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ABSTRACT
We present the SUPERB challenge at SLT 2022, which aims

at learning self-supervised speech representation for better perfor-
mance, generalization, and efficiency. The challenge builds upon the
SUPERB benchmark and implements metrics to measure the com-
putation requirements of self-supervised learning (SSL) representa-
tion and to evaluate its generalizability and performance across the
diverse SUPERB tasks. The SUPERB benchmark provides compre-
hensive coverage of popular speech processing tasks, from speech
and speaker recognition to audio generation and semantic under-
standing. As SSL has gained interest in the speech community and
showed promising outcomes, we envision the challenge to uplevel
the impact of SSL techniques by motivating more practical designs
of techniques beyond task performance. We summarize the results of
14 submitted models in this paper. We also discuss the main findings
from those submissions and the future directions of SSL research.

Index Terms— Self-supervised Learning, Pre-training, Net-
work Compression

1. INTRODUCTION

Today’s commercial speech recognition systems in both academic
and industry fields require ever-increasing volumes of text-annotated
speech signals for training. The need for massive data in super-
vised learning hinders the fast advancement of speech processing
research. To tackle this issue, self-supervised learning (SSL) [1] has
emerged to reduce the dependency on large labeled data sets. SSL
utilizes proxy supervised learning tasks (also called pretext tasks) to
obtain training data from the tremendous amount of unlabeled cor-
pora available on the web. Researchers explore various pretext tasks
to pre-train large neural networks without labels and transfer the pre-
trained networks to solve complicated downstream tasks. Recently,
SSL has become one of the research mainstreams in speech process-
ing as well as other machine learning communities such as Natural
Language Processing (NLP) [2,3] and Computer Vision (CV) [4,5].

Existing SSL research in the speech area centers around learn-
ing more powerful pre-trained networks that yield higher accuracy in
downstream tasks. SSL techniques have been shown critical to ad-
vance research with state-of-the-art (SOTA) results in speech tasks
such as automatic speech recognition (ASR) [6], automatic speaker
verification (ASV) [7], query by examples (QbE), and intent clas-
sification (IC) [8]. Pre-trained networks also show promising per-
formance in low or zero resource scenarios [9, 10]. These stud-
ies often evaluate SSL techniques in different benchmarking tasks

and datasets, downstream model architectures, and fine-tuning tech-
niques (e.g., fine-tuning entire models or freezing the pre-trained
networks). To encourage comparable experiments and a compre-
hensive understanding of SSL techniques, SUPERB [11, 12] was
introduced to the speech community. SUPERB aims to provide a
standard framework to train, evaluate, and compare the efficacy and
generalizability of SSL speech networks on 13 speech tasks in recog-
nition, detection, semantics, speaker, paralinguistics, and generation
domains.

We observed a growing interest in SUPERB from the speech
community. For example, a SUPERB session was organized in The
2nd Workshop on Self-supervised Learning for Audio and Speech
Processing @ AAAI 20221 and tutorials about SSL methodologies
and their evaluation using SUPERB, were given at ICASSP and
NAACL 2022 [13]. Despite the abundant interest, research still fo-
cuses on getting better accuracy, and this focus inevitably leads to
using more model parameters, pre-training data, and computation
resources. The demand for computation resources is prohibitive for
SSL getting wider adoption in academia and production where real-
time inference is critical and for more researchers to participate and
advance the SSL technology.

The SUPERB @ SLT 2022: challenge on generalization and effi-
ciency of self-supervised speech representation learning (denoted as
the challenge in the following) is then organized to motivate more
and diverse SSL innovation. In the challenge, we establish multiple
groups of downstream tasks based on the SUPERB and extended
SUPERB-SG [11, 12] tasks for participants to analyze model ca-
pability from different aspects. Diverse metrics beyond accuracy,
including memory usage and number of operations, are built to en-
courage the exploration of efficient SSL techniques with lower mem-
ory footprint and computation requirements. Besides, we open two
tracks of submission, the public-set track and the hidden-set track,
for tuning developed techniques and evaluating the generalizability
of techniques, respectively. The goal of the challenge is to 1) con-
tinue existing momentum in SSL innovation, and 2) motivate the
community to rethink the design criteria and evaluation metrics, and
encourage generalizable and efficient SSL techniques beyond task
performance. In this paper, we summarize the challenge organi-
zation, participating SSL techniques, and the outcomes. After the
challenge was open, we have gathered 5 different models submit-
ted to the public-set leaderboard and 9 different models submitted
to the hidden-set leaderboard. Among the models on the hidden-set
leaderboard, one has been accepted by Interspeech 2022, 4 submit-
ted papers to SLT 2022, and the other four have not yet been pub-

1https://aaai-sas-2022.github.io/
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lished. They have enormously different model sizes (from 22.50M
to 619.82M) and design targets (achieving SOTA, model compres-
sion, more robustness, etc.). We hope the challenge evangelizes SSL
for the speech community.

