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ABSTRACT
A key puzzle in search, ads, and recommendation is that the ranking
model can only utilize a small portion of the vastly available user
interaction data. As a result, increasing data volume, model size, or
computation FLOPs will quickly suffer from diminishing returns.
We examined this problem and found that one of the root causes
may lie in the so-called “item-centric” formulation, which has an
unbounded vocabulary and thus uncontrolled model complexity.
To mitigate quality saturation, we introduce an alternative formula-
tion named “user-centric ranking”, which is based on a transposed
view of the dyadic user-item interaction data. We show that this
formulation has a promising scaling property, enabling us to train
better-converged models on substantially larger data sets.

CCS CONCEPTS
• Information systems→ Recommender systems; Personal-
ization.

KEYWORDS
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1 INTRODUCTION
Scaling has been one of the main themes in deep learning and
the key driving force behind many eye-opening breakthroughs
in the past decade, especially in computer vision (CV) [9, 11, 25],
natural language processing (NLP) [2, 6, 8], and multi-modality
modeling [21, 22, 29]. In these areas, scaled-up big models were
able to improve the corresponding quality metrics by orders of
magnitude compared to the state-of-the-art of their previous gener-
ations. For example, on ImageNet [7], the ViT [9] model reduced the
image classification error rate, compared to the first super-human
model ResNet-152 [14], by more than half [9]. This scaling suc-
cess, however, has not yet happened in ranking (e.g., search, ads,
recommendation systems). This seems both surprising and myste-
rious given that ranking represents and important aspect of the AI
industry.

In a typical scaling scenario, one important condition is that
the model should have the capability to utilize more data, so that
∗Work done during an internship at Meta.
†Lead author; part of the work was done at NewsBreak.

increasing data volume and computing will continue to improve
model quality. When it comes to ranking, we notice that even with
an abundant or even infinite amount of data (i.e., massive user en-
gagement activities constantly accumulating in systems like Google
ads, Facebook news feed, YouTube video recommendation, etc.),
the ranking models typically can only utilize a small portion (i.e., a
few days to a few weeks of logged data). Increasing training data
volume, model size, or computation FLOPs can only lead to very
little quality improvement. This is known as the “quality saturation”
problem.

To be fair, the quality of every machine learning model will even-
tually saturate, sooner or later. What makes it unique in ranking
is that the quality saturation happens too soon. Considering the
important role that ranking models play and their business impact,
a reasonable expectation is that a ranking model should be able to
utilize at least a few months of training data.

We examined this problem and found that one of the root causes
may lie in the formulation. With an analogy to NLP, the current
ranking formulation predicts dyadic responses (e.g., ads click-through)
by casting ‘items’ as ‘tokens’ and ‘users’ as ‘documents’, a para-
digm called “item-centric ranking”. This is actually an ill-posed
formulation because the model size or the number of parameters to
learn will grow linearly as data volume increases. As a remedy, we
introduce an alternative formulation called “user-centric ranking”
based on a transposed view, which casts ‘users’ as ‘tokens’ and
‘items’ as ‘documents’ instead. We show that this formulation has
a number of advantages and shows less sign of quality saturation
when trained on substantially larger data sets.

The proposed methods have been tested in a variety of our
production systems with significant metric wins, including search,
ads, and recommendation. These systems are quite diverse in nature
(e.g, different interaction interfaces, items of very different types)
and can be regarded as representative of many ranking systems in
the industry, yet our findings are quite consistent. Our reported
experiment results are primarily based on one production surface,
which has 6 different tasks (including both positive and negative
engagements, and both immediate and deferred reward feedback),
and the comparison and trend are consistent across all these tasks.
In addition to offline results, we also report online live experiment
results. Furthermore, to improve the reproducibility of our findings,
we also include results on a public data set and plan to open-source
our implementation code for public access.
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Figure 1: (a) An example of one-tower ranking model; (b) A hybrid ranking model containing both a user-centric and an
item-centric sub-architecture.

2 RELATEDWORK
The past decade has witnessed tremendous successes achieved by
deep learning models that are growing in scale exponentially over
time. In computer vision, big model architectures have been widely
used for image classification and object detection tasks. The neural
architectures have evolved from Convolutional Neural Networks
(CNNs) with a handful of layers [19], to ResNet who has more
than 100 layers and 100 million parameters [14], to recent gigantic
Transformer-based models that contain hundreds of billions of
parameters [9]. The trend is evenmore prominent in NLP, especially
in the few years of post-BERT era [8, 24]. A surge of state-of-the-art
models are emerging with ever growing sizes, complexities, and
new levels of capabilities, e.g, GPT-3 and GLaM [10] are among the
largest language models to date and have demonstrated impressive
performance in various NLP tasks [2, 6].

