
Theta: portfolio of CEGAR-based analyses with
dynamic algorithm selection (Competition

Contribution)

Zsófia Ádám1 , Levente Bajczi1 , Mihály Dobos-Kovács1 , Ákos Hajdu2 ,
and Vince Molnár1 ?(B)

1 Department of Measurement and Information Systems
Budapest University of Technology and Economics, Budapest, Hungary

molnarv@mit.bme.hu
2 Meta Platforms Inc., London, United Kingdom

Abstract. Theta is a model checking framework based on abstraction
refinement algorithms. In SV-COMP 2022, we introduce: 1) reasoning at
the source-level via a direct translation from C programs; 2) support for
concurrent programs with interleaving semantics; 3) mitigation for non-
progressing refinement loops; 4) support for SMT-LIB-compliant solvers.
We combine all of the aforementioned techniques into a portfolio with
dynamic algorithm selection.

1 Verification Approach and Software Architecture

Theta [10] is a generic and configurable model checking framework written in
Java 11. A simplified version of the architecture (focusing on software verification
aspects) can be seen in Figure 1.

C code
ANTLR
parser XCFA

CEGAR
analysis

Result
processing

Í/ä/ë
Witness

Simplification
passes

SMT interface

MathSAT CVC4 Z3

Metadata

Fig. 1. Architecture of Theta.

The input is a C program that is first translated to extended control-flow
automata (XCFA). Previously, Theta used LLVM [3], which had various advan-
tages, but its static single assignment (SSA) form proved overall disadvantageous
for abstraction-based algorithms. This year we use a new, direct translation (no

? Jury member representing Theta at SV-COMP 2022.

http://orcid.org/0000-0003-2354-1750
http://orcid.org/0000-0002-6551-5860
http://orcid.org/0000-0002-0064-2965
http://orcid.org/0000-0001-8001-8865
http://orcid.org/0000-0002-8204-7595


2 Zs. Ádám et al.

intermediate language and SSA form) via an ANTLR parser. Furthermore, the
CFA being “extended” refers to the fact that since this year we support con-
current programs by an analysis with interleaving semantics. After parsing we
apply various passes to the XCFA (e.g., large-block encoding or partial order re-
duction). The core of Theta is a CEGAR-based analysis framework, targeting
reachability properties via predicate and explicit analyses [8], along with inter-
polation and Newton-based refinements [7]. This year, Theta added generic
support for SMT solvers (including interpolation) via the SMT-LIB interface.
At SV-COMP’22 we use CVC4 [4], MathSAT [6], and Z3 [9], where the latter
is used via the Java API from before. Finally, a verdict (safe, unsafe, unknown)
and a witness is produced corresponding to the C program (using metadata from
the translation).

Has floats

Has bitvectors

Has loops and
cycl. compl. ≤ 30

300s

Mf/E/N Mf/PC/N

300s

C/E/N C/PC/Nyes
no

? ? ?

solver issue

300s

M/E/S M/PC/B

300s

Z/E/N Z/PC/N? ? ?

solver issue

30s

Z/PC/B

yes
no

Havocs ≤ 5 and
variables > 10

400s

Z/EA/S

500s

Z/E/S

Z/PC/B

Z/PB/B

yes

no

? yes

no

?

?

?

Fig. 2. Overview of the dynamic portfolio of Theta.

Verification portfolio. Based on preliminary experiments and domain knowl-
edge, we manually constructed a dynamic algorithm selection portfolio [1] for
SV-COMP’22, illustrated by Figure 2. Rounded white boxes correspond to deci-
sion points. We start by branching on the arithmetic (floats, bitvectors, integers).
Under integers, there are further decision points based on the cyclomatic com-
plexity and the number of havocs and variables. Grey boxes represent configura-
tions, defining the solver/domain/refinement in this order. Lighter and darker
grey represents explicit and predicate domains respectively. Internal timeouts
are written below the boxes. An unspecified timeout means that the configura-
tion can use all the remaining time. The solver can be CVC4 (C) [4], MathSAT
(M), MathSAT with floats (Mf) [6] or Z3 (Z) [9]. Abstract domains are explicit
values (E), explicit values with all variables tracked (EA), Cartesian predicate
abstraction (PC) or Boolean predicate abstraction (PB) [8]. Finally, refinement
can be Newton with weakest preconditions (N) [7], sequence interpolation (S) or
backward binary interpolation (B) [8]. Arrows marked with a question mark (?)
indicate an inconclusive result, that can happen due to timeouts or unknown re-



Theta 3

sults. Furthermore, this year’s portfolio also includes a novel dynamic (run-time)
check for refinement progress between iterations that can shut down potential
infinite loops (by treating them as unknown result) [1]. Note also that for solver
issues (e.g., exceptions from the solver) we have different paths in some cases.

