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Abstract

Building generally capable agents is a grand challenge for deep reinforcement
learning (RL). To approach this challenge practically, we outline two key desiderata:
1) to facilitate generalization, exploration should be task agnostic; 2) to facilitate
scalability, exploration policies should collect large quantities of data without
costly centralized retraining. Combining these two properties, we introduce the
reward-free deployment efficiency setting, a new paradigm for RL research. We
then present CASCADE, a novel approach for self-supervised exploration in this
new setting. CASCADE seeks to learn a world model by collecting data with a
population of agents, using an information theoretic objective inspired by Bayesian
Active Learning. CASCADE achieves this by specifically maximizing the diversity
of trajectories sampled by the population through a novel cascading objective.
We provide theoretical intuition for CASCADE which we show in a tabular setting
improves upon naı̈ve approaches that do not account for population diversity.
We then demonstrate that CASCADE collects diverse task-agnostic datasets and
learns agents that generalize zero-shot to novel, unseen downstream tasks on Atari,
MiniGrid, Crafter and the DM Control Suite. Code and videos are available at
https://ycxuyingchen.github.io/cascade/

1 Introduction

Reinforcement learning (RL, [105]) has achieved a number of impressive feats over the past decade,
with successes in games [69, 13, 100], robotics [48, 77], and the emergence of real world applications
[11, 25]. Indeed, now that RL has successfully mastered a host of individual tasks, the community
has begun to focus on the grand challenge of building generally capable agents [90, 109, 68, 5].

In this work, we take steps towards building generalist agents at scale, where we outline two key
desiderata. First, for agents to become generalists that can adapt to novel tasks, we eschew the
notion of restricting agent learning to task-specific reward functions and focus on the reward-free
problem setting instead [83, 28], whereby agents must discover novel skills and behaviors without
supervision.2 Consider the problem of learning to control robotic arms, where we may already have
some expert offline data to learn from. In many cases this data will cover only a subset of the entire
range of possible behaviors. Therefore, to learn additional general skills, it is imperative to collect
additional novel and diverse data, and to do so without a pre-specified reward function.

Second, to ensure scalability, we should have access to a large fleet of robots that we can deploy
to gather this data for a large number of timesteps [60], without costly and lengthy centralized
∗Equal contribution. Correspondence to ycxu@meta.com.
2Indeed, designing reward functions to learn behaviors can have unintended consequences [74, 6].
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Figure 1: Overview. Left: CASCADE trains a population of diverse explorers and uses them to collect large
batches of reward-free trajectories for learning a general world model that facilitates zero-generalization to
novel tasks. Right: To train B exploration agents in parallel, at each training step t, CASCADE first infers a
latent state st from image observation ot. It then rolls out latent trajectories τ1, . . . , τB in imagination using
the current exploration policies π1, . . . , πB . The training objective for each policy πi is to optimize 1) the
population diversity estimated by the disagreement of the final states of imagined trajectories sampled from
policies π1, . . . , πi; 2) the expected per state information gain over all future timesteps t+ 1, . . . , T , computed
as the disagreement of an ensemble of dynamics models.

retraining during this crucial phase [67]. This has recently been referred to as deployment efficiency,
falling between the typical online/offline RL dichotomy. Limiting deployments not only reduces the
overhead in retraining exploration policies, but also limits the potential costs and risks present when
deploying new policies [108, 53], an important consideration in many real world settings, such as
robotics [48], education [65] and healthcare [29].

Combining these two desiderata, we introduce the reward-free deployment efficiency setting, a new
paradigm for deep RL research. To tackle this new problem we train a population of exploration
policies to collect large quantities of useful data via world models [20, 34, 39]. World models allow
agents to plan and/or train policies without interacting with the true environment. They have already
been shown to be highly effective for deployment efficiency [67], offline RL [118, 49, 8, 88] and
self-supervised exploration [99, 97]. Furthermore, world models offer the potential for increasing
agent generalization capabilities [7, 37, 68, 16, 8, 21, 10, 58], one of the frontiers of RL research
[80, 51]. However, since existing self-supervised methods for learning world models are designed
to collect only a few transitions with a single exploration policy, they likely produce a homogenous
dataset when deployed at scale, which does not optimally improve the model.
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Figure 2: Motivation for CASCADE: Green
areas represent high expected information
gain. If we train a population of agents in-
dependently, at deployment time they will
all follow the trajectory to #1, producing a
homogenous dataset. However, if we con-
sider the diversity of the data then we will
produce agents that reach both #1 and #2.

Instead, drawing analogies from Bayesian Active Learning
[42, 52], we introduce a new information theoretic objec-
tive that maximizes the information gain from an entire
dataset collected by a population of exploration agents (see
Figure 2). We call our method Coordinated Active Sample
Collection via Diverse Explorers or CASCADE (Figure 1).
We provide theoretical justification for CASCADE, which
emphasizes the importance of collecting data with diverse
agents. In addition, we provide a rigorous empirical evalua-
tion across four challenging domains that shows CASCADE
can discover a rich dataset from a handful of deployments.
We see that CASCADE produces general exploration strate-
gies that are equally adept at both “deep” exploration prob-
lems and diverse behavior discovery. This makes it possible
to train agents capable of zero-shot transfer when rewards
are provided at test time in a variety of different settings.

To summarize, our contributions are as follows: 1) We introduce a novel problem setting, Reward-
Free Deployment Efficiency, designed to train generalist agents in a scalable fashion; 2) We propose
CASCADE, a theoretically motivated model-based RL agent designed to gather diverse, highly
informative data, inspired by Bayesian Active Learning; 3) We provide analysis that shows CASCADE
theoretically improves sample efficiency over other naı̈ve methods that do not ensure sample diversity,
and demonstrate that CASCADE is capable of improved zero-shot transfer in four distinct settings,
ranging from procedurally generated worlds to continuous control from pixels.
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2 Problem Statement

Reinforcement learning (RL) considers training an agent to solve a Markov Decision Process (MDP),
represented as a tupleM = {S,A, P,R, ρ, γ}, where s ∈ S and a ∈ A are the set of states and
actions respectively, P (s′|s, a) is a probability distribution over next states given a previous state
and action, R(s, a, s′) → r is a reward function mapping a transition to a scalar reward, ρ is an
initial state distribution and γ is a discount factor. A policy π acting in the environment produces a
trajectory τ = {s1, a1, . . . , sH , aH} for an episode with horizon H . Since actions in the trajectory
are sampled from a policy, we can then define the RL problem as finding a policy π that maximizes
expected returns in the environment, i.e. π? = arg maxπ Eτ∼π[R(τ)].

We seek to learn policies that can transfer to any MDP within a family of MDPs. This can be
formalized as a Contextual MDP [51], where observations, dynamics and rewards can vary given a
context. In this paper we consider settings where only the reward varies, thus, if the test-time context
is unknown at training time we must collect data that sufficiently covers the space of possible reward
functions. Finally, to facilitate scalability, we operate in the deployment efficient paradigm [67],
whereby policy learning and exploration are completely separate, and during a given deployment,
we gather a large quantity of data without further policy retraining (c.f. online approaches like DER
[112], which take multiple gradient steps per exploration timestep in the real environment). Taken
together, we consider the reward-free deployment efficiency problem. This differs from previous work
as follows: 1) unlike previous deployment efficiency work, our exploration is task agnostic; 2) unlike
previous reward-free RL work, we cannot update our exploration policy πEXP during deployment.
Thus, the focus of our work is on how to train πEXP offline such that it gathers heterogeneous and
informative data which facilitate zero-shot transfer to unknown tasks.