It is a bit surprising that, unlike the other areas, scaling has not
gained much success in ranking, even though it is the biggest indus-
try for AI and there is no shortage of training data [12]. Ranking
models used to be dominated by the “two-tower” architectures,
where the user-side and the item-side were modeled independently
with separate architectures in the early stage known as the two tow-
ers; and fusion or interaction between the two sides happens at a
relative late stage [5, 15, 18]. Recently, “single-tower” architectures
based on Transformer emerged and quickly became the new state
of the art [24, 30]. However, compared to other areas, these models
are notably simpler, for example, they are using only a single (or
a few, if Transformer is also used in interaction sub-arch) layer of
Transformer block, and even though these models could be big in
size (e.g, 1 trillion parameters), the majority of the parameters are

sparse-id based embeddings, only a tiny fraction of which are active
for each prediction.

The current common practice in ranking is to model each user
based on the sequence of historically interacted items. The repre-
sentation of user interests can be learned from historical behaviors,
and the likelihood of a potential engagement is assessed based on
the affinity of the target item with respect to historical interactions.
These models provide an item-centric perspective to utilize the
dyadic user-item interaction data; we call it item-centric because
learnable embeddings are allocated for items but not users. We
show that this formulation could be the cause of quality satura-
tion. The proposed user-centric ranking is the first to provide an
alternative formulation based on a transposed view of the dyadic
interactions. We show that it can help to alleviate quality saturation
in ranking. We want to note that our contribution is to introduce
this new formulation, not a specific neural architecture. These two
are orthogonal, in fact, any SoTA item-centric ranking model can be
converted to its user-centric counterpart using the new formulation.

It is important to capture the complex relationships between
users and items to improve ranking accuracy in ranking systems.
Using user information corresponding to a target item is a natural
choice. One example is graph-based recommendationmodels [4, 27],
which represents users and items as nodes in a bipartite graph.
The graph model learns to generate user and item embeddings for
recommendation through the process of embedding, propagation,
and prediction. Our approach of user-centric ranking models user-
item interaction in a different way and targets for replacing or
complementing the current item-centric ranking models that suffer
from quality saturation. There are other attempts to alleviate the
changing inventory problem, such as meta learning approaches [3,
28]. The goal of meta learning for ranking is to improve robustness



Breaking the Curse of Quality Saturation with User-Centric Ranking

and/or fairness of ranking models caused by unintended data biases.
In contrast, we aim to adddress the quality saturation problem
caused by inventory dynamics.

3 RANKING FORMULATIONS
In ranking, we are concerned with modeling dyadic responses. Given
a set of usersU and a set of items I, the goal is to predict 𝑦𝑡 (𝑢, 𝑖)
for any given user 𝑢 ∈ U and item 𝑖 ∈ I at time 𝑡 . In different
contexts,𝑦 can have different semantic meanings, e.g., click-through
of an ad, conversion of a transaction, following an account, or
finishing watching a video. Rankingmodels are trained on historical
interaction data in the format of D = {(𝑢, 𝑖, 𝑡, 𝑦)}, which can be
thought of as a bipartite graph betweenU and I.

An interesting note is that ranking bears a lot of similarities with
NLP, because NLP data can be thought of as dyadic interactions be-
tween ‘documents’ and ‘tokens’. In fact, a lot of ranking techniques
are inspired by progresses in NLP [17, 23, 30].

3.1 Item-Centric Ranking
Figure 1 shows one example of single-tower item-centric architec-
tures. The key idea, with an analogy to NLP, is to think of items as
tokens and users as documents, i.e., each user is modeled by a list
of items that they engaged with, in chronological order according
to the time of engagements. When multiple types of engagements
are involved (e.g., in video recommendations, engagements could
include clicks, video completion, likes, follow-author, etc.), they
can be organized into multiple channels, one for each engagement
type.

For each channel, items in the engagement history are first
mapped to their embeddings, positions are encoded based on rel-
ative time-stamps, and multi-head attentions are applied on top.
The aggregation output is then concatenated with all other fea-
tures, on top of which an interaction sub-architecture (e.g., Deep
& Cross Network (DCN) [26] or self-attention [24]) is employed to
encode higher-order nonlinear interactions among different feature
groups. And finally, a number of task heads (e.g., one MLP for each
engagement prediction task) provide the output probabilities. Be-
cause of the daunting scale in ranking, these ranking architectures
are highly-simplified versions compared to what are commonly
used in NLP, noticeably: 1) only one layer of attention is typically
used; 2) instead of full-sized self-attention, the aggregation is based
on the so-called “targeted attentive pooling", i.e., when predicting
𝑦𝑡 (𝑢, 𝑖), the engagement history of user 𝑢 is aggregated by attend-
ing only w.r.t. the target item 𝑖 (i.e., the embedding of item 𝑖 is
used as query in the attention function). The latter is similar to
document/paragraph representation in NLP, where the aggregation
is by attending to the special symbol ‘CLS’.