2. BACKGROUND

2.1. Self-supervised learning (SSL) for speech

Self-supervised learning (SSL) is getting popular in the speech area
nowadays, after its wide success in Natural Language Processing
(NLP) [2, 3] and Computer Vision (CV) [4, 5]. Based on the design
of pretext tasks, which are used to obtain proxy supervision tasks
for pre-training networks in SSL, SSL techniques in speech can be
classified into three categories: generative approaches, contrastive
approaches, and predictive approaches.

For generative approaches, the pretext task is to generate data,
i.e., reconstruct the input, based on the masked or corrupted input
or to predict future input from the past. Approaches in this category
consist of APC [14–17], DeCoAR [18, 19], Mockingjay [20, 21],
TERA [22], MPC [23–25] , speech-XLNet [26], NPC [27], and
PASE+ [28, 29]. Pretext tasks for contrastive approaches are de-
signed to learn a latent space representation, where distance is min-
imized between the anchor and positive examples while maximized
between the anchor and negative. Positive and negative examples
are often created by utilizing the distance between input frames and
data augmentation. Representative works in contrastive approaches
include CPC [30], wav2vec [31, 32], and wav2vec 2.0 [10]. In-
spired by BERT in NLP, predictive models, such as HuBERT and
WavLM [9, 33], aim good representations from unmasked input and
infer discrete tokens at masked positions. Given the growing popu-
larity of SSL in the speech area, an overview paper [1] and a tuto-
rial [13] have been put to review recent works in this direction and
attract more researchers to contribute.

2.2. Benchmarking SSL techniques in speech

The efficacy of SSL techniques is usually evaluated in the follow-
ing two-step setting. First, networks are pre-trained with pretext
tasks designed in SSL techniques. Then the pre-trained networks are
appended with optional prediction layers and fine-tuned with vari-
ous downstream tasks. The fine-tuned results are evaluated towards
downstream tasks to measure the efficacy of SSL techniques and the
quality of their learned networks. There are established benchmarks
for evaluating SSL in common settings, such as GLUE [34] in NLP,
VTAB [35] in CV, and CH-MARL in Multimodal [36]. However, re-
searchers in the speech area often adopted more diverse settings [1].
The design of prediction layers and fine-tuning methods are different
across works and downstream tasks ranging from ASR and ASV to
speech translation (ST) and Speech enhancement (SE).

Due to the diversity in evaluation settings, there are increas-
ing efforts to establish common benchmarking settings with shared
downstream tasks and datasets. SUPERB [11, 12] consolidates set-
tings of prediction layer architectures, hyperparameter spaces, and
tunable parameters to provide the SSL community with a bench-
marking platform. SUPERB allows researchers to plug in their
pre-trained networks and evaluate on 13 different speech tasks by
leveraging s3prl toolkit2. LeBenchmark [37] provides a bench-
mark to understand the performance of SSL techniques in French.

2https://github.com/s3prl/s3prl, this is a toolkit independent from SU-
PERB benchmark and challenge, but is fully capable to evaluate them.

ZeroSpeech [38] is a challenge to build speech and language under-
standing with zero expert resources and is also used for analyzing the
quality of SSL models [39,40]. These efforts help researchers under-
stand SSL techniques in downstream performance. Since SUPERB
has diverse speech processing tasks and uses both popular publicly
available datasets and newly generated datasets in those tasks. In
this challenge, we extend SUPERB and encourage the community
to think further for efficient use of computation resources while
building powerful techniques.

3. CHALLENGE OVERVIEW

This challenge benchmarks the efficacy of self-supervised learn-
ing (SSL) speech networks in various types of downstream tasks
and its computation requirements. To keep the cost affordable
and accelerate the development iteration, the challenge chooses
Phoneme Recognition (PR), Speaker Identification (SID), Emotion
Recognition (ER), Automatic Speech Recognition (ASR), Query-
by-Example (QbE), Automatic Speaker Verification (ASV), Speaker
Diarization (SD), Source Separation (SS), Speech Enhancement
(SE), and Speech Translation (ST) from the SUPERB and extended
SUPERB-SG [11,12] tasks. Researchers participate in the challenge
by submitting their SSL pre-trained (i.e., upstream) model. Fol-
lowing the same evaluation framework introduced in them, we, the
challenge organizers, extract multiple frozen hidden states from
the pre-trained SSL model by default and then train a learnable
weighted-sum over the hidden states along with the downstream
model with predefined architecture task-by-task. Participants are
allowed to apply some task-specified pre/post-processing on their
upstream model for better adaptation to each dwnstream task.