In this paper we make use of model-based RL (MBRL), where the goal is to learn a model of the
environment (or world model [96]) and then use it to subsequently train policies to solve downstream
tasks. To do this, the world model needs to approximate both P and R. Typically, the model will
be a neural network, parameterized by ψ, hence we denote the approximate dynamics and reward
functions as Pψ and Rψ, which produces a new “imaginary” MDP,Mψ = (S,A, Pψ, Rψ, ρ). We
focus on Dyna-style MBRL [104], whereby we train a policy (πθ parameterized by θ) with model-free
RL solely using “imagined” transitions insideMψ . Furthermore, we can train the policy on a single
GPU with parallelized rollouts since the simulator is a neural network [54]. The general form of all
methods in this paper is shown in Algorithm 1, with the key difference being step 5: We aim to update
πEXP in the new imaginary MDPMψ such that it continues to collect a large, diverse quantity of
reward-free data. Note that πEXP need not be a single policy, but could also refer to a collection of
policies that we can deploy (either in parallel or in series), such that π ∈ πEXP.

Algorithm 1 Reward-Free Deployment Efficiency via World Models

1: Input: Initial exploration policy πEXP

2: for each deployment do
3: Deploy πEXP to collect a large quantity of reward-free data.
4: Train world model on all existing data.
5: Update πEXP in new imaginary MDPMψ .
6: end for

We focus on learning world models from high dimensional sensory inputs such as pixels [34, 76, 47],
where at each timestep we are given access to an observation ot rather than a state st. A series
of recent works have shown tremendous success by mapping the observation to a compact latent
state zt [39, 38, 40]. In this paper we will make use of the model from DreamerV2 [40], which has
been shown to produce highly effective policies in a variety of high dimensional environments. The
primary component of DreamerV2 is a Recurrent State Space Model (RSSM) that uses a learned
latent state to predict the image reconstruction, reward rt and discount factor γt. Aside from the
reward head, all components of the model are trained jointly, in similar fashion to variational encoders
(VAEs, [50, 92]). For zero-shot evaluation, we follow [97] and only train the reward head at test time
when provided with labels for our pre-collected data, which is then used to train a behavior policy
offine. Thus, it is critical that our dataset is sufficiently diverse to enable learning novel, unseen
behaviors.
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3 Coordinated Active Sample Collection

The aim of this work is to train a population of B exploration policies {π(i)
EXP}Bi=1 such that they

collectively acquire data which maximally improves the accuracy of a world model. To achieve this,
we take inspiration from the information theoretic approach in Plan2Explore [97], but crucially focus
on maximizing information gain over entire trajectories rather than per state-action, and hence drop
the conditional dependence on state and action (see App. C.1 for why this distinction is important):

πEXP = arg max
π

I
(
dπMψ

;Mψ

)
= H(dπMψ

)−H(dπMψ
|Mψ) (1)

where dπMψ
is the distribution of states visited by the policy π in the imaginary MDPMψ . This ob-

jective produces πEXP, a policy whose visitation distribution has a high entropy when computed over
model samples, but has low entropy for each individual MDP model (i.e., high epistemic/reducable
uncertainty). We think of each modelMψ as sampled from a posterior distribution over models given
the data. A good exploration policy has low entropy on individual models but large entropy across
models, i.e. it is intent in visiting regions of the space where there is large uncertainty about the
model transitions. To make this objective more general, we represent the trajectory data collected by a
policy with a “summary” embedding space [79, 72]. Let Φ : Γ→ Ω be a summary function mapping
trajectories into this embedding space. PΦ

π [Mψ] denotes the embedding distribution generated by
policy π in imaginary MDPMψ . We can now write the objective from Eq. 1 as follows:

πEXP = arg max
π

I
(
PΦ
π [Mψ];Mψ

)
= H(PΦ

π [Mψ])−H(PΦ
π [Mψ]|Mψ) (2)

This more general framework allows us to consider multiple representations for trajectories, in a
similar fashion to behavioral characterizations in Quality Diversity algorithms [85]. For the rest
of this discussion, we will use the final state embedding as our summary representation, whereby
Φ(τ) = hH , since in the case of the RSSM, the final latent is a compact representation of the entire
trajectory collected by the policy, analogous to the final hidden state in an RNN [94, 103].

3.1 A Cascading Objective with Diverse Explorers

We now consider a population-based version of Equation. 2, using B agents:

{π(i)
EXP}

B
i=1 = argmax

πB∈ΠB
I

(
B∏
i=1

PΦ
π(i) [Mψ];Mψ

)
= H

(
B∏
i=1

PΦ
π(i) [Mψ]

)
−H

(
B∏
i=1

PΦ
π(i) [Mψ]

∣∣∣Mψ

)
(3)

where πB = π(1), · · · , π(B) and
∏B
i=1 PΦ

π(i) [Mψ] is the product measure of the policies’ embedding
distributions inMψ . By definition, the conditional entropy factorizes as:

H

(
B∏
i=1

PΦ
π(i) [Mψ]

∣∣∣Mψ

)
=

B∑
i=1

H
(
PΦ
π(i) [Mψ]

∣∣∣Mψ

)
. (4)

It is now possible to show that maximum information gain is achieved with a diverse set of agents:
Lemma 1. When all modelsMψ in the support of the model posterior are deterministic and tabular,
and the space of policies Π consists only of deterministic policies, there always exists a solution
{π(i)

EXP}Bi=1 satisfying π(i)
EXP 6= π

(j)
EXP∀i 6= j. Moreover, there exists a family of tabular MDP models,

such that the maximum cannot be achieved by setting πEXP(i) = π for a fixed π.

The proof of Lemma 1 is in Appendix C.1.1. Since the mutual information objective 3 is submodular,
a greedy algorithm yields a (1− 1

e ) approximation of the optimum (where e is Euler’s number) [73].
Leveraging this insight, let us assume that we already have a set of policies π(1), · · · , π(i−1); we then
select the next policy π(i) based on the following greedy objective:

π(i) = arg max
π̃(i)∈Π

I

 i∏
j=1

PΦ
π̃(j) [Mψ];Mψ

∣∣∣π̃(j) = π(j) ∀j ≤ i− 1


= H

 i∏
j=1

PΦ
π̃(j) [Mψ]

∣∣∣π̃(j) = π(j) ∀j ≤ i− 1

−H
 i∏
j=1

PΦ
π(j) [Mψ]

∣∣∣Mψ, π̃
(j) = π(j) ∀j ≤ i− 1


Which can be factorized in similar fashion to Equation 4 (See Appendix C).