This formulation is called “Item-Centric Ranking” (ICR) to reflect
that items are allocated free-parameter embeddings to be learned
in training whereas user embeddings are derived by aggregating
item embeddings.

3.2 User-Centric Ranking
Why do ranking models saturate so fast? Why doesn’t this happen
to NLP models given that they bear lots of similarities? When
we carefully compare these two settings, we notice an important

difference. In NLP, the vocabulary size (i.e., total number of tokens)
is often fixed; given a neural architecture, the number of parameters
is constant when we increase the training data. This is, however,
not the case in ranking when item-centric formulation is used.

In particular, especially in the so-called “creator economy”, where
the inventory of items are highly dynamic: new items are being
created constantly (e.g., tens of millions of posts/videos are created
on Facebook/Instagram every day) and items are time-sensitive
and ephemeral (e.g., each post/video has a short life-span ranging
from a few days to a few weeks). In this setting, because the item
inventory grows linearly over time |I | = 𝑂 (𝑡), for any given neural
architecture, the number of model parameters will grow unbound-
edly in 𝑂 (𝑡) (due to the use of per-item embeddings). As a result,
when we increase the training data (e.g., to use more days of logged
interactions), because of the linear growth in model size, the per-
parameter data density will not grow, and hence using more data
will not make the model converge better (e.g., lower the variance).
In fact, this is a setting that we rarely see elsewhere.

Based on this observation, we propose an alternative formulation
called “User-Centric Ranking” (UCR), which is based on a trans-
posed view of the user-item interactions. Using the NLP analogy
again, UCR casts ‘users’ as ‘tokens’ and ‘items’ as ‘documents’; free-
parameter embeddings are learned for users, and item embeddings
are derived by aggregation. For mature ranking systems in double-
sided markets, it is typical to see an increase in inventory, while
the user setU remains relatively consistent; thus, the model size
(i.e., the number of parameters) of these ranking systems will stay
stable as we increase training data. Our expectation is that with
this formulation, when we scale up training data the consistent
growth of per-parameter data density should translate to better
model convergence.

In a typical setting where user set is capped while both the
inventory size and the training data set size grow linearly over
time, it can be shown the asymptotic error rate (i.e, the expected
distance between the optimal value of model parameter 𝜃∗ and its
actual value 𝜃 ) for each of the formulations is as follows [20]:

• Item-centric ranking: E[| |𝜃∗ − 𝜃𝑡 | |2] = Const
• User-centric ranking: E[| |𝜃∗ − 𝜃𝑡 | |2] = 𝑂 ( 1𝑡 )

As training data grow, asymptotically UCR converges at a sublinear
rate (at most), while ICR cannot be improved further, which explains
the quality saturation we have observed.

From an intuitive perspective, UCR could be advantageous over
ICR. In ICR, because items are ephemeral, so are their embeddings
(i.e., an item embedding will soon become irrelevant and useless as
that item exits the system). In UCR, we are continuously accumu-
lating and improving our knowledge about every user by refining
its embedding over time as long as that user keeps on interacting
with the system.

Any SoTA item-centric ranking model can be converted to its
user-centric counterpart using the new formulation. Note that the
example architecture in Figure 1(a) applies to both item-centric and
user-centric. The key difference is whether users or items are used
as keys for embedding look-ups (i.e, the ‘sparse-id’ and ‘target-id’
in the figure).
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3.3 Hybrid Models
It is also possible and actually straightforward to have a hybrid
formulation, i.e., to implement models that include both a user-
centric and an item-centric attentive pooling components. Fig-
ure 1(b) shows how the example architecture in Figure 1(a) looks
like in the hybrid formulation. Such hybrid models will have simi-
lar “parameter explosion” problem as item-centric models. We will
compare all these different model formulations in our experiments.

4 IMPLEMENTATION
4.1 Item-Centric Ranking
Item-centric id-lists represent the engagement history of each user.
Although the number of items that one user can interact within
one day is hardly over a few hundreds, the list of distinctive items
and their embeddings gets accumulated very quickly over time,
especially considering that the same item is rarely recommended to
the same user again. A sampling strategy is needed in order for each
engagement list to not exceed certain length. In our implementation,
we limit the length to 1024 at max, by only including the most
recent engagements. In our experiment, this method is referred to
as “IC-Sampling”.