3.1. Metrics

We use two types of metrics to measure the generalizability and com-
putation requirements of SSL speech networks. For the former one,
we proposed SUPERB score (superbs) as an overall metric to show
how well each SSL technique performs in all downstream tasks. For
the latter one, we choose the theoretical multiply-accumulate oper-
ation (MACs) and the number of parameters (Params) as indicators
for time and space cost.

3.1.1. Generalizability Metrics

Let st,i be the ith metrics for task t, st,i(u) be the corresponding
score of upstream model u, T be the set of tasks, and It be the set
of metrics for task t. We first convert all scores to the same scale by
linear interpolation with respect to baseline and SOTA. If a task has
more than one metric, we also apply an intra-task average. Then the
last step is doing an inter-task average and multiplying 1000.

superbs(u) =
1000

|T | ΣT
t

1

|It|
ΣIt

i

st,i(u)− st,i(baseline)

st,i(SOTA)− st,i(baseline)

To keep the value of SUPERB score static, we obtain the baseline
and SOTA from the SUPERB leaderboard snapshot on October 15,
2021, which is the launch of leaderboard. superbs is designed to
provide a comprehensive view of model capability and take the dif-
ficulty of each task into consideration. If the performances of the
SOTA and baseline are close on a task, then a little improvement
should be more valuable than a task has a large difference.



Fig. 1: This figure shows the MACs (X-axis, in log scale) versus SUPERB score superbs (Y-axis) on the hidden-set track, including all
except FBANK models below, which have run ten tasks.

3.1.2. Efficiency Metrics

Taking advantage of DeepSpeed3, an existing deep learning opti-
mization library including a function for profiling neural networks,
we use it as the backbone and customize it for profiling networks
in this challenge. We implement the estimation of MACs at the
software level by wrapping each function / operator in pytorch with
an approximation formula, regardless of the real implementations at
the hardware level. For feasibility, we select 32 real audios from
LibriSpeech [41] test-clean split, chosen equally from short to long.
More implementation detail can be found at our fork repository4.

3.2. Dataset

To facilitate the development of SSL techniques and fair comparison
over challenge submissions, we choose to have two datasets for each
task. One is public-available, and representative in the correspond-
ing speech processing task, e.g., LibriSpeech [41] used in ASR and
PR. The other is newly created by us and held out as hidden-set. The
differences between the two datasets are controlled to be only in 1)
recording conditions, 2) spoken content / text scripts, 3) speakers,
and 4) the amount of labeled data. To build the hidden datasets, we
collected English text from selected existing corpora and split text
into sentences. We worked with LxT5 and recruited 60, gender bal-
anced human speakers to read sentences and record the audio. All
collected data is processed into subsets of audio between 1 to 5 hours
for train, dev, test split of each downstream task. LxT also translated
provided text to German for our en-to-de Speech Translation task.

3.3. Challenge participation

We provide two submission tracks for participants to choose from.
The public-set track is mainly for development, demonstrating the
task designs of our challenge. Participants can tune the hyperpa-
rameters and apply any fine-tuning techniques to reach the best per-
formance of their models. Submissions to public track are made
by uploading the prediction files. Participants cannot access data
in the hidden-set track, and they have to submit their pre-trained

3https://github.com/microsoft/DeepSpeed
4https://github.com/B06901052/DeepSpeed/tree/superb-challenge
5https://www.lxt.ai/

model checkpoints and model architecture. We evaluate submis-
sions with a fixed training procedure and sweep over several de-
fault learning rates defined by ourselves, which will be a subset of
{1, 0.1, ..., 10−6, 10−7} for each task. To lower the bar of partici-
pation and encourage more diverse aspects of efforts, we also allow
only evaluation on a subset of tasks, and participants can control
whether to present their results on the online leaderboard or not.

As an online challenge, we are capable of demonstrating results
in more comprehensive ways. The classic table show the score of
each task. The scatter chart (Fig. 1) compares efficiency metrics with
performance metrics, and can select which one to use by users, visu-
alizing the trade-off between them. The radar chart (Fig. 2) enables
fast performance comparison of models in each task.

4. SUBMISSIONS

4.1. Submission to Public Leaderboard

This subsection briefly introduces the models submitted to the
public-set track. The models in this subsection are not submitted to
the hidden-set track, so their results are not in Table 1 and Fig. 1,
except WavLM series and DistilHuBERT, which are evaluated on
the hidden-set by the organizers for comparison.

