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Abstract: We study pneumatically inflated membranes indented by rigid indenters of different sizes and 
shapes. When the volume of the inflated membrane is beyond a critical value, a symmetric deformation 
mode becomes unstable and the system follows a path of asymmetric deformation. This bifurcation is 
analyzed analytically for a 2D membrane with either a line or plane indenter for which the stable 
deformation path is determined by computing the total system potential energy of different configurations. 
An axisymmetric membrane with indenters of different shapes and sizes is further investigated numerically.  
In this case, a cylindrical indenter can always trigger bifurcation while a small spherical indenter tends to 
be encapsulated rather than induce an asymmetric deformation mode. This result suggests that the observed 
bifurcation behavior can be actively tuned and even triggered selectively by tuning indenter shape and size. 
We also demonstrate the effects of friction and biased bifurcation analytically through the example of a 2D 
membrane with a line indenter.  
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1. Introduction 

Inflation of soft and thin elastic materials is one of the most popular actuation technologies for driving 
modern soft robots [1], wearable haptic devices [2,3], and future space habitats [4] owing to the high energy 
density and uniformity of  pneumatic forces [5]. The outer shell structure of such devices needs to be made 
of material that is highly stretchable or foldable such that it can be inflated with relatively low pressure 
while  simultaneously exhibiting a  large actuation stroke and safe interaction with potentially fragile 
environments such as humans [6,7]. The bending stiffness of the structure is often minimized to better adapt 
to unknown shapes of other structures that come into contact with the soft robots [8]. For these types of 
pneumatically powered devices, the outer soft-shell structures, which are typically thin, can be 
approximated as connected membranes. Therefore, many interactions between soft robots and 
environments and contact between wearable human computer interface (HCI) devices and human tissues 
can be treated as inflated membranes that are indented by indenters of various shapes. Accordingly, a 
systematic understanding of indentation of inflated membranes can potentially provide great insights into 
the designs and performance limits of soft robots. 

The problem of indentation of inflated membranes naturally involves many sources of nonlinearity such 
as contact forces, large deformations, and nonlinear material constitutive behavior. Such nonlinearities can 
render the indentation process unstable and cause the deformation to deviate from its original and idealized 
path. In fact, our childhood experience of playing balloon stomp already suggests that when we put too 
much pressure on a balloon or when the balloon itself is too large, it is hard to keep the balloon right under 
one’s foot, i.e., it tends to escape. Instability and bifurcation from stable and symmetric deformation paths 
often lead to loss of overall structure stiffness and should be avoided for load bearing applications [9]. For 
other applications, instabilities can be used as a switch [10] or even an actuator [11].  In any case, it is 
important to understand the bifurcation associated with indentation of inflated membranes in order to fully 
explore the design space of soft robots interacting with geometrically complex environments. 



Previous studies for interfaces of droplets have already shown such instabilities. For example, 
compression of a droplet or capillary bridge between rigid surfaces will cause an axisymmetric droplet to 
become asymmetric [12]. A system of two droplets placed on top of one another and separated by an elastic 
membrane is also unstable, as a result, droplets tend to repel each other [13]. Both the inflated membrane 
and droplet systems can be seen as a class of problems in which isotropic hydrostatic pressure is in 
equilibrium with a surface that is in tension. However, replacement of a capillary surface of constant surface 
tension by an elastic membrane introduces new nonlinearities and makes the analysis of the indentation 
process more challenging. In fact, coupling of material nonlinearity with large deformation-induced 
curvature alone can produce many interesting bifurcation phenomena, e.g. localized bulging [14,15] and 
necking [16]. For hyper-elastic balloons, it is well known that pressure is normally not a monotonic function 
of membrane deformation, leading to a jump in deformation under pressure-controlled loading [17,18]. 
Because of a lack of bending stiffness, an inflated membrane is often wrinkled if coupled with flexible 
boundary conditions [19–21] and inflation of a wrinkled membrane can lead to non-trivial instabilities [22]. 
Including contact forces adds additional nonlinearities into the system. Contact studies for inflated 
membranes has been limited primarily to contact with a flat substrate [23–26] or a small indenter [27–30] 
and the associated instability behavior is limited to symmetric configurations  [31].  