4



3.2 A Tractable Objective for Deep RL

Inspired by [97], we make a couple of approximations to derive a tractable objective for {πEXP}Bi=1
in the deep RL setting. First, we assume that the final state embedding distributions are Gaussian
with means that depend on the policies and sampled worlds, and variances that depend on the worlds,
i.e. PΦ

π [Mψ = w] = N (µ(w, π),Σ(w)) . In this case, H(PΦ
π [Mψ]|Mψ = w) = ρ(w), and

Eq. 5 reduces to solving π(i) = arg maxπ̃(i)∈ΠH
(∏i

j=1 PΦ
π̃(j) [Mψ]

∣∣∣π̃(j) = π(j) ∀j ≤ i− 1
)

for
a policy that maximizes the resulting joint entropy of the embedding distribution when added to
the policy population. This produces the following surrogate objective, maximizing a quadratic
cascading disagreement:

PopDivΦ(π|π(1), · · · , π(i−1)) = Eτ∼Pπ [Mψ]

 1

|D(i−1)| − 1

∑
τ̃∈D(i−1)

‖Φ(τ)− Φ(τ̃)‖2


where D(i−1) is a dataset of imagined trajectories sampled from policies π(1), · · · , π(i−1) in the
model, and PopDiv is short for Population Diversity. Finally, following [97, 9], we also add a per
state information gain component to each policy’s reward to encourage a richer landscape for data
acquisition: InfoGain(π) = Eτ ∼Pπ [Mψ]

[∑
(s,a)∈τ σ(s, a)

]
where σ(·, ·) is the variance across the

ensemble latent state predictions (for details see App. B).

Taken together, these objectives form our approach, which we call Coordinated Active Sample
Collection via Diverse Explorers or CASCADE. CASCADE trains agents to optimize: 1) a diversity
term (PopDiv) that takes into account the behaviors of the other agents in the population; 2) an
information gain term (InfoGain) that encourages an individual agent to sample states that maximally
improve the model:

π(i) = arg max
π∈Π

[
λPopDivΦ(π|{π(j)

EXP}
i−1
j=1) + (1− λ)InfoGain(π)

]
(6)

where λ is a weighting hyperparameter that trades off whether we favor individual model information
gain or population diversity. Finally, we train the B agents in parallel using (policy) gradient descent
over θ, which makes it possible to achieve the same wall clock time as training a single agent [23].

3.3 Theoretical Motivation

We now seek to provide a tabular analogue to CASCADE which provides a theoretical grounding for
our approach. In App. D we outline the pseudo-code of CASCADE-TS, a greedy Thompson Sampling
algorithm [4] that produces the i-th exploration policy in a tabular enviornment using “imaginary”
data gathered by running policies π(1), · · · , π(i−1) in the model. We can then show the following:

Lemma 2. For the class of Binary Tree MDPs, the CASCADE-TS algorithm satisfies,

T (ε,Sequential) ≤ T (ε, CASCADE-TS) ≤ T (ε,SinglePolicyBatch)

where T (ε, ·) are the expected number of rounds of deploying a population of B policies necessary
to learn the true model up to ε accuracy; SinglePolicyBatch plays a fixed policy B times in each
round; Sequential does not have a population, and instead interleaves updates and executions of a
single policy B times within each round.

The proof is in App. D. Indeed, we see that CASCADE-TS achieves provable efficiency gains over a
naı̈ve sampling approach that does not ensure diversity in its deployed agents. This provable gain
is achieved by discouraging the i-th policy away from imaginary state-action pairs sampled by the
previous i− 1 policies by using imaginary counts.

Now returning to CASCADE, we can see the importance of leveraging the imaginary data gathered in
the model by the previous i− 1 policies when training the i-th exploration policy. Concretely, encour-
aging policy π(i) to induce high disagreement with the embeddings produced by {π(1), · · · , π(i−1)}
(i.e. the PopDiv term) is analogous to the imaginary count bonus term of CASCADE-TS in Line 10 of
Alg. 2, which avoids redundant data collection during deployment.
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4 Experiments

In our experiments we test whether CASCADE facilitates the learning of generalist agents by evaluating
their zero-shot transfer to unseen tasks, given a limited number of reward-free deployments. In all
experiments, agents cannot train online in the environment, and instead execute a fixed exploration
policy to gather new data during each deployment. We test against three baselines. The first is random
exploration, which is used in the majority of RL publications. Our next baseline is Plan2Explore
[97] (P2E), which trains a single exploration policy that optimizes for expected information gain
inside a world model. We then include a population-based version of P2E, which we call Population
Plan2Explore (PP2E). PP2E trains a set of randomly initialized agents that independently seek to
maximize expected information gain. All methods make use of a DreamerV2 world model [40] and
use the same hyperparameters for model and agent training (more details in App. B).

We test all methods in two separate settings: Firstly Exploring Worlds (Sec 4.1), where we seek
to collect data in challenging exploration environments. We test how well the explorers cover the
state space and discover sparse rewards (also known as “deep exploration” [78, 75]). Secondly, we
consider Exploring Behaviors (Sec 4.2) where we consider collecting data in continuous control
environments. In both settings we test zero-shot transfer as follows: 1) we provide reward labels to
the model; 2) we train a separate reward head; 3) we train a task specific behavior policy and test it in
the environment. This tests whether our model is general enough to facilitate learning downstream
policies for previously unknown tasks [97, 55, 116].

Figure 3: MiniGrid Results. Left: Performance statistics for both FourRooms and MultiRoom. For reward-
free exploration we show both “state coverage”, which corresponds to the the percentage of states visited on a
fixed set of levels, and “rewarding episodes” which is the count of total solved episodes found after 1M steps.
Finally for zero-shot transfer we show the success rate of a task-specific behavior policy trained with labels
provided only at test time. All plots show the mean of ten seeds with SEM shaded. (Random achieves 0 zero-shot
success rate). Right: we show the state coverage on a fixed level in FourRooms, using the exploration policy
πEXP for each deployment (Test time goal state indicated by the red dot).

4.1 Exploring Worlds

In many cases we may not know a priori which states in an environment are highly rewarding. Thus,
if we wish to use our world model to subsequently train agents to solve tasks, it is crucial that we
accurately model as much of state space as possible. Here we consider exploring worlds in three
different environments: MiniGrid [19], Atari [12] and Crafter [37]. In all three settings, we start with
a random deployment before beginning reward-free exploration.

We begin with MiniGrid, a set of sparse-reward, partially observable navigation environments
commonly used to test state-of-the-art exploration methods [89, 17, 31, 121]. MiniGrid environments
are procedurally generated, which provides an additional generalization challenge [46, 93]. We
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consider the canonical FourRooms and the more challenging MultiRoom. In each case we are limited
to 5 deployments of 200k transitions, for a total of 1M environment interactions.3 In order to gauge
the effectiveness of the reward-free exploration, we use two metrics: 1) state coverage, where we
evaluate the percentage of the states visited by the exploration policies after each deployment on the
same set of held out test levels; and 2) rewarding episodes, where we show the number of rewarding
episodes collected during the training process. Note that these two objectives are not useful in
isolation, as solved levels may only include a narrow set of observations, while state coverage alone
could be maximized without performing deep, goal-seeking exploration in the environment. However,
in combination they provide a proxy for exploration.

We show the results in Figure 3, where we see the CASCADE exploration policies cover the state
space far more effectively than all baselines. In FourRooms, both CASCADE and PP2E find the goal
an equal number of times, while CASCADE finds almost double the number of rewarding episodes in
the MultiRoom environment. We also test zero-shot performance, where CASCADE achieves almost
100% success rate. Interestingly, in both settings the Random policy does cover a large proportion
of the state space, but finds fewer rewarding episodes and subsequently does not have a sufficient
quantity to train a policy to solve the task (and accordingly achieves 0% success rate).