WavLM series (WavLM Base, WavLM Base+, WavLM
Large) [33]: WavLM used the same pretext task as HuBERT [9].
The WavLM framework proposed an utterance mixing strategy
where partially overlapped signals from different speakers are con-
structed to augment the training data. The pre-training data used
for WavLM extends the 60k hours of pre-trained audio used for
HuBERT and wav2vec 2.0 to reach a total of 94k hours of audio.

data2vec Large [42]6: data2vec predicts contextualized la-
tent input representations given the masked view of the input. The
data2vec approach was shown to work well for speech representation
learning and visual and text representations [42].

FaST-VGS+ [43]: FaST-VGS+ is an SSL model that learns to
associate raw speech waveforms with semantically related images.
It is learned in a multi-task fashion with a masked language model-
ing objective in addition to the visual grounding objective. It uses
wav2vec 2.0 base as its initialization.

6The model is publicly available. It is not submitted by the original au-
thors.



Table 1: Evaluating various SSL representations on various downstream tasks in the hidden-set track. The toplines are the SOTA methods
from the SUPERB leaderboard snapshot on October 15, 2021, which is the leaderboard launch date. The numbers are collected with public-
available checkpoints or codes, and we welcome researchers to re-submit the results to our online leaderboard. In this table, we also put
FBANK, HuBERT-base, HuBERT-large, wav2vec 2.0-base, and wav2vec 2.0-large for comparison.

PR SID ER ASR (w/o LM) QBE ASV SD SS SE ST Generalizability Computation Requirements
PER↓ Acc↑ Acc↑ WER↓ MAP↑ EER↓ EER↓ DER↓ SI-SDRi↑ STOI↑ PESQ↑ BLEU↑ superbs MACs (G) Params (M)

1.baseline (FBANK) 81.66 48.17 46.98 91.54 12.72 35.98 24.04 13.40 2.85 84.46 1.5300 2.32 0 0.479 0
2.topline (previous SOTA, marked with *) 18.22 80.25 60.99 27.06 49.06 16.55 9.81 9.10 7.30 85.29 1.5694 20.01 1000 - -
3.HuBERT-base 19.19 70.33 60.16 37.25 *49.06 *16.55 13.92 9.45 5.98 84.77 1.5392 15.53 784 1669 94.70
4.HuBERT-large *18.22 80.00 64.84 *27.06 31.00 33.05 *9.81 *9.10 *7.30 *85.29 1.5676 *20.01 957 4324 316.61
5.wav2vec 2.0-base 24.50 75.58 52.20 48.85 32.08 28.51 13.48 11.09 5.73 84.47 1.5250 14.81 582 1669 95.04
6.wav2vec 2.0-large 22.55 *80.25 *60.99 29.93 39.20 22.48 10.38 10.22 6.87 85.06 *1.5694 18.50 898 4326 317.39
7.WavLM-base 19.01 71.17 54.67 36.46 56.49 12.59 13.51 10.29 8.67 85.27 1.5710 16.46 889 1670 94.38
8.WavLM-base+ 15.29 83.08 57.42 31.47 56.31 15.05 12.14 9.85 9.15 85.61 1.5763 19.34 1027 1670 94.38
9.WavLM-large 16.80 92.75 66.21 24.48 50.97 16.93 7.97 8.73 9.13 85.96 1.5999 22.93 1242 4326 315.45
10.DistilHuBERT 35.83 74.75 56.59 64.09 44.08 19.08 12.33 10.62 5.45 84.61 1.5323 10.55 617 826 27.03
11.SpeechCLIP (parallel small) 19.98 64.00 60.99 37.65 49.13 16.74 14.30 11.22 5.52 84.48 1.5276 14.96 678 1846 109.27
12.SpeechCLIP (parallel large) 15.76 85.17 61.81 27.46 31.00 33.05 9.88 9.37 7.43 85.36 1.5549 20.64 942 4630 342.59
13.SpeechCLIP (cascaded small) 19.80 57.33 57.97 37.57 49.13 16.74 14.06 10.68 5.53 84.43 1.5341 15.02 657 1850 109.49
14.Robust SSL (HuBERT-base) 18.61 81.25 60.16 36.10 55.19 14.10 12.30 10.49 6.46 85.57 1.5644 15.22 912 1669 94.70
15.Robust SSL (DistilHuBERT) 30.87 79.42 56.04 61.13 45.92 19.58 11.44 10.89 4.92 85.08 1.5556 9.95 684 826 27.03
16.adding silence (HuBERT-base, front 1/10) - - - - - - 12.98 - - - - - - 1848 94.70
17.adding silence (HuBERT-large, front 1/10) - - - - - - 9.61 - - - - - - 4787 316.61
18.Sequence reduction (w2v2u, last layer) 37.84 72.25 58.79 - 38.02 20.27 14.43 - - - - - - 617 24.80
19.Sequence reduction (w2v2u, all layers) 38.73 72.92 52.47 - 46.18 17.01 13.51 - - - - 7.26 - 626 28.35
20.Sequence reduction (l25, all layers) 38.09 72.42 57.42 - 43.89 16.59 13.45 - - - - 7.18 - 633 28.35
21.MelHuBERT-10ms 31.43 63.92 48.90 50.04 36.19 27.72 17.00 11.04 5.83 85.07 1.6236 9.99 630 2424 90.20
22.MelHuBERT-20ms 25.98 53.25 49.45 48.18 35.68 29.26 16.89 11.27 4.85 84.61 1.5433 11.55 460 1110 90.20
23.Unsupervised ASR 17.22 91.17 65.11 31.11 40.51 21.99 9.60 10.26 7.20 85.07 1.5500 18.33 958 4339 320.18
24.Unsupervised ASR + T5 18.14 80.92 66.48 36.25 40.51 21.99 11.39 11.11 6.70 84.79 1.5402 17.39 848 5149 619.82
25.Chimera MelHuBERT v1 52.17 50.50 55.22 86.45 27.36 27.13 16.00 12.47 2.12 82.92 1.4921 5.69 104 271 22.50