In this work, we study indentation and bifurcation behavior of inflated membranes of different initial 
configurations. For simplicity, we assume that the indenters are rigid and contact between indenters and 
membranes is frictionless (although this is relaxed in a later section). The membrane is assumed to be a 
hyper-elastic material that supports general large deformations. Starting from 2D and cylindrical indenters, 
the critical condition for bifurcation can be determined analytically for two limiting cases, i.e., line contact 
and plane contact (indenters with radius equal to zero or infinity, respectively). Cases with finite radius 
cylindrical indenters are solved using finite element methods (FEMs). We then further consider contact 
between inflated axisymmetric membranes with cylindrical and spherical indenters of finite radius. In this 
case we find that bifurcation can be observed for cylindrical indenters but not for small spherical indenters, 
suggesting that it is possible to selectively trigger bifurcation of inflated membranes by using indenters of 
different sizes and shapes. 

2. Mechanics of an Inflated Membrane 

For soft robotic applications, the membrane often needs to go through fairly large deformation, with 
strains of the order of unity. By considering both finite amplitude contact and bifurcation there is no 
predetermined deformation pattern. Therefore, a general membrane model that allows arbitrarily large 
deformation should be used. Here, we follow the approach outlined by [32,33] in which the stress is uniform 
across the thickness of the membrane and a local plane-stress condition (i.e., stress component normal to 
the membrane is zero) is always satisfied.  

Let 3
0 R  denote the mid-surface of an undeformed membrane with thickness 0h  whose domain is 

defined as 

   0 0 0 2/ 2 /h h   X X , (1) 

where 3: RR   is the signed distance function to the mid-surface 0 . Let : tφ  denote the 
deformation map. By making the kinematic assumption that plane sections remain plane and normal to the 
mid-surface, the deformation of the membrane can be expressed as: 
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( )  φ X x mX XX , (2) 



where 3m n , n  is the unit normal to the mid surface of the membrane in the deformed configuration, 

which we denote by t , and 3  is the stretch ratio of the membrane in the thickness direction. With slight 

abuse of notation, let  1 2
0,  ˆ, :  X X  be a parameterization of 0 . Similarly, let 

  1 2, ,  : t  x x  be a parametrization of t  such that we can define a set of induced bases to the 

tangent space of 0  and t  as: 
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Further we define 3G  as the normal of the undeformed membrane, 3 g m . Then the reciprocal basis 
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For all the examples in this work, we assume that the reference configuration of the membrane lies on a 
plane such that we can use constant orthogonal unit vectors 2, 1, 

    E G G  as the basis and define 

the normal as 3 1 2E E E . 
For a general hyper-elastic constitutive law, the Cauchy stress σ  at the mid-surface of the membrane 

can be written as 
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where ( )W F  is the strain energy density function and  : det TJ  FF . In this work,  we demonstrate our 

results using an incompressible neo-Hookean model for simplicity, where   1 3
2

( )W I


 F C ,  is the 

shear modulus of the membrane and  1I C  is the first invariant of the right Cauchy-Green tensor TC F F

. Later, we will show that, at least for the 2-D scenario, most of our results are independent of the material 
model selection as long as the strain energy density function is a monotonic function of the stretch ratio. 
Using the plane stress condition (i.e.,  σ n 0 ) [34], the Cauchy stress can be expressed as 

 
0 0 0

2
3

T 
  

 F F 1σ . (6) 

The total energy of an inflated membrane under volume control can be expressed as 

   0), ( )( ( )P P V VW dV 


    φFφ , (7) 

where φ  is the displacement field defined in Eq. (2), 0(( ))P V V φ  is the Lagrange multiplier term that 

constrains the volume of inflated membrane to be equal to a pre-specified value 0V . Using the variational 

principle, solving the problem of membrane inflation is equivalent to finding Hφ  and P R   such that 

the variation of   relative to φ  and P  is zero, 



 , 0,  ,{ } ,  P PTH R       φ . (8) 

Here , PTH R  φ  and H  and TH  are the sets of admissible solutions and variations, respectively. 

Substituting Eq. (4), (5) and (7) into (8) and assuming that the stress is a constant throughout the thickness,  
the strong form governing equations of the system can be obtained as 

 

  0

S

P

P

P

V V


   





0

φ

τ n

, (9) 

where 
0

3 0: h


τ σ  is the membrane stress, S 



   αττ g  is the surface divergence of τ  and P  is the 

pressure applied on the membrane which numerically equal to the Lagrange multiplier P . Note that τ 

plays an analogous role to surface tension in the case of a droplet, and, with a suitable definition of τ ,  the 
first equation of (9) is equivalent to the Young-Laplace equation of capillary statics. 