4.2 User-Centric Ranking
One of the challenges for implementing UCR is to handle the distri-
bution skewness. In an item-centric setting, the number of items
one user can interact with tends to be evenly distributed (e.g., daily
engagements range from a few to a few hundred), whereas in the
new setting, the distribution is more irregular, e.g., some items can
attract millions of users to engage with while others can get only a
few. This means that for some items it is no longer feasible to fit the
entire list of engaged users in memory during training/inference.
We explore three different approaches:

• Sampling. In this implementation, we simply down-sample
the list of engaged users of an item to a fixed-size sub-list
uniformly using reservoir sampling. Note that in practice, if
we sample for each item only once, instead of resampling for
each user-item interaction, this will introduce an artificial
bias. This method is referred to as “UC-Sampling."

• Aggregation. Another approach is to summarize a long
sequence of engaged users to a shorter list, e.g., by cluster-
ing the users and using cluster-id in replacement of user-id.
In our implementation, the clusters are obtained by apply-
ing the Louvain algorithm [1] to the user-item interaction
graph. Our in-house implementation provides the function-
ality to incrementally update the clustering structure over
time with constraints on cluster size and re-mapping ratio.
This method is referred to as “UC-Clustering".

• Retrieval. Alternatively, we can pre-index the engagement
history and use retrieval (e.g., max inner-product search)
to identify the subset of most relevant users (w.r.t. the tar-
get user), on which attentive pooling is then applied. Since
attention is of quadratic complexity, the overhead of re-
trieval can be compensated by the speedup due to a shorter
and more selective attention window. A sparsified atten-
tion distribution also means an improved signal-to-noise

ratio (i.e., long-tail less relevant candidates are pruned and
excluded from the attentive aggregation) and can further
improve model quality. We leave this method for future
investigation.

Note that this problem is only a concern for a very small subset
of the most popular items, for which most ranking models already
have good prediction accuracy. For the vast majority of items in
our case, the engagement users are below the 1024 length limit.

4.3 Parameter Hashing
Another technical challenge is memory management when work-
ing with large-scale ID spaces such as user-idsU and item-ids I.
Considering that we are learning embedding vectors, one for each
distinctive ID, the extremely large cardinalities (i.e., in the order
of billions) of these ID spaces imply that the memory requirement
as well as the index to map IDs to their address can be quite a
challenge. Especially for item-centric ranking, the number of item
IDs can grow unboundedly to infinity.

One common approach to address this problem is to implement
feature hashing, i.e., to maintain a constant hash space for these IDs
and allocate one embedding vector for each distinctive “hashed ID".
This is of course not ideal. The existence of hash collisions means
that we are forcing certain random IDs to share the same embedding
vectors. This is not necessarily a bad thing when the collision rate
is at a reasonable level, because feature hashing provides a type
of regularization effect to the embedding parameters similar to
dropout. However, for unbounded ID spaces such as I in user-
centric ranking, the collision rate is expected to grow linearly over
time (i.e,𝑂 (𝑡)), and can be arbitrarily large and no longer negligible.
In contrast, in user-centric ranking, the ID spaceU is bounded and
hence collision rate is under control.

4.4 Aggregation Operators
We implement two aggregation operators, sum-pooling and tar-
geted attentive pooling. The former aggregates the list of associated
IDs by the sum or mean of their corresponding embeddings. Sum-
pooling is computationally inexpensive and easy to implement.
However, it has very limited expressive capability (e.g., the oper-
ator itself is parameter-less) and needs to rely on the interaction
arch to encode complex interactions. Moreover, especially when the
list is long, using an unweighted sum could deteriorate the signal-
to-noise ratio and make the prediction less accurate. By attending
to the target user (item), attentive pooling can adaptively adjust
how much weight an embedding could get based on not only the
relevancy of the current item (user) at hand but also the relevance
of other competing entities. This aggregation is especially powerful
when the list contains entities of diverse topics (e.g., a user’s engage-
ment history could contain items in different categories), for which
the multiple distribution modes would be inevitably collapsed into
one if sum-pooling is used. Attentive pooling is also more robust
and tolerant to noises, outliers or corruptions in the ID list.
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Table 1: Evaluation results (AUC) on MovieLens data.