2 Strengths and Weaknesses

Theta currently targets ReachSafety and ConcurrencySafety with limited sup-
port for structs, arrays and pointers, and no support for dynamic memory al-
location, mutexes and recursion. Due to this, Theta fails for most tasks in
ProductLines, Recursive, Heap and Arrays. Out of the 6163 tasks, roughly 2/3
can be translated and there are 888 confirmed correct (541 safe, 347 unsafe), 116
unconfirmed correct, and only 15 incorrect (11 false positive, 4 false negative)
results [5]. Note that almost all unsupported cases are detected and reported as
an error, and we only have a few incorrect results due to subtle issues.

The main strength of the tool is the combination of algorithm selection (pick
algorithm based on input) and portfolios (try multiple algorithms until one suc-
ceeds). Out of the 1004 correct results, 315 could not be solved by the first
configuration that the portfolio tries: dynamic checks intervened for 181 internal
timeouts, 72 solver issues (e.g. wrong models), 19 non-progressing refinements,
and 74 other (unknown) faults before the eventual success.

Having a diverse portfolio also paid off. Bitvector and float arithmetic tasks
were either solved by explicit analyses (with a mixture of interpolation- and
Newton-based refinements) before even trying predicate configurations, or if ex-
plicit analyses failed, predicate configurations were unsuccessful too. The inte-
ger arithmetic required a more diverse configuration set: Predicate abstraction
solved roughly 48% of the tasks (45% Cartesian, 3% Boolean) and explicit anal-
ysis solved 52% (33% with empty precision, 19% with all variables tracked).

The SMT-LIB support provided a great improvement: previously we only
had Z3, which still dominates the integer cases. However, all of the bitvector
tasks were solved by MathSAT, making Z3 an unused backup. With floats,
roughly half of the tasks were solved by MathSAT, while the other half needed
CVC4 as backup. Since floats are reduced to bitvectors, we did not rely on Z3
based on poor performance in our preliminary experiments.

The most successful subcategories are BitVectors, ControlFlow, Loops, XCSP
(38-45% correct), mostly because they use features of C that our frontend sup-
ports well. We plan to mitigate the high number of timeouts in the future with
approximations (e.g. mixing integers and bitvectors), and further analyses (e.g.,
inferring loop invariants). We also have a significant amount of unconfirmed
results: we believe this can be improved by generating more compact witnesses.

This year Theta added support for sequential concurrency via a preprocess-
ing step: it yields an encoding where exploring all interleavings preserve inter-
thread behaviors. The analyses treat consecutive non-global memory accesses
as one atomic block, reducing the exploration of unnecessary total orders. A
drawback of using preprocessing for partial order reduction instead of an on-line



4 Zs. Ádám et al.

algorithm is the superfluous exploration of certain total orders, e.g., all inter-
leavings of independent global memory accesses will also be explored. This is
because such accesses might overlap with non-independent memory accesses at
other times, and the preprocessing step is not aware of such details.

Using a wrapper, Theta integrates concurrency seamlessly with the exist-
ing framework (abstract domains, refinements), except the error location-based
search [8] (used for non-concurrent cases) because the required distance metric is
not well defined in concurrent programs. Instead, we opted to use a breadth-first
search, which had outperformed depth-first strategies in preliminary tests. We
theorize that this is due to bugs being reachable within the first few instructions
most of the time, but only via a specific total order. The performance for con-
current programs is still limited though, and we plan to integrate a declarative
approach in the future, which could be used for weakly-ordered programs as well.

3 Tool Setup and Configuration

The competition contribution is based on Theta 3.0.0-svcomp22-v1.3 Addition-
ally, Theta uses CVC4 v1.9, MathSAT v5.6.6 and Z3 v4.5.0. The project’s
repository contains build instructions, but an archive can be found at the SV-
COMP repository4 and Zenodo [2]. with pre-built binaries for Ubuntu 20.04
(LTS). The toolchain requires packages openjdk-11-jre-headless, libgomp1
and libmpfr-dev to be installed. The entry point of the toolchain is the script
theta/theta-start.sh, which takes the verification task (C program) as its
only mandatory input and runs the portfolio. As additional arguments we use
--portfolio COMPLEX --witness-only --loglevel RESULT. Further arguments
are described in the readme included with the binaries.