3. Indentation of a 2D membrane with a cylindrical indenter 

As the simplest case, we consider a 2D membrane indented by a cylindrical indenter as shown in Figure 
1. A membrane of width 2a  is inflated by a uniform pressure and is in contact with a rigid cylinder of 

radius cr . Both the cylindrical indenter and membrane are infinitely long in the out of plane direction (plane 

strain) and the distance between the undeformed membrane and the lower edge of the cylinder is d . The 

basis for the undeformed configuration is { , , }31 2E E E , as defined in section 2, and that for the deformed 

membrane is 2

1
{ , , }

ξ ne e E , where ,ξ ne e  are the unit tangent and unit normal in the deformed configuration 

as shown in Figure 1.   is the in-plane stretch ratio of the membrane. Owing to material incompressibility, 

the stretch ratio in the thickness direction is 3

1


 . Then, following Eq. (4), the deformation gradient 

tensor can be written as 
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Substituting Eq. (10) into Eq. (6), the Cauchy membrane stress can be written as 
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Therefore, the in-plane tension of the membrane is 0 3
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. Further substitution of  Eq. (11) into 

the first equation of (9) yields 
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where the geometric condition /d d  ξ ne e  has been used and where   is the curvature of the deformed 

membrane.  From Eq. (12), it is clear that the shape of membrane that is not in contact with the indenter is 
part of a circle whose radius is determined by the balance of membrane tension and pressure. As shown in 
Figure 1, we denote the radius of the deformed membrane as mr . 

 

Figure 1 Schematics of an inflated 2D membrane indented by a rigid cylinder. The undeformed membrane is flat, represented by 
the dashed orange line, and the deformed membrane is denoted by the solid blue line. 

We assume that the contact between the membrane and the indenter is frictionless and adhesionless so 
that the membrane is tangent to the indenter and the tensions in the membrane to the left and right of the 
indenter are equal. Since the pressure is also uniform, the radius of the left and right circles should also be 
equal. 

3.1 Limiting case 1: line indentation ( 0cr  ) 

We first consider the extreme case when the size of the indenter goes to zero, i.e., line indentation. As 
analyzed above, the cross-sectional deformed shape of membrane should be two parts of a single circle 
joined together at the point of indentation as shown in Figure 2. Denoting the smaller part of a circle as A 
and the larger part as B, there are three possible deformed configurations, i.e., A-A, B-B, or A-B. During a 
quasi-static indentation/inflation process, the system will prefer the configuration that has the lowest total 
energy.  



 

Figure 2 Schematics of the possible deformed shapes of an inflated 2D membrane under line indentation. (a) The shape of the 
inflated membrane has to be part of a circle with fixed radius and arclength, i.e. either part A or part B. (b) The two parts of  the 

inflated membrane can be both part A or (c) both part B or (d) one part A and the other part B. 

The loading process has many possible paths, such as pressure- or volume-controlled inflation while 
the indenter position remains fixed, or moving the indenter down (reducing d ) while the pressure or 
volume remains fixed. Since we consider the indentation process as quasi-static and assume that contact 
between the indenter and membrane is frictionless, the system is conservative. Therefore, the solution is 
the same for all loading paths. Here, without loss of generality, we consider volume-controlled inflation of 
the membrane with a fixed indenter position. 

The total volume, V (area in the case of a 2D system) enclosed by the membrane is the sum of the areas 
of the circular and triangular parts (see Figure 2). If the deformed configuration is symmetric, i.e., A-A or 
B-B type, 

  22 sin cosmV r da     ; (13) 

And the associated geometry relation is 

 2 21

2
sinm dr a   . (14) 

If the deformed configuration is asymmetric, i.e., A-B type, then: 

 2
mV r ad  . (15) 

Using the half-width of the undeformed membrane as the characteristic length, Eq. (13)-(15) can be 
normalized as 
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where m
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 . For an asymmetric deformed configuration, due to geometry constraints, it is 

necessary to have 
21

1
2mr d  . Therefore, a solution only exists when 
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The in-plane stretch ratio of the membrane can be calculated as the ratio of the arclength of the deformed 
membrane to the initial membrane width 2a , 

 Symmetric: ,          Asymmetri : 2 cm mr r      (18) 

Finally, the total energy of the system is simply the total elastic energy of the membrane, as we consider 
volume-controlled inflation with a fixed indenter position. Therefore, half of the total energy (we divide 
the energy by a factor of 2 for simplicity of expression) can be calculated as:  
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By solving Eq. (16) and substituting solutions to Eq. (18) and (19), we obtain the system energy for each 
type of solution as a function of volume. From there, we can determine which type of solution has the lower 

energy and how the shape of the membrane evolves as the volume increases. As an example, we set 0.5d   
and the results are shown in Figure 3. 