ICR UCR Hybrid
DIN with Attentive Pooling 0.712 0.731 0.737

5 EXPERIMENTS
5.1 On Public Data
A major goal of this paper is to improve the scaling capability of
ranking models due to the curse of quality saturation caused by
growing item inventories. To test our findings, data sets need to be
both (1) substantially large-scale and (2) based on dynamic inven-
tory as in real-world systems. Unfortunately, public data cannot
meet the requirement: they do not have the desired scale, nor do
they have the needed dynamics (matrix completion settings with
fixed users & items). We notice that this is a common issue in the
community. Notably, recent works on scaling, including those in
NLP and CV are based on dedicated data sets. The matter is even
worse in the area of ranking, because published data is not only
too small in scale but also lacks many vital characteristics that real-
world systems possess, making findings on such toy data sets less
reliable when being generalized to real world. However, to improve
the reproducibility of our results, we tested our methods on one
public data set for demonstration purposes.

5.1.1 Data. The MovieLens-20M data set is a popular benchmark
in recommendation systems [13]. It contains 20-million ratings from
138, 493 users on 27, 278 movies. In our experiments, we follow a
protocol similar to that of [30]: ratings of 4-star or above are treated
as positive and the rest as negative; for each user, the most recent 𝑁
(𝑁 = 512) positively-rated movies are used as item-centric channels
of that user; similarly, the𝑀 (𝑀 = 512) users who historically rated
a movie positively are used as user-centric channels of that movie.
As we mainly compare the difference between ICR and UCR, we
do not include other categorical features, such as genre.

5.1.2 Results. We tested the DIN [30] architecture (Figure 1(a))
in the three different formulations (i.e, ICR, UCR, hybrid) with
‘Attention-pooling’ as aggregation operator. A 4:1 split is used for
training and testing. The evaluation results in terms of AUC (i.e,
area under ROC curve) are reported in Table 1.

Note that MovieLens is a static data set. It does not have the
inventory dynamics that real-world systems have, and hence we
will not be able to see parameter explosion on this data set. From
Table 1, our observation is that UCR is at least on par with or slightly
better than ICR, while hybrid performs the best possibly because it
uses more signals than either of them.

5.2 On Real-World Production Data
5.2.1 Data. We further experiment on real-world production data.
For offline evaluation, we created a “lab data set” by sampling the
production log of a real-world short-form video recommendation
system. Our data set contains about 24 million users and their
engagement activities in the time range of 60 days (from late July to
early October of 2022). In total, the data set contains about 28 billion

examples (engagement activities) involving 1 type of negative and
5 types of positive engagements.

5.2.2 Metric. We use Normalized Cross-Entropy (NCE) as the pri-
mary evaluation metric [16]. NCE is defined as the cross-entropy
loss of the model prediction 𝑝 normalized by the entropy of the
label 𝑦.

𝑁𝐶𝐸 (𝑝,𝑦) = 𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑝,𝑦)
𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑦) (1)

NCE is widely used as the gold standard offline metric for en-
gagement probability (e.g, CTR) prediction tasks because of its high
consistency with online engagement metrics.

5.2.3 Parameter Growth. In both ICR and UCR, the total number
of parameters that a model has can be expressed as 𝑐𝑜𝑛𝑠𝑡 + 𝑛 × 𝑑 ,
where the constant part is mostly related to model architectures,
while 𝑛 and 𝑑 denote the total number of distinctive sparse-ids and
the dimensionality of each embedding vector. In our data set, as
is common in most ranking systems, the cardinality of the user
set tends to be bigger than that of the item set for any given day,
|U| > |I𝑡+1 | − |I𝑡 |, where I𝑡 is the accumulative item set on day
𝑡 . However, that comparison is quickly reversed as time goes by
because |I𝑡 | grows linearly in 𝑂 (𝑡).

Figure 2 shows the model size growth over time for both ICR and
UCR models. We only plotted the curves for the case with sampling
and attentive pooling, but the trend is similar for all other variants.
While it is true that for the first few days the ICR model has fewer
parameters, it constantly adds parameters every day as new item
IDs emerge. As a result, the ICR model size grows almost linearly
over time. In contrast, the UCR model, although has a bit more
parameters initially, the model size stays relatively stable over time.

Considering these twomodels are trained using the same amount
of dyadic interaction data, the drastic contrast of the parameter
growth can have profound impacts on model quality. For example,
at the end of the 60-day window, the ICR model is 21x larger in
size than its UCR counterpart. This means that ICR consumes 21x
more memory, or when parameter hashing is used the collision
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Figure 2: The growths of model size (the total number of
parameters) over time for ICR and UCR models.
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Figure 3: Comparison of ICR and UCR models in offline
evaluation. Models are trained recurrently on a daily basis
and evaluated on future 10K activities using NCE. (lower is
better)

rate is 21x higher; at the same time, on average, each ID embedding
receives 21x less training data in ICR as compared to in UCR.