Fig. 2: Model performance comparison by radar chart on the public-
set. The value is component of SUPERB score from each task before
doing inter-task average. Left: Comparison of FaST-VGS+ and its
initialization, wav2vec 2.0. Right: Comparison of HuBERT and its
compressed version, DistilHuBERT and LightHuBERT small. We
compare DistilHuBERT and LightHuBERT because they have close
model sizes.

DistilHuBERT [44]: DistilHuBERT is trained with a teacher-
student learning framework with knowledge distillation. The student
network consists of a subnet followed by some prediction heads,
where the subnet is constructed by reducing the number of trans-
former encoder layers of the HuBERT teacher model. Given an input
speech utterance, prediction heads predict the hidden layer represen-
tations of some specific layers of the teacher model.

LightHuBERT series (LightHuBERT Stage 1 and LightHu-
BERT Small) [45]: LightHuBERT is a model compression frame-
work that consists of a once-for-all Transformer, a contextualized
latent representation distillation objective, and a two-stage training
strategy. Stage one trains the largest architecture of the once-for-all
Transformer from scratch via the loss function of the pre-training
distillation. Stage two implements the once-for-all training on the
supernet initialized by distilled weights.

Fig. 3: Model performance comparison by radar chart on the hidden-
set. The value is component of SUPERB score from each task before
doing inter-task average. Left: Comparison of HuBERT-base and
Robust SSL (HuBERT-base). Right: Comparison of DistilHuBERT
and Robust SSL (HDistiluBERT).

4.2. Submission to Hidden-set Track

Here we introduce the SSL models submitted to the hidden-set track.
The models without reference are not yet officially published or sub-
mitted to any conference when writing this paper.

SpeechCLIP [46]: SpeechCLIP is a framework bridging speech
and text through images to enhance speech SSL models by leverag-
ing Contrastive Language-Image Pre-training (CLIP), a model pre-
trained to align parallel image-text data [47]. SpeechCLIP has two
versions: parallel and cascaded. The parallel SpeechCLIP aligns
speech and CLIP image encoders and implicitly bridges speech and
text representations since CLIP’s image and text encoders are well-
align. The cascaded SpeechCLIP cascades CLIP’s text encoder on
top of the speech encoder, forcing the model to output subword em-
beddings. All the SpeechCLIP models add additional layers on top
of HuBERT, and only the additional layers are learned with CLIP.
For the SpeechCLIP submissions, the model with ”small” in its name
is based on HuBERT-base, while ”large” means based on HuBERT-
large.

Robust SSL [48, 49]: Pre-training SSL models with target do-
main data is an intuitive way to adapt SSL models to another do-



main [50]. This submission continuously pre-trained the HuBERT-
base model with distorted speech data for some additional steps to
enhance robustness. Distorted speech is generated by applying both
additive distortions and non-additive distortions, and the details are
in [49].