Next we consider four Atari games: Montezuma’s Revenge, Frostbite, Hero and Freeway,
often used as barometers for exploration capabilities [27]. We use 15 reward-free deployments, each
consisting of 200k steps, and use the final model to train a behavior policy with task reward. We test
these agents in a zero-shot fashion, with results shown in the first three columns of Figure 4. We see
that CASCADE gets statistically significantly stronger zero-shot returns compared to the baselines.
Furthermore, the baseline methods display no clear trend, with random exploration sometimes
offering the strongest performance. On the other hand, we see that CASCADE performs consistently
well, providing further evidence of it being a strong general exploration strategy. See App. A.2 for
more detailed analysis.

0 10 20 30
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P2E
PP2E

CASCADE
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Random P2E PP2E CASCADERandom P2E PP2E CASCADERandom P2E PP2E CASCADERandom P2E PP2E CASCADE

Figure 4: Atari Zero-Shot Transfer: Plots show RLiable metric performance aggregated across all seeds.
Note that the ‘Probability of Improvement’ lower CIs all exceed 0.5 for Atari, indicating CASCADE provides a
statistically significant improvement (under the Mann-Whitney U test) over all baseline methods [3]. We show
five seeds of zero-shot test performance.

Finally, we consider the Crafter environment [37], a procedurally generated grid world based on the
game of Minecraft. This more complex setting requires the agent to master a variety of compositional
skills to fully explore all possible behaviors. Online P2E represents the state of the art reward-free
agent, achieving a “Crafter Score” of 2.1. Making the problem more challenging, we deploy only 20
distinct exploration policies, each collecting 50k timesteps, which leads to weaker performance for
P2E vs. the reported result in [40]. However, as we see in Figure 5, adding a population of diverse
explorers recovers the majority of this performance. We find this result encouraging as the behaviors
required to achieve a higher Crafter score are non-trivial. Moreover, as shown in Figure 6, CASCADE
achieves the highest average success rate and unlocks the most number of unique Crafter skills among
all baselines, including Making a Stone Pickaxe. We believe this opens the door to further gains with
more active tuning of the behavioral representation used in CASCADE.

3Zero-shot success rates of P2E, PP2E and CASCADE increase with more training steps, and CASCADE
achieves a near 100% success rate at 1M steps in both FourRooms and MultiRoom.
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Figure 5: Crafter Score: Plots show final RLiable metric performance and training curve over 1M steps
aggregated across all seeds. We show ten seeds of Crafter Score, the geomean of skills discovered in a purely
reward-free fashion. Again, see that the ‘Probability of Improvement’ lower CIs all exceed 0.5, indicating
CASCADE provides a statistically significant improvement (under the Mann-Whitney U test) over all baseline
methods [3].
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Figure 6: Crafter Skills: Plots show normalized success rate per skill. Note that CASCADE not only achieves
the highest average success rate but also unlocks the most (16 out of 22) unique skills among all baselines. Skills
that are not unlocked by any of the baselines are excluded from the plot.

4.2 Exploring Behaviors

Next we wish to test is whether our agents sufficiently explore a range of behaviors in a continuous
control setting, using the walker environment from the DM Control Suite [111] (DMC). In these
experiments, we operate from pixels and assume access to an initial dataset of 200k transitions. Then,
we conduct 14 further reward-free deployments, each collecting 200k transitions. We consider the
possibility of improving generality from arbitrary offline data, using common datasets from the offline
RL literature: random, medium and expert. Using random data represents learning from scratch.
In Figure 7 we show the behaviors deployed by CASCADE and PP2E in a single deployment. The
CASCADE explorers all display diverse, useful behaviors, while PP2E agents are homogenous.

Figure 7: DMC Qualitative Results: Each row visualizes behaviors of a population of explorers trained after
15 total deployments by the same world model, deployed at the same time in environments with the same initial
state. We can see that CASCADE explorers (top) collect data with a diversity of behaviors while PP2E agents
(bottom) only show less interesting homogenous behaviors.

We then test the generality of the world model after each deployment by training a separate agent
from scratch for each of the four individual tasks: stand, walk, run, flip proposed in URLB [56].
This demonstrates whether the world model is capable of producing an imaginary MDP that facilitates
learning specific behaviors. To compare the performance of CASCADE and the baselines, in Figure 8
we show the aggregated statistics from the RLiable library [3] for a given number of deployments. To
do this, we combine the results across all datasets (random, medium, expert) and all downstream
tasks (stand, walk, run, flip) and compute the following: 1) the Inter-Quartile Mean (IQM) of the
normalized scores (the robust statistic recommended in [3]); 2) the Probability of Improvement, the
likelihood of one method outperforming another on a new, unseen task. As we see, CASCADE shows
clear and consistent gains over the next best baseline (PP2E) throughout 15 deployments, showing
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Figure 8: DMC Zero-Shot Aggregate Results: Plots show RLiable metric performance aggregated across
all three initial datasets (random, medium, expert) for a total of 30 seeds. Note that the ‘Probability of
Improvement’ lower CIs all exceed 0.5, indicating CASCADE provides a statistically significant improvement
(under the Mann-Whitney U test) over all baseline methods [3], even after a single deployment.

statistical significance under the Mann-Whitney U test [66]. Note that here the single agent P2E
performs poorly, likely due to only collecting data with a single mode of exploratory behavior. See
Figure 9 in the Appendix for a full breakdown of the performance.

4.3 Discussion and Limitations

We have shown that CASCADE is the most effective method in training generally capable agents
across a wide range of environments. Indeed, CASCADE provides the best of both worlds: deep
exploration by seeking the frontier of the current knowledge (via InfoGain), while covering the
space of possible behaviors (via PopDiv). Each of our baselines lacked in one of these two key
properties. Random exploration fared poorly when exploring worlds, which requires deep exploration.
However, it can be a highly effective method for exploring behaviors. This is likely why boosting
entropy in the action space is so effective for robotics tasks [36], but less so in deep exploration tasks
[75]. Furthermore, the information theoretic baselines were effective in Exploring Worlds, but the
disappointing performance for P2E in DMC is likely caused by a lack of data diversity, while the
PP2E populations were not sufficiently heterogeneous to match the coverage of CASCADE.

In terms of limitations, the main weakness in current methods is the absolute level of performance.
Despite outperforming baselines in DMC, the policies learned by CASCADE are far from optimal. This
is likely due to the challenge of the setting (reward-free deployment efficiency) and we believe that
future work in the community will be crucial to further improve these methods. Finally, CASCADE
does require training additional agents that may provide additional computational expense. In this
setting we assume the time between deployments is arbitrary, but this may not be the case in all
settings and future work could consider ways to make this process more efficient and scalable.

5 Related Work

At the core of our paper is the notion of training generalist agents, which have recently been of
increased interest in RL [90, 68, 109, 110]. In particular, we focus on the reward-free paradigm, since
in many cases it may not be possible to know a priori all possible tasks we may wish our agent to solve
[45]. With this in mind, there has been a surge of interest in methods that can learn in a self-supervised
fashion, to build representations that lead to fast (or even zero-shot) adaptation to future tasks. These
methods range from competence-based (i.e. learning “skills”) [1, 33, 28, 59, 62, 101] to data-based
that aim to maximize data diversity [63, 117].

In this work we take inspiration from knowledge-based approaches, which typically seek to learn a
world model [9, 83, 84, 30, 107, 15, 98]. In particular we build on Plan2Explore [97] which trains an
exploration agent by maximizing an objective resembling information gain inside the world model.
Plan2Explore was the first work that showed it is possible to transfer a model learned without rewards
in a zero-shot fashion. However, it differed from our work in that Plan2Explore solely considers the
online RL setting, deploying a new exploration policy every timestep. Other recent work examined
the effectiveness of reward-free RL for collecting datasets for subsequent offline RL [116, 55]. Once
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again however, this work trains the exploration agent online. By contrast, we only deploy a handful
of exploration agents and collect a larger quantity of data with each one.