5.2.4 ICR vs. UCR. We compare IC-Sampling and UC-Sampling
with the two aggregation operator options. All the models are
trained recurrently and evaluated on a daily basis using the first
~10K examples of the next day. Because we have 6 tasks (and corre-
spondingly 6 engagement history channels) in our data set, each
task (and the engagement channel) is evaluated independently. The
results are reported in Figure 3, where only the results on ‘Task 1’
are shown (results on other tasks are very similar); all the NCE num-
bers are normalized by the NCE of the IC-Sampling sum pooling
model on day 1, and relative NCEs are used in the plot.

We can observe that UC-Sampling demonstrates a clear gain
over IC-Sampling, with the gap increasing rapidly from day 1 to
day 10, and then slowly converging till the end. The performance
matches our hypothesis that UCR accumulates and refines the un-
derstanding of each user, which helps with better recommendations
as the data scales up. However, we did not notice the gain increase
through the end of the experiments. We believe that this is because
UCR excels more on active users due to its nature of aggregating
user embeddings to profile engaged items, but falls short on less
active users. We will come back to address more about this issue in
Section 5.2.9.

5.2.5 Sum Pooling vs. Attentive Pooling. We also compare the im-
pact of the two aggregation operators in ICR and UCR. As shown in
Figure 3, attentive pooling consistently performs better than sum
pooling in UCR. With more data, the gap is also increasing. After 60
days of training, UCR attentive pooling get 0.44% gain over the sum
pooling alternative. In contrast, the advantage of attentive pooling
in ICR is very minimal.

This also proves our hypothesis in Section 4.4. In ICR, the item ID
is not well trained due to the linearly increased ID space . As a result
the attention score between history item and target item does not
learn useful signals, and attentive pooling falls back to mean (sum)
pooling. In UCR, user ID space is stable, and all ID embeddings

0 6 12 18 24 30 36 42 48 54
Num of days

0.850

0.875

0.900

0.925

0.950

0.975

1.000

R
el

at
iv

e 
N

C
E

UC Sampling Sum Pooling
UC Clustering Sum Pooling
UC Sampling Attentive Pooling
UC Clustering Attentive Pooling

Figure 4: Comparison of the two implementation methods
for UCR: sampling vs clustering.

could be optimized. This finding verifies the potential to solve the
quality saturation problem using UCR with more training data.

5.2.6 Sampling vs. Clustering. In UCR, one of the key aspects to
ensure good performance is to construct better andmore representa-
tive engaged user lists for each item, especially for those extremely
popular items that gain millions of user interactions. We imple-
mented two of the approaches presented in Section 4.2, namely
UC-Sampling and UC-Clustering. Figure 4 shows the comparison
between these two approaches. As can be seen, UC-Sampling seems
to dominate UC-Clustering in terms of NCE consistently across
the entire time span and all the tasks involved. We want to point
out that this may not be definite as the performance highly depends
on the choice of implementation, e.g., the incremental Louvain al-
gorithm [1] used in our experiments. If a better algorithm is used,
the result can be different. We leave such investigation for future
research.

5.2.7 Hybrid Method. We also compare the hybrid method with
UCR and ICR. Because the consistently superior performance of
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Figure 5: Comparison of the hybrid model with its UCR and
ICR counterparts.
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Table 2: Multi-task relative NCE percentage (%) change between ICR (baseline), UCR and Hybrid models implemented with
attention pooling. Baseline setting is denoted as “-".

Task
Day 7 Day 14 Day 30 Day 60

IC UC Hybrid IC UC Hybrid IC UC Hybrid IC UC Hybrid
1 - -2.58 -2.88 -1.73 -4.01 -4.32 -3.01 -4.90 -5.21 -3.48 -5.18 -5.31
2 - -2.71 -2.94 -0.46 -3.23 -3.42 -0.45 -3.24 -3.44 -0.44 -3.19 -3.32
3 - +1.84 -2.04 -7.52 -7.60 -10.38 -10.96 -12.64 -14.29 -11.98 -13.98 -12.78
4 - -2.86 -3.08 -0.31 -3.23 -3.41 -0.08 -3.03 -3.23 -0.05 -2.96 -3.08
5 - -2.88 -3.14 -0.66 -3.61 -3.88 -0.79 -3.77 -4.00 -0.81 -3.73 -3.88
6 - -3.09 -3.28 -0.86 -3.97 -4.14 -1.19 -4.34 -4.53 -1.28 -4.38 -4.47

sampling over clustering as reported before, we only experimented
with the sampling implementation. The results are shown in Fig-
ure 5. It seems that the hybrid method has very similar performance
as the UCR counterpart, albeit slightly better. This phenomenon is
pretty consistent. We observe that the hybrid method achieves the
best NCE results across all the tasks. Considering that the hybrid
architecture, as shown in Figure 1, includes both an UCR sparse
sub-arch and an ICR sparse sub-arch, the results are partly as ex-
pected (i.e., it should have the advantages of both UCR and ICR) and
partly surprising (i.e., it has the same parameter explosion problem
as ICR).

