B. Cold start latency of deploying recurrently trained DI
models

One way to increase the accuracy and performance of ML
models is by increasing the training dataset [1]. As services
generate data continuously, the new data combined with old
data leads to a larger dataset and models are retrained with this
larger dataset either online or offline. The retrained models
are essentially update of weights without any major changes
to the feature space on which the model is built. For serving
inference, the retrained models are deployed periodically over
a time interval (could be couple of hours to months) that
is determined based on the amount of new data and weight
changes.

The new model version will be booted up on a new
container. Depending on the traffic pattern of the requests, both
the new version and old version executing at the same time
serving different requests. For instance, assuming uniformly

distributed incoming requests, say 100 requests/sec with 10
seconds inference serving latency (where the serving latency
includes time to download container, container start up time
and serving logic execution), both the old model version and
new model will serve 1000 requests in the 10 seconds window
immediately after new model version is deployed. The old
model versions can be subjected to warm starts, thereby reduc-
ing serving latency. However, new model versions will incur
cold start latency. This latency is exacerbated for DI models as
the model partition sizes increase considerably. The difference
in cold start and warm start latencies create unpredictable
performance of serving requests, impacting business metrics,
such as revenue and service-level agreements (SLAs).

IV. MODEL SIMILARITY EVALUATION

Previous works have shown that content similarity can be
exploited by the file systems, such as Docker [13] and IPFS
[14], to reduce the container start up time. Given the fact that
the retrained models are weight updates without major changes
in the feature space, we evaluate the similarity across two
versions of recurrently trained distributed inference models.
We used deep learning multi-task multi-label (MTML) models
[15] for model similarity experiment. In order to compute
the similarity we have considered 2 different versions of the
recurrently trained model and divided each version into file
blocks of size ranging from 32 kB to 1024 kB. Figure 3
describes the similarity percentage of model file block chunks
for multiple model files across different block sizes. Dividing
models into smaller block sizes results into higher similarity,
up to 33%. Deploying the models with higher similarity on the
same server can minimize the file blocks to be downloaded on
the server, thereby reducing container start up latency.

Fig. 3. Model similarity evaluation

V. HYBRID SCHEDULER

To enable DI models in Serverless, the cloud provider needs
to optimize resource allocation while minimizing latency for
serving the inference request. Resource allocation is a time-
intensive process requiring periodic evaluation of multiple
server parameters (cpu units, memory size, network bandwidth
and their respective time-varying utilization), network topol-
ogy, switch bandwidth, over-subscription ratio, etc. Moreover,



the increasing adoption of novel hardware using ASICs and
GPU makes evaluations between server parameters difficult.
While, minimizing latency for serving an inference request
is time-critical as it requires evaluation of content similarity
and existing container placements directly impacting container
start up latency. We propose a hybrid scheduler, as shown in
Figure 4 to tackle the time-dependency tradeoff.

Fig. 4. Hybrid Scheduler

The hybrid scheduler consists of three components: server
allocator, resource optimizer and greedy finder. The processing
flow for the scheduler is as follows: (1) The server allocator
receives the request to boot up a container. (2) Server Allocator
requests a candidate server from both the greedy finder and
the resource optimizer in parallel. (3) The resource optimizer
consists of a deep reinforcement learning model, recurrently
trained over time, receiving the server allocation request and
providing the candidate server. The greedy finder returns the
candidate server by identifying the first server that can accom-
modate the container. (4) Upon receiving both the candidate
server, Server Allocator will prioritize using RO’s candidate
server if it is a valid server i.e. server has capacity to boot up
the requested container. Otherwise, greedy finder’s candidate
server will be used. (5) Server Allocator will provide the
feedback to Resource Optimizer if the RO’s candidate server
was used for container placement.

VI. RELATED WORK

The area of research focused on enabling machine learning
in serverless computing can be divided in two categories:
inference and training. A common line of work for learn-
ing explores deploying various machine learning models on
serverless and measuring monetary cost and performance for
serving inference requests [5], [6], [16], [17]. For training, the
research has focused on identifying learning stages, such as
hyperparameter search, and using data parallelism to exploit
concurrent execution offered by SC [18], [19]. The work has
explored design and implementation of serverless framework
for training distributed machine learning, predictive analytics,
and distributed double machine learning [20]–[23]. Another
area of research has explored minimizing cold start latency and
use of fast shared storage across serverless containers, both
directly impacting performance of serverless compute [10],
[24].

REFERENCES

[1] A. Ng, “Machine learning yearning,” 2017. [Online]. Available:
http://mlyearning.com/

[2] K. Bhardwaj, C.-Y. Lin, A. Sartor, and R. Marculescu, “Memory- and
communication-aware model compression for distributed deep learning
inference on iot,” ACM Transactions on Embedded Computing Systems,
2019.