Robust SSL with Knowledge distillation [49]: This SSL
model uses the teacher-student framework as DistilHuBERT [44].
To overcome the problem that DistilHuBERT is especially vul-
nerable to distorted speech, the teacher model performs continual
training as in the last paragraph so that the student model would have
a more robust target to learn with, and during knowledge distillation,
the teacher and student model have different distorted inputs.

ccc-wav2vec 2.0 [51]7: ccc-wav2vec 2.0 uses clustering and an
augmentation-based cross-contrastive loss as its self-supervised ob-
jective. The Cross-Contrastive loss is computed between the encoder
output of the original sample and the quantizer output of its augmen-
tation, and vice-versa, bringing robustness to the pre-training strat-
egy. ccc-wav2vec 2.0 achieves up to 15.6% and 12.7% relative WER
improvement over the baseline wav2vec 2.0 on the test-clean and
test-other sets, respectively, of LibriSpeech, without the use of any
language model. It also achieves up to 14.9% relative WER improve-
ment over the baseline wav2vec 2.0 when fine-tuned on Switchboard
data.

Adding silence [52]: It has also been shown that in the SID
task (public-set track) of SUPERB, if the silence ratio is less than
5%, performance will be reduced by about 30% to 50% compared
to other cases [52]. The observation inspired a straightforward way
to improve the accuracy of speaker-related tasks – adding silence to
the utterances without sufficient silence. This submission modifies
the preprocessing process by padding silence in front of the utter-
ances before HuBERT-base and HuBERT-large models extract the
representations. The lengths of silence are 1/10 of the whole ut-
terances. This submission only modifies the preprocessing without
changing the existing SSL models. The submissions are only eval-
uated on ASV because this approach is only designed to improve
speaker-related tasks.

MelHuBERT: MelHuBERT is a replication study of HuBERT
on Melspectrogram with simplified HuBERT loss. The only dif-
ference in model architecture is that MelHuBERT does not have
convolutional feature extractor at the beginning. Instead, it directly
takes Melspectrogram as input. There are two variants with different
frame period, MelHuBERT-10ms and MelHuBERT-20ms. Despite
that MelHuBERT-10ms has more MACs comparing to HuBERT due
to input sequence length, MelHuBERT-20ms successfully reduce
the MACs by 33% by removing the convolutional feature extractor.
To further reduce the computational overhead during pre-training,
MelHuBERT-10ms and MelHuBERT-20ms only use a smaller batch
size of 32.

Sequence reduction [53]: The paper [53] investigates variable-
length subsampling to reduce the sequence length along the time axis
to reduce the computational cost. In variable-length subsampling,
a sequence of boundaries is first detected by Continuous Integrate-
and-Fire (CIF) [54]; vectors within each segment are pooled and
passed to the subsequent layers. The paper also investigates using
different approaches to guide the learning of CIF. “w2v2u” and “l25”
in the submissions refer to different guidance approaches. Please re-
fer to [53] for details. “last layer” means only the last layer output
is used in downstream tasks, while “all layers” means the represen-

7We thanks the authors for providing the model description. The authors
plan to submit the model but cannot do it before the submission of this paper
due to time limitations, so the results of the model are not in Table 1 and
Fig. 1.

tations from all layers are weighted sum. As the sequence reduction
approaches change the sequence lengths, they cannot be evaluated
on some tasks.

Chimera MelHuBERT v1: This model combines Robust SSL
(DistilHuBERT) and MelHuBERT. MelHuBERT has demonstrated
the computation requirements of taking Melspectrogram as input
while reducing the CNN feature extractor. Chimera MelHuBERT
v1 further incorporates this technique in Robust SSL. Specifically, in
the robust distillation framework, the teacher model is the robust Hu-
BERT, and the student model is the DistilHuBERT with Melspectro-
gram as input. Therefore, during distillation, only two transformer
layers are trained on top of the Melspectrogram with the robust dis-
till loss as the objective. As a result, Chimera MelHuBERT v1 can
achieve low MACs and few trainable parameters.

Unsupervised ASR (wav2vec-u 2.0): Hidden representations
from self-supervised models have been used in the unsupervised
ASR task [55–57]. The submission considers an adversarial-trained
unsupervised ASR model (i.e., wav2vec-u 2.0) as an SSL model.
The phoneme posteriorgram is an additional feature for downstream
tasks. As phoneme posteriorgram and wav2vec2’s representations
do not have the same time resolution, we upsample the posterior-
gram, which is done just by repeating the vectors, by a factor of
three to match the 20ms frame-shift for wav2vec2. The predicted
phoneme posteriorgram is concatenated with the wav2vec2 feature
as the downstream models’ input. The unsupervised ASR model
is trained on Librispeech-960 hours with unpaired text from the Lib-
rispeech language modeling corpus. Note that the unsupervised ASR
model is trained without the auxiliary K-means loss as its original
version to improve stability [56].