5.2.8 Multi-Task Evaluation. In our previous evaluations, we use 1
single task and 1 single engagement history channel. In this sec-
tion, for both ICR and UCR, we use all the available engagement
signal channels (one for each engagement type) and jointly train
the model on all of the 6 tasks. This multi-channel and multi-task
setting allows the model to capture correlations among different
tasks as well as between the signal channel and the task loss corre-
sponding to different engagement types, which cannot be done in
the previous setting. The results are reported in Table 2, where the
NCE is calculated relative to the NCE of the ICR model at day 7.
We observe that overall UCR models show clear gains when com-
pared to ICR counterparts across all the tasks; moreover, the hybrid
model consistently performs the best at all of the tasks, although
the difference with the UCR models is very marginal.

5.2.9 Segment Analysis. We segment users into five buckets based
on their activeness (e.g., number of engagements within a given

< 10 < 20 < 100 <200 >= 200
User activity

0.4

0.3

0.2

0.1

0.0

0.1

R
el

at
iv

e 
N

C
E 

di
ffe

re
nc

e 
(%

)

UC - IC

< 10 < 20 < 100 <200 >= 200
User activity

0.6

0.5

0.4

0.3

0.2

0.1

0.0

R
el

at
iv

e 
N

C
E 

di
ffe

re
nc

e 
(%

)

Hybrid - IC

(a) UCR (b) Hybrid

Figure 6: Distribution of NCE gains over ICR on different
user activeness segments (negative means better).

time window). In Figure 6(a), we show the NCE differences between
one UCR model (UC-Sampling) and one ICR model (IC-Sampling)
for each user segment. We can see that, although UCR performs
better than ICR overall, the gain mostly come from more active
users. For less active users (e.g., engagement counts < 10), UCR
actually performs worse than the ICR baseline. This explains why
the hybrid methods tend to perform the best because it leverages
both components to provide the better of the two worlds. As a
validation, Figure 6(b) shows the similar analysis of the Hybrid
model over ICR, and we can see it provides gains across all the user
segments.

5.2.10 Ablation Study. To better understand how different config-
urations impact model performance, we conduct a set of parameter
sweep experiments. For this analysis, we set the number of training
data to be 30 days for all the runs. In addition, we use IC-Sampling
and UC-Sampling with the same single-task setting in our experi-
ments.
Hash Size. Parameter hashing maps user IDs or item IDs to em-
bedding vectors by applying a hash function. Though being space-
efficient, it is essential to have a large enough hash space so that
a high collision rate between these IDs can be avoided. In this
experiment, we further examined how hash size affects model per-
formance by varying it from the default value of 20 million. As hash
size affects both IC and UC ranking, we test both IC-Sampling and
UC-Sampling as well as using both sum pooling and attentive pool-
ing model architectures. The results are reported in Table 3. Overall,
increasing the hash size leads to a better model performance. This
trend is more evident for UCR. For example, increasing the hash
size from 1M to 30M for UC-Attn results in a 1.71% reduction in
relative NCE. One reason why UCR benefits more than ICR is that
UCR has much fewer embedding vectors, the reduction in hash
collision is more dramatic for UCR when increasing hash size.

Table 3: Relative NCE percentage (%) change from different
models with varying hash sizes. Baseline setting is denoted
as “-".

1M 5M 10M 20M 30M
IC Sum +0.08 +0.04 +0.01 - +0.02
IC Attn +0.12 +0.05 +0.05 +0.07 +0.06
UC Sum -0.04 -0.73 -1.07 -1.43 -1.53
UC Attn -0.24 -1.13 -1.48 -1.84 -1.95
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Table 4: Relative NCE percentage (%) change from different
models with varying feature dimensions. Baseline setting is
denoted as “-".

96 192 384
IC-Sampling -0.05 - +0.01
UC-Sampling -1.39 -1.91 -2.37

Embedding Dimensionality. We conduct another ablation study
on the dimensionality of the embedding vectors. Our default embed-
ding dimension is 192, and we tune it between 96 and 384. Results
are illustrated in Table 4. We can see that IC-Sampling is not able
to utilize a larger embedding dimension, and its performance is
worse when the largest dimensionality is used. On the other hand,
UC-Sampling shows consistent improvements when higher dimen-
sional embeddings are used.