 

                                  (a)                                                                                     (b) 

Figure 3 (a) Deformed membrane configuration for a line indenter as the volume gradually increases; (b) total energy of the 
system for the symmetric and asymmetric configurations as volume increases 



As shown in Figure 3, when the membrane is inflated to configuration I, the membrane just makes contact 
with the indenter. At this point, the total volume enclosed by the deformed configuration has not reached 
the threshold given by Eq. (17). Hence, the only possible solution is the symmetric solution. As the volume 
increases, the membrane continues to be symmetrically stretched until configuration III is reached, at which 
point the volume condition for asymmetric solutions (17) is just met. Beyond configuration III, not only 
does the asymmetric solution exist but the total system energy is lower than that of the symmetric solution. 
This result indicates that, compared with the symmetric solution, the asymmetric configuration can reach 
the same volume with less membrane stretch and hence is energetically preferred. Therefore, the deformed 
membrane will follow the asymmetric deformation branch beyond configuration III, such as the shape given 
by configuration IV. Since the asymmetric configuration always has a lower energy, the critical volume of 
instability is the same as the condition for the asymmetric solution to exist, i.e.: 

  2
1

4CV d d


   . (20) 

Note that this condition is a pure geometry condition, so it is material independent. 

The transition from the symmetric to the asymmetric configuration is a typical supercritical pitchfork 
bifurcation.  To better visualize this, we choose the difference between the left and right part membrane 
height 1 2h hh   (see Figure 2) as a signed quantity and a metric for measuring the degree of symmetry. 

Then the bifurcation diagram can be plotted as in Figure 4. 

 

Figure 4 Bifurcation diagram for indentation of an inflated 2D membrane with a line indenter 

3.2 Limiting case 2: Plane indentation ( cr  ) 

Here, we consider the other extreme limit in which the size of the indenter is infinitely large such that 
it becomes a plane indenter. As we assume frictionless and adhesionless contact between the membrane 
and indenter, the deformed membrane needs to be tangent to the plane indenter as shown in Figure 5. 



 

Figure 5 Schematics of the possible deformed shapes of an inflated 2D membrane under plane indentation. (a) The two arc parts 
of the inflated membrane have to be part of a circle with fixed radius and arclength, i.e. either part A or part B.  (b) The two arc 

parts of  the inflated membrane can be both part A or (c) both part B or (d) one part A and the other part B. 

The analysis process is almost identical to the line indentation case. The governing equations can be 
determined through volume conservation, the tangent condition between the membrane and indenter at the 
point of contact, and the fixed boundary condition: 
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where :
L

L
a

  is the normalized contact length. For an asymmetric configuration to exist, mr  should be at 

least 
2

d
, which means that the critical volume condition is 
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The stretch ratio of the membrane is 
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                                  (a)                                                                                     (b) 

Figure 6 (a) Deformed membrane configuration for the plane indenter as the volume gradually increases (b) total energy of the 
system for the symmetric and asymmetric configurations as volume increases. 

Setting 0.5d  , the deformed shape can be determined by solving Eq. (21) and total energy can be 
calculated using Eq. (19). The results are given in Figure 6. This suggests that simply increasing the indenter 
contact area does not necessarily lead to a more stable indentation. In fact, indentation of inflated 2D 
membrane by a plane indenter still undergoes a supercritical pitchfork bifurcation process and the 
bifurcation diagram shows that the bifurcation happens at a lower volume compared to a line indenter (see 

Figure 7). Note that in contrast to typical pitchfork bifurcation, the bifurcation slope /d h dV  at the critical 
volume is finite. Beyond the critical volume, the contact from indenter limits the direction that the 

membrane can expand and the growth of  h  is simply equal to the growth of diameter. Therefore, 
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Figure 7 Bifurcation diagram for the indentation of an inflated 2D membrane with a plane indenter 

3.3 Indenter with finite radius ( 0 cr   ) 



We now consider the general case in which the cylindrical indenter has a finite radius. While it is 
possible to analytically derive the geometric and volume constraints, the process is tedious, and a broader 
goal of this work is to facilitate access to engineering tools in geometrically generalizable design. Here, we 
directly implement the variational formulation of the problem, i.e., Eq. (8), in the open-source finite element 
tool FEniCS. The numerical solutions are validated against the analytical solution for simple membrane 
inflation and has an error of less than 2%, as shown in Figure 8(a). We also performed a mesh convergence 
study, as shown in Figure 8(b), to ensure accurate results.  