Our setting resembles a reward-free version of the deployment efficiency paradigm, first introduced
in [67]. By contrast, their method focuses on policy optimization in the supervised RL paradigm,
whereas we focus on exploration and zero-shot generalization in the unsupervised RL setting. Follow
up work has remained focused on supervised policy optimization [102], whereas we are focused on
training generalist agents in the reward-free paradigm. Recent work has also shown the importance of
frequent policy updates in ensuring diverse exploration [95], further supporting the need for a diverse
population of explorers when operating in the deployment-efficient setting.

To address the challenges of this novel problem setting, we draw inspiration from a variety of fields.
In particular, several works have considered exploration with a population of agents [106, 26, 64], but
these have only considered task-specific online RL. Our choice of a diverse population of agents takes
inspiration from the field of Quality Diversity (QD, [85, 24]), where it has been shown that diversity
can boost exploration in RL [22]. Recently, [61] showed it is possible to train diverse populations
inside a world model to acquire new skills. As far as we are aware, we are the first to consider a
cascading objective for training diverse populations, which is typically done either synchronously
[82] or sequentially [122, 119].

Also related are works that specifically train policies that are able to maximally cover the state
space of a given MDP [2, 70]. However, these works focus on the more theoretically amenable (and
less general) low-rank MDP setting, and hence do not demonstrate any experiments on larger scale
problems. Furthermore, we aim to achieve state-space coverage by encouraging policy diversity,
which is distinct from the approaches taken in these works. We make use of an information theoretic
objective, which has been shown to be highly effective for exploration in RL [71, 43, 41]. Most
similar to our work [120] consider the reward free RL setting, and show that maximizing entropy can
lead to improved exploration that can facilitate transfer to arbitrary reward functions. By contrast
we consider the limited deployment setting and use model-based RL. Finally, our work relates to
collective intelligence [35, 115], since each member of the population contributes a small piece to the
puzzle that produces a general world model.

6 Conclusion

We introduced the reward-free deployment efficiency paradigm—an important problem setting for
learning generally capable agents in a scalable fashion. To address the challenges of this setting, we
proposed CASCADE, a theoretically motivated approach that leverages a diverse population of self-
supervised exploration agents. We showed in a variety of experiments that CASCADE produces general
exploration strategies, adept at both deep exploration and gathering sufficiently hetereogeneous
datasets that facilitate the learning of diverse downstream behaviors. We believe this work provides a
new approach for collecting large, diverse datasets in a self-supervised fashion, inducing a potentially
open-ended process for training general world models at scale.

For future work, we could consider alternative means for computing diversity, for example using
optimization landscapes [81] or explicit behavioral diversity [28, 82]. These could also be combined
with representations that directly incorporate the behaviors of the policy [14] to further improve the
design of the “summary” embedding space. Furthermore, we would be interested in considering
transformer models [113] for trajectory modelling [18, 44] that ought to scale more gracefully
with larger batches of data [87]. Recent work has shown that this class of models can compose
unseen complex multi-task behaviors at test time from fixed offline datasets [32], as well as leverage
significantly large and diverse offline datasets to improve behavioral modeling [91], highly relevant
to both aforementioned desiderata for the reward-free deployment efficiency paradigm.
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Appendix

A Additional Experimental Results

A.1 DMC

Here we show additional experimental results, beginning with a full breakdown of the DMC results
for each dataset. In Figure 9 we see the zero-shot transfer performance for models trained with
random, medium and expert initial datasets, and 14 subsequent deployments. Interestingly, we see
that the medium dataset proves to be the most effective for achieving high performance, this may be
due to being more diverse than the expert dataset, which is a narrow distribution of high performing
episodes.
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Figure 9: DMC Zero-Shot Results: Plots show the performance by environment and dataset, with the last row
being the task performance average over all three initial datasets. Plots show the mean and SEM over 10 seeds.
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A.2 Atari Tasks

Next we show detailed results in four Atari games: Montezuma’s Revenge, Frostbite, Hero and
Freeway in Fig. 10. We see that generally CASCADE discovers higher rewarding episodes (almost
double the next best baseline in Montezuma’s Revenge), and also discovers more rewarding episodes
on average. This translates to stronger zero-shot performance than all baselines in all four envi-
ronments. On the other hand, the other baselines achieve worse zero-shot performance because
they either (1) find an occasional high reward episode (Max Episode Return), but not in a sufficient
quantity (Rewarding Episodes), or (2) collect abundant low rewarding episodes that are less helpful
for learning good behavior polices. For instance, the random baseline is able to find Rewarding
Episodes more frequently in Frostbite, but these are relatively low quality, hence the lower curve
when assessing its Max Episode Return.
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Figure 10: From left to right on each row we show a frame from the game, a plot of the cumulative maximum
episode reward, the total number of rewarding episodes discovered and zero-shot average return, from 3M
training steps (15 deployments). Plots show mean and SEM over 10 seeds. Note that the max episode returns of
all methods stabilize after 15 deployments (3M training steps in total).

To understand why CASCADE performs well, in Figure 11 we plot trajectories from Montezuma’s
Revenge. We see that the inclusion of a diversity-inducing objective does indeed lead to more diverse
behaviors in the environment, with each policy exploring different regions of the room. In contrast, for
PP2E, agents 3,4,5,6,7,9 all exhibit very similar behavior, likely indicating that random initialization
alone is not sufficient to induce diversity when all agents optimize for the same objective.
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Figure 11: Trajectories in Montezuma’s Revenge: Each row shows a trajectory from one of the 10 exploration
agents of a model after 3M training timesteps (P2E is omitted because it only has 1 agent.) We can see that
PP2E’s agents exhibit the most homogeneous behaviors, and result in trajectories that focus on the bottom right
of the room, while CASCADE agents manage to explore more of the room collectively.
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B Implementation Details

DreamerV2 consists of an image encoder that uses a Convolutional Neural Network (CNN, [57]), a
Recurrent State-Space Model (RSSM [39]) that learns the dynamics, and predictors for the image,
reward, and discount factor. The RSSM uses a sequence of deterministic recurrent states ht. At each
step, it computes a posterior state zt conditioned on the current image xt, as well as a prior state ẑt
without the current image. During world model training, the concatenation of ht and zt is used to
reconstruct the current image xt, and predict the reward rt and discount factor γt. Once the world
model is trained, it can be used to roll out “imaginary” trajectories where the model state is instead
the concatenation of the deterministic state ht and prior stochastic state ẑt.

RSSM

{Recurrent model: ht = fψ(ht−1, zt−1, at−1)
Representation model: zt ∼ qψ(zt|ht, xt)
Transition predictor: ẑt ∼ pψ(ẑt|ht)

(7)

Image predictor: x̂t ∼ pψ(x̂t|ht, zt)
Reward predictor: r̂t ∼ pψ(r̂t|ht, zt)
Discount predictor: γ̂t ∼ pψ(γ̂t|ht, zt).

(8)

Our implementation was built on top of the official DreamerV2 repository https://github.com/
danijar/dreamerv2. We used the default hyperparameter values in the DreamerV2 repository.
Table 1 lists the additional hyperparameters used in our experiments.