Unsupervised ASR + Phoneme T5: Unsupervised ASR tran-
scribes speech signals into phoneme sequences. This submission
leverages the encoder of phoneme-based T58, a variant of T5 that
takes phonemicized text as input. Phoneme-based T5 encoder takes
the output of unsupervised ASR as input and generates a sequence of
representations. The representations generated from the phoneme-
based T5 encoder are concatenated with the wav2vec2 feature and
phone posteriorgram as an additional feature. The model’s target
is to generate semantic representation from the phoneme-based T5
encoder to improve the spoken language understanding tasks. Only
the last hidden representation from the phoneme-based T5 encoder
is applied for the additional feature.

In the following, we summarize the work that modified the up-
stream models used in the SUPERB benchmark. The results in these
papers cannot be compared with the submission in Table 1 because
they have different downstream models.

Adapter [58]: This study aims to explore efficient tuning meth-
ods for speech self-supervised learning. Adapters are lightweight
modules inserted into SSL models. In downstream tasks, the param-
eters of SSL models are frozen, and only the adapters are trained.
The study shows that with an adapter, the performance parity can be
achieved with over 90% parameter reduction. The study further finds
that the Houlsby adapter [59] is the most efficient in the trade-off be-
tween performance and the number of parameters, and the Weighted
sum strategy used in the SUPERB challenge is a very suitable effi-
cient method to use in SSL speech tasks.

Correlation Pooling [60]: For utterance-level classification
tasks in SUPERB (e.g., SID, ER, etc.), the default downstream
model in the challenge is to aggregate the speech representations
across time by mean pooling. Correlation pooling [60], which ex-
tracts correlations between the coefficients of the representations,

8https://huggingface.co/voidful/phoneme_byt5
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shows improvements over mean pooling.

4.3. Discussion of Hidden-set Track Results

Here we summarize the general observations in the challenge, in-
cluding both the public-set and hidden-set tracks. The results of
hidden-set track are shown in Table 1 and Fig. 1.

The designs of the submitted models vary a lot. WavLM
series uses more pre-training data and new augmentation meth-
ods. data2vec is a new self-supervised objective. FaST-VGS+ and
SpeechCLIP improve SSL with visual information associated with
audio. DistilHuBERT, LightHuBERT, MelHuBERT compress the
SSL models to reduce the number of parameters, while Sequence
reduction shortens the sequence to reduce the computation. Robust
SSL (with knowledge distillation) and ccc-wav2vec 2.0 improve the
robustness of SSL models. “Adding silence” modifies the audio pre-
processing pipeline. Unsupervised ASR (+ Phoneme T5) leverages
text unpaired with audio. Chimera MelHuBERT is the integration of
different approaches.

The submissions have a vast range of MACs and network
parameters. Among all the submissions, Chimera MelHuBERT v1
is the model with the least MACs (271G) and network parameters
(22.50M). Unsupervised ASR + T5 has the most MACs (5149G)
and network parameters (619.82M).

On the SUPERB public leaderboard, WavLM Large achieved
the SOTA on all the tasks, except ASR (ranked 2nd place), while
data2vec achieved the SOTA on ASR. On the hidden-set, consider-
ing all the SSL models in terms of superbs and their computation
requirements in Fig. 1, for the group with larger MACs, WavLM is
still the best; for the small models, “Robust SSL (DistilHuBERT)” is
the best. Comparing SSL models with FBANK, all the submissions
outperformed FBANK, except in some cases in SS and SE. The
observation shows that SSL models are beneficial for most speech
processing tasks. However, we need more study on leveraging the
SSL models effectively in tasks involving speech generation like SS
and SE.

The results of incorporating visual information are mixed.
The comparison of FaST-VGS+ and its initialization wav2vec 2.0
on the public-set track is in Fig. 2. FaST-VGS+ is especially strong
on KS and IC. On KS and IC, it outperforms other models, except
WavLM Base+ and WavLM Large, which use much more pre-
training data than FaST-VGS+ (1.7k hours v.s. 94k hours). But
FaST-VGS+ especially degrades the performance of SID. On the
hidden-set track, for the SpeechCLIP models, when the models
have the same size, the parallel model and the cascade model have
comparable superbs (“cascade small” v.s. “parallel small”). The
SpeechCLIP models labeled with “small” adds extra layers on top
of HuBERT-base, but their performance is inferior to HuBERT-base
for almost all tasks, especially the speaker-related tasks, SID, ASV,
and SD, with the same trend as FaST-VGS+. Increasing the model
size of SpeechCLIP improves its performance remarkably (“parallel
small” v.s. “parallel large”). We found that SpeechCLIP (parallel
large) outperformed HuBERT-large on SID, PR, and ASR, achieved
a very low PR error rate, only worse than WavLM-base+. We see
the benefit of incorporating visual information during pre-training
on some downstream tasks, but how to leverage visual information
to improve all downstream tasks requires further study9.