5.3 Online Results
Based on the encouraging results on the sampled lab data, we took
the step forward to productionize the proposed techniques in our
recommendation system. On the full-scale production data, we
observed up to 0.6% NCE gains compared to the production ICR
model when UCR models were trained with the standard workflow
using a few days of training data without any architecture changes.
The best version was then tested live in the production system.

A number of infrastructure optimizations were done to make
this happen. For example, we optimize the batching algorithm to
put the same user’s data in one batch for ICR, so the sum (attention)
pooling of the item-centric features only needs to be computed
once and then could be shared within the batch. For UCR, we
do the similar operation to batch the same video’s data together.
With the improvement on data locality, we can lower down the
memory consumption, and in turn improve the throughput for both
training and serving. Also, by using full-precision for training and
lower-precision (e.g., FP16) for inference, we were able to improve
the inference performance (both throughput and latency) without
significant regression in prediction quality (e.g., NCE) and reduce
the number of GPUs required for serving by almost half. The online
A/B experiments showed that quite significant wins were achieved
across a wide range of topline metrics, in particular, one of the key
business metrics, video watch time was improved by 3.24%.

An important observation during our productionization pro-
cess is that the offline NCE gain can be further enlarged when
we increase the amount of training data. In addition, if we scale
up both training data and model complexity, we could potentially
obtain an outsized gain in terms of NCE in offline evaluation. This
investigation is currently in progress.

5.4 Open Questions and Discussions
We are motivated to address the quality saturation problem in rank-
ing. Our expectation is that the UCR formulation should provide
somewhat a remedy. However, from our experiment results, this is
only partially validated. In particular, we did see UCR models lead
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Figure 7: Prediction quality (NCE) of pre-trained models over
the next 24 hours indicates there is a strong distribution drift
in the data.

to consistently better NCE than their ICR counterparts; we also saw
a tendency of improving NCE gain as we increase the training data.
Nonetheless, the NCE gap between UCR and ICR is not as big as
we expected, and also that gap is being enlarged at a much slower
speed, far too slow if we compare it with the model parameter or
collision rate growth curves. This is kind of surprising.

In an attempt to understand the discrepancies, we have a few
plausible explanations.

Firstly, we notice there’s a nontrivial discrepancy between the
full-scaled production data and our sampled lab data. The scaling
characteristics of UCRmodels are significantly better on production
data than what we observed. This is partly related to the sampling
algorithm we used to generate this data set, and partly related to
the nonlinearity between the complexity that the data manifests
and the scale at which the problem is examined.

Secondly, in the aforementioned areas where scaling has led to
tremendous success, including CV and NLP, the concepts we try
to model are often static. In other words, there’s usually a ground-
truth model in hindsight and the goal of training is to approach that
ground-truth. However, in ranking it is fundamentally different.
There is drastic and frequent distribution drift due to the highly
dynamic two-sided ecosystem and the interactive highly counterfac-
tual nature of the engagement process. Because of the distribution
drift, there is no ground-truth model (or you could say the optimal
model is a moving target instead of static). For example, Figure 7
shows how a pre-trained static model performs in the next 24 hours
after it was trained. We can see a very significant deterioration of
the prediction NCE as the model becomes increasingly outdated. In
a situation where the distribution is drifting dynamically, a model
that scales well and does not saturate quickly in a static context
may not always scale well. To fully combat the obstacles for scaling
ranking models, deep understanding of and the ability to control
such dynamics are critical.

Last but not the least, our current study is limited, without any
changes to the model architecture. We observed, especially for the
smaller-scale lab data set, the absolute NCE values are quite small
and may be close to their limits for the architecture we used. At
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the same time, we noticed that ranking model’s architectures are
significantly simpler than what are commonly used in NLP and CV,
which is of course a practical choice given the scales in ranking. We
believe that by using significantly more expressive architectures,
we will be able to improve the scaling property further.

We leave these investigations for future study.

6 SUMMARY
We suspected that the item-centric formulation of ranking mod-
els may be contributing to the quality saturation problems. We
introduced user-centric ranking as an alternative formulation. We
showed that in general, UCR models have a stable model size (i.e.,
total number of parameters) that will not grow as we increase train-
ing data. On a lab data set of sampled production data, we observed
that UCR models yield consistently better prediction quality and
have slightly better scaling property. We did not believe that this
fundamental problem in ranking has been fully solved. We listed a
number of open problems from our study and hope they can spark
further investigations.
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