We also incorporate a latent disagreement ensemble, following Plan2Explore [97]. This involves
training, alongside the RSSM model, an MLP ensemble with 10 members (each having 4 hidden
layers, 400 units per layer, and different parameter initializations). These one-step models take action
at and latents zt, ht as inputs, and try to predict the next stochastic latent zt+1. The variance across
these outputs during imagined rollouts is then used as the reward signal that forms the Information
Gain (InfoGain) objective. Note that this ensemble is otherwise unused, and is solely trained for the
purposes of the exploration objective.

Table 1: CASCADE hyperparameters

Environment Parameter Value

MiniGrid-FourRooms

CASCADE weight (λ) 0.1
batch size 200k
deployments 5
explorer train steps 10k
offline model train steps 20k

MiniGrid-MultiRoom-N4S5

CASCADE weight (λ) 0.3
batch size 200k
deployments 5
explorer train steps 10k
offline model train steps 20k

Montezuma’s Revenge

CASCADE weight (λ) 0.8
batch size 200k
deployments 15
explorer train steps 10k
offline model train steps 5k

Walker

CASCADE weight(λ)
0.1 (Random)

0.3 (Medium/Expert)
batch size 200k
deployments 2
explorer train steps 250
offline model train steps 5k
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C Deriving the Objective

C.1 An Information Theoretic Perspective

Inspired by [97], we derive a data acquisition objective based on the mutual information between the
collected data and parameters of the world modelMψ .Mψ can be either stochastic or deterministic,
and can also be an ensemble of empirical models. Crucially however, we eschew the reliance on
one-step information gain (as performed in [97]), and instead aim to maximize diversity directly in
the space of trajectories. To do this, let Φ : Γ → Ω be an summary function mapping trajectories
into an embedding ‘summary’ space. For any modelMψ we use the notation Pπ[Mψ] to denote
the distribution over trajectories generated by policy π inMψ and useMψ ∼ PMψ

to denote the
posterior distribution over models. The later depends on the data collected so far.

In this work we consider different embedding functions Φ,

1. Final State Embedding. In this setting we define Φ(τ) = hH where hH corresponds to
the H−th (and last) state embedding in the trajectory τ . Since we use an RNN world model,
the use of this summary embedding is analogous to the final encoder embedding in seq2seq
language models [103].

2. Visitation Frequencies. In the tabular setting if we define Φ(τ) as a discounted count
statistic for states in τ , we recover PΦ

π [Mψ] = dπMψ
where dπMψ

corresponds to the
discounted visitation distribution of policy π in modelMψ .

The authors of [97] study a per state-action mutual information objective that informs the construction
of a greedy mutual information maximizing policy. Implicitly, this per-step objective assumes the
model to factor in independent transition operators pertaining to each state-action pair. This is
certainly not the case when using powerful function approximators such as neural networks. In
this case, the dynamics model corresponding to the state transitions of a specific state action pair is
correlated with the state transition model of other state-actions. This is not captured accurately by the
objective in [97]. Instead, we consider the following choice for an exploratory policy in the single
policy setting studied in [97]:

πEXP = max
π
I
(
PΦ
π [Mψ];Mψ

)
= H(PΦ

π [Mψ])−H(PΦ
π [Mψ]|Mψ). (9)

πEXP is a policy whose distribution over summaries Φ(τ) with τ ∼ Pπ[Mψ] andMψ ∼ PMψ
has

large entropy, but such that the average entropy of the summaries in every individual model is small.
The term H(PΦ

π [Mψ]) captures the total uncertainty (epistemic + aleatoric) while subtracting the
conditional entropy removes the aleatoric uncertainty resulting from noise within the model and the
policy.

To gain intuition about this objective, consider the case where Φ equals the final state embedding.
For simplicity, we consider the scenario when all modelsMψ ∼ P and all policies π ∼ Π are such
that for any realization ofMψ = mψ, the conditional entropy H(PΦ

π [Mψ]|Mψ = mψ) = σ(mψ)
is a function of the world mψ and not of the policy. In this case, the policy πEXP is the entropy
maximizing policy:

πEXP = max
π
H(PΦ

π [Mψ]).

The scenario above is realized for example when all modelsMψ ∼ PMψ
are deterministic and all

policies in Π are deterministic. In this case, for every realization ofMψ = mψ, the conditional
entropy H(PΦ

π [Mψ]|Mψ = mψ) = 0. The assumption H(PΦ
π [Mψ]|Mψ = mψ) = σ(w) is

also realized when the distribution Φ(τ) ∼ PΦ
π [mψ] is approximated as a Gaussian distribution

PΦ
π [mψ] ≈ N (µ(mψ, π),Σ(mψ)) with policy dependent mean µ(mψ, π) and policy independent

covariance Σ(mψ).

In these cases πEXP is the policy that produces the most diverse distribution over final states across
the posterior distribution over models PMψ

. Since access to H(PΦ
π [Mψ]) may not be possible,

in our experiments we make further approximations inspired by [97]. Under the same gaussian
approximation PΦ

π [mψ] ≈ N (µ(mψ, π),Σ(mψ)), optimizing maxπH(PΦ
π [Mψ]) is achieved by

24



finding the policy π that makes the ensemble means µ(mψ, π) as far apart as possible. A suitable
surrogate for this objective is to maximize the empirical variance over means,

Var(π) =
1

|Mψ| − 1

∑
mψ

‖µ(mψ, π)− µ′(π)‖2

where |Mψ| denotes the number of samples mψ, and µ′(π) = 1
|Mψ|

∑
mψ

µ(mψ, π). We now
consider a “batch” version of Eq. 9 involving a population of B agents:

{π(i)
EXP}

B
i=1 = max

π(1),··· ,π(B)∈ΠB
I

(
B∏
i=1

PΦ
π(i) [Mψ];Mψ

)
=

H

(
B∏
i=1

PΦ
π(i) [Mψ]

)
−H

(
B∏
i=1

PΦ
π(i) [Mψ]

∣∣∣Mψ

)
(10)

where
∏B
i=1 PΦ

π(i) [Mψ] is the product measure of the candidate policies embedding distributions
over the modelMψ . By definition the conditional entropy factors as,

H

(
B∏
i=1

PΦ
π(i) [Mψ]

∣∣∣Mψ

)
=

B∑
i=1

H
(
PΦ
π(i) [Mψ]

∣∣∣Mψ

)
. (11)

The objective in Eq. 10 has a similar interpretation as in the single policy case. We are hoping to find
a set of policies whose average conditional entropies are small (Eq. 4), but whose total entropies are
large. Intuitively, we see this objective is more amenable to our population of policies. Concretely, by
considering distributions directly over the space of trajectories, we ensure that each agent does not
‘double count’ the explored states under Eq. 10, whereas applying the same principal to a one-step
information gain objective would simply ensure diversity conditioned on that state and action, and
doesn’t explicitly ensure diversity in the visited states by the population.

C.1.1 Proof of Lemma 1

In the proof of Lemma 1 we will make use of the following supporting result,

Lemma 3. Let p ∈ (0, 1] and p1, p2 > 0 satisfying p1 + p2 = p then,

p log(1/p) < p1 log(1/p1) + p2 log(1/p2).

Proof. Let p1 = αp with α 6= 0, 1, then,

p1 log(1/p1) + p2 log(1/p2) = αp log(1/(αp)) + (1− α)p log(1/((1− α)p))

= p log(1/p) + p

α log(1/α) + (1− α) log(1/(1− α))︸ ︷︷ ︸
>0


> p log(1/p).