4 Software Project

Theta is maintained by the Critical Systems Research Group5 of the Budapest
University of Technology and Economics with various contributors. The project
is available open-source on GitHub3 under an Apache 2.0 license.

Data Availability. The version of Theta used in this paper is available at [2].

Acknowledgment and Funding. The authors would like to thank Tamás Tóth,
Milán Mondok, István Majzik, Zoltán Micskei and András Vörös for their con-
tributions to the project; and the competition organizers, especially Dirk Beyer
for their help during the preparation for SV-COMP. The research contributions
of the authors from the Budapest Univ. of Tech. and Econ. were funded by the
EC and NKFIH through the Arrowhead Tools project (EU grant No. 826452,
NKFIH grant 2019-2.1.3-NEMZ ECSEL-2019-00003), and by the UNKP-21-2
New National Excellence Program of ITM from the NRDI Fund.

3 https://github.com/ftsrg/theta/releases/tag/svcomp22-v1
4 https://gitlab.com/sosy-lab/sv-comp/archives-2022/-/blob/main/2022/theta.zip
5 https://ftsrg.mit.bme.hu

https://github.com/ftsrg/theta/releases/tag/svcomp22-v1
https://gitlab.com/sosy-lab/sv-comp/archives-2022/-/blob/main/2022/theta.zip
https://ftsrg.mit.bme.hu


Theta 5

References

1. Ádám, Zs.: Efficient techniques for formal verification of C programs. Bachelor’s
thesis, Budapest University of Technology and Economics (2021)

2. Ádam, Z., Levente, B., Dobos-Kovács, M., Hajdu, A., Molnár, V.: Theta: portfolio
of CEGAR-based analyses with dynamic algorithm selection (competition contri-
bution): Tool archive (data set) (2022). https://doi.org/10.5281/zenodo.5956737

3. Ádám, Zs., Sallai, Gy., Hajdu, Á.: Gazer-Theta: LLVM-based verifier portfolio with
BMC/CEGAR (competition contribution). In: TACAS 2021, LNCS, vol. 12652, pp.
435–439. Springer (2021). https://doi.org/10.1007/978-3-030-72013-1 27

4. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: CAV 2011, LNCS, vol. 6806, pp. 171–177.
Springer (2011). https://doi.org/10.1007/978-3-642-22110-1 14

5. Beyer, D.: Progress on software verification: SV-COMP 2022. In: Proc. TACAS.
Springer (2022)

6. Cimatti, A., Griggio, A., Schaafsma, B., Sebastiani, R.: The MathSAT5 SMT
solver. In: TACAS 2013, LNCS, vol. 7795, pp. 93–107. Springer (2013).
https://doi.org/10.1007/978-3-642-36742-7 7

7. Dobos-Kovács, M., Hajdu, Á., Vörös, A.: Bitvector support in the Theta formal
verification framework. In: Proceedings of the 2nd Workshop on Validation and
Verification of Future Cyber-Physical Systems (2021), in press.

8. Hajdu, Á., Micskei, Z.: Efficient strategies for CEGAR-based model
checking. Journal of Automated Reasoning 64(6), 1051–1091 (2020).
https://doi.org/10.1007/s10817-019-09535-x

9. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: TACAS 2008, LNCS,
vol. 4963, pp. 337–340. Springer (2008). https://doi.org/10.1007/978-3-540-78800-
3 24

10. Tóth, T., Hajdu, Á., Vörös, A., Micskei, Z., Majzik, I.: Theta: a framework for ab-
straction refinement-based model checking. In: FMCAD 2017. pp. 176–179 (2017).
https://doi.org/10.23919/FMCAD.2017.8102257

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

https://doi.org/10.5281/zenodo.5956737
https://doi.org/10.1007/978-3-030-72013-1_27
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-36742-7_7
https://doi.org/10.1007/s10817-019-09535-x
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.23919/FMCAD.2017.8102257
http://creativecommons.org/licenses/by/4.0/

	Theta: portfolio of CEGAR-based analyses with dynamic algorithm selection (Competition Contribution)