On the public-set track, DistilHuBERT reduces HuBERT-
based’s size by 75% while retaining the performance on some

9Since FaST-VGS+ does not submit to the hidden-set track, and Speech-
CLIP does not submit to the public-set, we cannot compare SpeechCLIP and
FaST-VGS+ side-by-side.

downstream tasks, but compared with HuBERT-based, the per-
formance of DistilHuBERT remarkably degrades on ASR and
ASV. LightHuBERT small achieves comparable performance to
the teacher model (HuBERT-base) in most tasks with a parameter
reduction of 29%. The comparison of HuBERT, DistilHuBERT,
and LightHuBERT are in Fig. 2. On the hidden-set track, the three
submissions regarding sequence reduction approaches have different
performances on ER and QbE, but it is hard to conclude which one
is the best. The sequence reduction submissions have approximately
the same parameter numbers as DistilHuBERT while decreasing the
MACs, but their performances on most of the tasks also decrease
compared with DistilHuBERT. The results show that we still need
more study to reduce representation sequence effectively. Sequence
reduction is a promising new research direction to reduce the com-
putational cost of the speech SSL models because its reduction is
orthogonal to the existing compression models like DistilHuBERT
and LightHuBERT and can integrate with them.

The comparison of the robust SSL models and their coun-
terparts on the hidden-set track are shown in Fig. 3. In sum-
mary, robust SSL models improve the superbs in the challenge (Ro-
bust SSL (HuBERT-base) v.s. HuBERT-base, Robust SSL (Distil-
HuBERT) v.s. DistilHuBERT), and they are especially good at SE
and SID. Although the testing set in the challenge does not have
speech distortion like the original papers proposing the robustness
approaches [48, 49], making the DistilHuBERT and HuBERT-based
more robust by training with distorted speech still increases their
superbs in the challenge.

On the hidden-set track, adding silence to the front of Hu-
BERT improves the performance of ASV. The results support the
hypothesis that HuBERT uses the representations corresponding to
silence to store speaker information [52].

Then, we compare all the submissions regarding unsuper-
vised ASR on the hidden-set track. Unsupervised ASR is based
on wav2vec 2.0-large, so it is reasonable to compare the two mod-
els. Unsupervised ASR improves PR, SID, and ER, only slightly
degrading in ASR, SD, and ST. Unsupervised ASR has outstanding
SID performance ranking at the 2nd in the Table of 1), only worse
than WavLM-large. Moreover, in terms of the performance of ER,
unsupervised ASR is only worse than WavLM-large and Unsuper-
vised ASR plus T5. It is reasonable that by adding text information,
unsupervised ASR can improve PR, but why it achieved good results
on SID and ER is unclear and still under investigation. Adding T5
does not further improve any tasks except ER.

5. CONCLUSIONS

SUPERB challenge at SLT 2022 challenges the speech community
to build performant SSL techniques, and meanwhile achieve strong
task generalizability and computation efficiency. The challenge aims
to encourage researchers to consider more design criteria beyond
model performance while building SSL techniques, such that SSL
can expand its impact in more practical use cases. We review 14
models participating in this challenge, present our discoveries and
highlight potential research directions in SSL.

6. ACKNOWLEDGMENTS

We thank National Center for High-performance Computing (NCHC)
of National Applied Research Laboratories (NARLabs) in Taiwan
and Taiwan Web Service (TWS) for providing computational and
storage resources used in this challenge.



7. REFERENCES

[1] Abdelrahman Mohamed, Hung-yi Lee, Lasse Borgholt,
Jakob D Havtorn, Joakim Edin, Christian Igel, Katrin Kirch-
hoff, et al., “Self-supervised speech representation learning: A
review,” arXiv preprint arXiv:2205.10643, 2022.

[2] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova, “BERT: Pre-training of deep bidirectional trans-
formers for language understanding,” in NAACL-HLT, 2019.

[3] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah,
Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, et al.,
“Language models are few-shot learners,” NeurIPS, vol. 33,
pp. 1877–1901, 2020.

[4] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey Hinton, “A simple framework for contrastive learning
of visual representations,” in ICML. PMLR, 2020, pp. 1597–
1607.

[5] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin
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[60] T. Stafylakis, L. Mošner, S. Kakouros, L. Burget, and
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