Lemma 3 implies the following result,

Lemma 4. Let p ∈ [0, 1]K be a vector satisfying
∑K
i=1 pi = 1 and let C be a partition of [K] such

that |C| ≤ K − 1. For all C ∈ C denote p(C) =
∑
i∈C pi. The following inequality holds,

∑
C∈C

p(C) log(1/p(C)) ≤
K∑
i=1

pi log(1/pi).
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If pi > 0 the inequality is strict,

∑
C∈C

p(C) log(1/p(C)) <

K∑
i=1

pi log(1/pi).

Proof. W.l.o.g we call C1 the partition set containing 1 and assume p1 > 0. If pi > 0 for only one
element of C1, it must be the case that p1 log(1/p1) = pC1 log(1/pC1).

We now assume that |C1| > 1 and that C1 has at least two indices i 6= j such that pi,pj > 0. Let
l denote the size of C1 and w.l.o.g. let’s say C1 = {1, 2, · · · , l}. Lemma 3 implies the following
inequalities,

p(C1) log(1/p(C1)) < p1 log(1/p1) + p(C1\{1}) log(1/p(C1\{1}))
< · · ·

<
∑
i∈C1

pi log(1/pi).

Applying this reasoning to each element in the partition C yields the desired result.

Lemma 1. When all modelsMψ in the support of the model posterior are deterministic and tabular,
and the space of policies Π consists only of deterministic policies, there always exists a solution
{π(i)

EXP}Bi=1 satisfying π(i)
EXP 6= π

(j)
EXP∀i 6= j. Moreover, there exists a family of tabular MDP models,

such that the maximum cannot be achieved by setting πEXP(i) = π for a fixed π.

Proof. First let’s observe that when the models and policies are all deterministic, the conditional
entropies satisfy,

H

(
B∏
i=1

PΦ
π(i) [Mψ]

∣∣∣Mψ

)
=

B∑
i=1

H
(
PΦ
π(i) [Mψ]

∣∣∣Mψ

)
= 0.

We assume the set of policies Π is of size at least B. Otherwise, the result cannot be true. The first
result follows immediately by Lemma 4. For any fixed π, the product distribution

∏B
i=1 PΦ

π [Mψ] is a
distribution over ‘diagonal’ tuples of the form (b, · · · , b)︸ ︷︷ ︸

sizeB

where b is an embedding.

Consider an arbitrary set of policies π(2), · · · , π(B) satisfying π(i) 6= π(j) 6= π for all i, j ∈
{2, · · · ,K}. Call π(1) = π. The distribution over embeddings induced by the product distribution∏B
i=1 PΦ

π(i) [Mψ] is made of tuples of the form (b1, · · · , bB). Call p(b1, · · · , bB) the probability un-
der the product measure

∏B
i=1 PΦ

π(i) [Mψ] of the tuple (b1, · · · , bB). Notice the ‘projection measure’
onto the first coordinate satisfies

B∏
i=1

PΦ
π(i) [Mψ](b1) =

B∏
i=1

PΦ
π [Mψ](b1, · · · , b1) := p1(b1)

and that
∑
b2,··· ,bK p(b1, b2, · · · , bK) = p1(b1). This induces a partition over the outcome space

(b1, · · · , bK) corresponding to C(b1) = {(b1, b2, · · · , bK)}b2,··· ,bK .

A direct use of Lemma 4 implies the entropy of the product distribution over finer grained tuples
is larger than the entropy over the diagonal of the product distribution having all coordinates equal
to each other. In fact this result also informs when the inequality will be strict. This happens when
(for example the measure over Mψ is the counting measure) there exists two worlds M(1)

ψ and

M(2)
ψ such that the embedding tuples (b

(1)
1 , · · · , b(1)

B ) and (b
(2)
1 , · · · , b(2)

B ) satisfy b(1)
1 = b

(2)
1 and

(b
(1)
2 , · · · , b(1)

B ) 6= (b
(2)
2 , · · · , b(B)

B ).
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We will use this observation to prove the second claim. Consider a family of MDPs formed of depth
L binary trees. In this family, the paths leading to the L− 1 layer are the same, but the connections
from layer L− 1 to layer L are unknown. The ‘posterior’ distribution is assumed to be uniform over
all plausible trees. Layer L− 1 has size 2L−1 and layer L has size 2L. W.l.o.g. we assume the set of
nodes in layer L is labeled as [1, 2, · · · , 2L]. The distribution over models is supported over the set
of partitions of size 2L−1 of [1, · · · , 2L] where each partition set has size 2. We assume 2L ≥ B so
that there are at least B distinct policies.

Let π be a fixed policy. It is enough to show there exist two worldsM(1)
ψ andM(2)

ψ such that policy

π ends in the same state for bothM(1)
ψ andM(2)

ψ but that there exist distinct policies π(2), · · · , π(B)

such that their endpoints (b
(1)
2 , · · · , b(1)

B ) and (b
(2)
2 , · · · , b(2)

B ) in worlds M(1)
ψ and M(2)

ψ satisfy

(b
(1)
2 , · · · , b(1)

B ) 6= (b
(2)
2 , · · · , b(2)

B ). The latter always holds because among the set of models that
maintain the same endpoint for π, there is a pair of models that has different endpoints for π(2) for
any arbitrary π(2) 6= π. This suffices to show the entropy of the ensemble of distinct policies is
strictly larger than the entropy of the ‘diagonal choice’ (π, · · · , π)︸ ︷︷ ︸

sizeB

.

C.1.2 InfoCascade

Since the mutual information objective in Eq. 3 is submodular, a simple greedy algorithm yields a
(1− 1

e ) approximation of the optimum [73]. This is the same observation that gives rise to the greedy
algorithm underlying other batch exploration objectives, such as in BatchBALD [52].

Let’s start by assuming we have candidate policies π(1), · · · , π(i−1). InfoCascade selects π(i) based
on the following greedy objective,

π(i) = arg max
π̃(i)∈Π

I

 i∏
j=1

PΦ
π̃(j) [Mψ];Mψ

∣∣∣π̃(j) = π(j) ∀j ≤ i− 1


= H

 i∏
j=1

PΦ
π̃(j) [Mψ]

∣∣∣π̃(j) = π(j) ∀j ≤ i− 1

−H
 i∏
j=1

PΦ
π(j) [Mψ]

∣∣∣Mψ, π̃
(j) = π(j) ∀j ≤ i− 1

 .