[3] H. Shafiei, A. Khonsari, and P. Mousavi, “Serverless computing: A
survey of opportunities, challenges and applications,” 2021.

[4] K. Mahajan, D. Figueiredo, V. Misra, and D. Rubenstein, “Optimal
pricing for serverless computing,” in IEEE Global Communications
Conference (GLOBECOM), 2019.

[5] V. Ishakian, V. Muthusamy, and A. Slominski, “Serving deep learning
models in a serverless platform,” in IEEE International Conference on
Cloud Engineering (IC2E), 2018.

[6] Z. Tu, M. Li, and J. Lin, “Pay-per-request deployment of neural network
models using serverless architectures,” in Conference of the North
American Chapter of the Association for Computational Linguistics:
Demonstrations, 2018.

[7] P. Sun, Y. Wen, N. B. Duong Ta, and S. Yan, “Towards distributed ma-
chine learning in shared clusters: A dynamically-partitioned approach,”
in IEEE International Conference on Smart Computing (SMARTCOMP),
2017.

[8] M. Yu, Z. Jiang, H. C. Ng, W. Wang, R. Chen, and B. Li, “Gillis:
Serving large neural networks in serverless functions with automatic
model partitioning,” in 2021 IEEE 41st International Conference on
Distributed Computing Systems (ICDCS), 2021.

[9] J. Jarachanthan, L. Chen, F. Xu, and B. Li, “Amps-inf: Automatic model
partitioning for serverless inference with cost efficiency,” in 50th ACM
International Conference on Parallel Processing (ICPP), 2021.

[10] Z. Jia and E. Witchel, “Boki: Stateful serverless computing with shared
logs,” in ACM SIGOPS 28th Symposium on Operating Systems Princi-
ples, 2021.

[11] H. Liu, Q. Gao, J. Li, X. Liao, H. Xiong, G. Chen, W. Wang, G. Yang,
Z. Zha, D. Dong, D. Dou, and H. Xiong, “Jizhi: A fast and cost-effective
model-as-a-service system for web-scale online inference at baidu,” in
27th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining, 2021.

[12] “Aws lambda computing power,” https://docs.aws.amazon.com/lambda/
latest/operatorguide/computing-power.html, 2022, accessed: 2022-03-
06.

[13] “Docker layer architecture,” https://docs.docker.com/get-started/
overview//, 2022, accessed: 2022-03-12.

[14] K. Mahajan, S. Mahajan, V. Misra, and D. Rubenstein, “Exploiting
content similarity to address cold start in container deployments,” in 15th
ACM International Conference on Emerging Networking EXperiments
and Technologies (CoNEXT), 2019.

[15] Y. Huang, W. Wang, L. Wang, and T. Tan, “Multi-task deep neural
network for multi-label learning,” in IEEE International Conference on
Image Processing, 2013.

[16] Y. Wu, T. T. A. Dinh, G. Hu, M. Zhang, Y. M. Chee, and B. C.
Ooi, “Serverless model serving for data science,” arXiv preprint
arXiv:2103.02958, 2021.

[17] A. Christidis, S. Moschoyiannis, C.-H. Hsu, and R. Davies, “Enabling
serverless deployment of large-scale ai workloads,” IEEE Access, 2020.

[18] J. Carreira, P. Fonseca, A. Tumanov, A. Zhang, and R. Katz, “A case
for serverless machine learning,” in Workshop on Systems for ML and
Open Source Software at NeurIPS, 2018.

[19] L. Feng, P. Kudva, D. Da Silva, and J. Hu, “Exploring serverless
computing for neural network training,” in IEEE 11th international
conference on cloud computing (CLOUD), 2018.

[20] F. Xu, Y. Qin, L. Chen, Z. Zhou, and F. Liu, “λdnn: Achieving
predictable distributed dnn training with serverless architectures,” IEEE
Transactions on Computers, 2021.

[21] H. Wang, D. Niu, and B. Li, “Distributed machine learning with a server-
less architecture,” in IEEE Conference on Computer Communications
(INFOCOM), 2019.

[22] A. Bhattacharjee, Y. Barve, S. Khare, S. Bao, A. Gokhale, and T. Dami-
ano, “Stratum: A serverless framework for the lifecycle management of
machine learning-based data analytics tasks,” in USENIX Conference on
Operational Machine Learning (OpML), 2019.

[23] M. S. Kurz, “Distributed double machine learning with a serverless
architecture,” in Companion of the ACM/SPEC International Conference
on Performance Engineering, 2021.

[24] K. Mahajan, Next Generation Cloud Computing Architectures: Perfor-
mance and Pricing. Columbia University, 2021.