Equation 4 implies

H

 i∏
j=1

PΦ
π(j) [Mψ]

∣∣∣Mψ, , π̃
(j) = π(j) ∀j ≤ i− 1

 =

i∑
j=1

H
(
PΦ
π(i) [Mψ]

∣∣∣Mψ

)
(12)

and therefore if we approximate PΦ
π [mψ] by a Gaussian PΦ

π [mψ] ≈ N (µ(mψ, π),Σ(mψ)), the
conditional entropy becomes a policy independent term. In this case finding π(i) boils down to
solving for the policy that maximizes H

(∏i
j=1 PΦ

π(j) [Mψ]
∣∣∣π(1), · · · , π(i−1)

)
. Using the same

approximations described for the single policy objective, a suitable surrogate for this objective is
to maximize maxπ Var(π|π(1), · · · , π(i−1)), the empirical variance over means with respect to the
policies found so far {π(j)}i−1

j=1,

Var(π|π(1), · · · , π(i−1)) =

1

|Mψ||i| − 1

∑
mψ

∑
π̃∈{π(1),··· ,π(i−1),π}

‖µ(mψ, π̃)− µ′(π, π(1), · · · , π(i−1))‖2

Where µ′(π, π(1), · · · , π(i−1)) = 1
|Mψ||i|

∑
mψ

∑
π̃∈{π(1),··· ,π(i−1),π} µ(mψ, π̃).
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D Theoretical RL Intuition

The problem we study in this work can be thought of as the “batch” version of the Reward Free
Exploration formalism [45]. In this setting, the learner interacts with an MDP in two phases: 1) a
training phase, where it is allowed to collect data from the environment; 2) a test phase, where the
learner is presented with an arbitrary task (parametrized by a reward function unseen during training)
and it must produce a near optimal policy. When faced with this problem, the learner is required
to design a careful exploration strategy that permits them to build an accurate model in all areas of
the state-space that can be reached with sufficient probability. There have been multiple follow up
works that have also studied this problem in the context of Linear MDPs [114] and neural function
approximation [86]. Nonetheless, there has been limited focus on the batch setting, where the learner
is required to collect data via parallel data gathering policies in each training phase.

Due to the adaptive nature of the algorithm (every single environment query uses all information
collected so far), there is an inevitable drop in performance when moving from the sequential (
fully online) setting to the batch (deployment efficient) setting, as measured by the total number of
environment interactions (in our case, T ×B where T is the number of training rounds and B the
number of parallel collection policies). To illustrate how CASCADE mitigates this loss in sample-
efficiency, we outline the pseudo-code of CASCADE-TS, a greedy Thompson Sampling algorithm
(see [4]) that produces the i−th batch exploration policy in a tabular enviornment by incorporating
fake count data from rolling out policies π(1), · · · , π(i−1) in the model. In the algorithms we present
in the main body, we incorporate data gathered in the model by previous i− 1 selected policies into
the batch when building the i−th exploration policy; this is directly related to the approach behind
CASCADE-TS. Concretely, encouraging policy π(i) to induce a high variance among the embeddings
produced by {π(1), · · · , π(i−1)} can be thought as adding a bonus to encourage π(i) to visit regions of
the space that have a low embedding visitation count by the previous policies in {π(1), · · · , π(i−1)}.

Algorithm 2 CASCADE-TS

1: Input: Exploration batch size B. Fake samples parameter M .
2: Initialize model P̂0 over S ×A state actions.
3: Initialize the batch collection policies as {π(i)

0 }Bi=1 to uniform.
4: for time in k = 0, 1, 2, . . . do
5: Collect trajectory data {τ (i)

k }Bi=1 from π
(i)
k for all i = 1, · · · , B. Update Dk+1 ← Dk ∪

{τ (i)
k }Bi=1.

6: Initialize the fake data buffer Dk+1
fake = ∅.

7: for i = 1, · · · , B do
8: Sample MDP model from posterior P̃(i)

k+1 ∼ P(·|Dk+1 ∪ Dk+1
fake ).

9: Compute fake counts N (i)
k+1(s, a) =

∑
(s̃,ã,s̃′)∈Dk+1∪Dk+1

fake
1(s̃ = s, ã = a).

10: Compute fake uncertainty bonuses b(i)k+1(s, a) ∝
√

1

N
(i)
k+1(s,a)

11: Solve for π(i)
k+1 by solving,

π
(i)
k+1 = max

π
E
τ∼P̃(i),π

k+1

[
H∑
h=1

b
(i)
k+1(sh, ah)

]

12: Collect fake trajectory data {τ (i)
`,fake}M`=1 from posterior sampled model P̃(i)

k+1.

13: Update fake data buffer Dk+1
fake ← D

k+1
fake ∪ {τ

(i)
`,fake}M`=1.

14: end for
15: end for

Algorithm 2 works by sampling a model from a model posterior, solving for an optimal uncertainty
seeking policy and updating the model with ‘fake’ data corresponding to trajectories collected in
the model from this uncertainty seeking policy. After producing the i−th exploration policy in the
batch, the recomputed uncertainty bonuses of the model are reduced in the areas of the state space
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most visited by the i−th policy. This will encourage subsequent uncertainty seeking policies (i.e.,
π

(i+1)
k+1 , π

(i+2)
k+1 , . . . , π

(B)
k+1) to visit parts of the space not yet explored by previous policies.

Why Thompson Sampling? The reader may wonder why Algorithm 2 samples a model P̃(i)
k+1 from

a TS posterior instead of using the empirical model resulting from fake and true data. The answer is
that the raw empirical model may ascribe a probability of zero to certain transitions, which means
we may miss exploring parts of the true state-action space. Having a TS prior that ascribes non-zero
probabilities to all possible transitions fixes this potential issue.

D.1 Proof of Lemma 2

Let’s consider the class of deterministic MDPs with S = |S| states and A = |A| actions. It is
clear that playing the same deterministic policy multiple times does not provide us with any more
information than playing it once. We will then show that running Thompson TS, the learner will end
up with a nonzero probability of producing at least two distinct policies within a batch of size B > 2.

We will further assume the posterior is aware of the deterministic nature of the MDP family so that
any sample MDP model P̃(i)

k+1 is deterministic. For i > 1, the model P̃(i)
k+1 is one whose transitions

are consistent with the fake data generated by π(1)
k+1, · · · , π

(i−1)
k+1 (and the true data in Dk).

A deterministic MDPs can be encoded as a set of triplets (s, a, s′). We say a model
{(s, a, s′)}s∈S,a∈A is ε−accurate if at least a fraction of 1− ε of the triplets are correct.

We now illustrate how the CASCADE-TS algorithm evolves in this setting. To simplify our task, we
will further restrict our attention to the family of deterministic MDPs made of binary trees of height
L. The number of nodes in any of such trees equals 2L+1 − 1.We will define the counts to be a large
value (2L) when no data has been collected of a given state action pair. When data has been collected,
we define the bonus terms to be of order at most 1.

To figure out the connectivity of any such trees it is necessary to try out 2L − 1 distinct sequences
of L actions (the nature and connectivity of the remaining leaf nodes can be inferred once all the
other ones have been decoded). To build an ε−accurate model, it is enough to know the connectivity
structure of 1− ε proportion of paths corresponding to (1− ε)(2L − 1) leaf nodes.

To prove the result of Lemma 2, we observe that any batch strategy can be simulated by a fully
sequential learner, so it immediately follows that T (ε, Sequential) ≤ T (ε,AnyBatchStrategy). To
show that CASCADE-TS will be better than SinglePolicyBatch in this tree example, as long as B is
smaller than the remaining number of paths the learner has not tried out, it will produce a set of B
policies different from any policy played so far and also different from each other.

To see why the second inequality is true, it is enough to see that complete paths (real or imagined)
have a total reward score of at most L, since the counts are always at most one for each edge that
is present. Nonetheless, the counts over any path (sequence of L actions) that has not been visited
nor has been imagined to be visited will be at least 2L. Thus, every step in the sequential batch
construction mechanism will produce a new policy (sequence of L actions) not existent neither in
the true nor the fake data so far. This finalizes the proof. Notice that the SinglePolicyBatch strategy
will have tried only K unique paths after K batches have been collected, whereas the CASCADE-TS
strategy will have tried BK, resulting in a potentially substantial improvement in sample efficiency.
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