 

                                  (a)                                                                                     (b) 

Figure 8 Verification of FEM implementation (a) Verification against analytical solution (b) an example of mesh convergence test 

where pressure solution at 3.0V   is compared with analytical solution. 

The contact between the indenter and the membrane can be implemented using a standard penalty 

approach. An example solution for an indenter with 0.2Cr   is given in Figure 9. Boundaries 1 and 2 of 

the membrane are fixed and boundaries 3 and 4 are fixed only in the y direction such that the membrane is 
in plane strain. Deformed membrane shapes before and after bifurcation are shown in Figure 9(b). Note 

that, to observe the bifurcation, a slight perturbation in cylinder position 510C
C

x
x

a
  


 is applied. The 

full process of inflation, contact, and bifurcation is shown in supplementary video S1. 



 

                                  (a)                                                                                     (b) 

Figure 9 (a) Undeformed membrane shape. (b) Deformed membrane shape before bifurcation (I), at critical volume (II) and after 
bifurcation (III) 

The bifurcation diagrams for different indenter sizes are given in Figure 10. As the radius of the indenter 
decreases, the critical volume approaches that for the line indentation case; on the other hand, as the radius 
of the indenter increases, the critical volume converges to the plane indentation result, which further verifies 
our numerical implementation. Our results also suggest that, as the indenter size increases, the critical 

volume where the bifurcation starts becomes smaller and the bifurcation slope 
d h

dV


 changes from   for 

the line indentation case to a finite value for the plane indentation case. 

 

Figure 10 Bifurcation diagram for a cylindrical indenter with finite radius. When the indenter radius approaches to zero relative 
to the membrane width, the solution approaches the analytical result with the line indenter; similarly, when the indenter size 

relative to the membrane width approaches infinity, the solution approaches the analytical solution for the plane indenter. 

3.4 Material model dependency 

For 2D membrane and frictionless contact, the deformed membrane shape must be part of a circle and 
the stretch ratio is a constant for the entire membrane. Therefore, for any given volume, the deformed shape 
and stretch ratio can be determined purely based on geometry, as shown in Eq. (16) or Eq. (21) and Eq. 
(18) or Eq. (23). Figure 11 suggests that the stretch ratio for asymmetric deformation is always less than the 



stretch ratio for symmetric deformation at any volume above the critical volume CV . Note that this 

conclusion is independent of material model selection. Therefore, as long as the strain energy density 
function is a monotonic function of the stretch ratio, the total energy for the asymmetric deformation mode 
is always less than the symmetric deformation mode. Our conclusion that the membrane bifurcation 

happens at CV  and follows the asymmetric deformation mode is material model independent. Note that 

even the post-buckling path as described by the V h   plot (e.g., Figure 3(a), Figure 4, Figure 6(a) and 

Figure 7) is also material model independent as h  is determined by geometry only as well. However, the 
difference in the total energy between the symmetric and the asymmetric deformation modes as well as the 
depths of the post-bucking energy wells do change with the constitutive law, consistent with previous 
studies [35].  

 

                              (a) line indentation                                                      (b) plane indentation 

Figure 11 stretch ratio as a function of normalized volume for (a) line indentation (b) plane indentation 

 

4. Effects of membrane and indenter shape 

With the numerical method introduced in section 3.3, we are well equipped to consider arbitrary 
membrane and indenter shapes. Here, we present our numerical results for an axisymmetric membrane in 
contact with i) a cylindrical and ii) a spherical indenter. For each indenter, we provide bifurcation results 
for different values of indenter radius. 



     

                                  (a)                                                                                     (b) 

Figure 12 (a) cross-section of a deformed shape of an inflated membrane indented by a cylindrical indenter with radius 
/ 0.2Cr a  . Three different cases shown include (I) volume is small such that membrane deformation is symmetric (II) 

bifurcation occurs and the right half become slightly bigger than the left half (III) The right half become significantly larger (b) 
Bifurcation diagrams for different indenter radii. 

We first consider a circular membrane with a fixed boundary in contact with a cylindrical indenter. As 
shown in Figure 12 and supplementary video S2, the membrane bifurcates to an asymmetric configuration 
after a critical volume is reached, similar to the 2D case. Both the critical volume for bifurcation and 

bifurcation slope 
d h

dV


 decrease as the size of the indenter increases, which again suggests that a larger 

indenter tends to make it easier for an inflated membrane to bifurcate. 

Next, we replace the cylindrical indenter with a spherical indenter. As shown in Figure 13 and 

supplementary video S3, when the spherical indenter is small enough, it cannot excite a new mode of 
deformation that has less energy, and hence the symmetric state is the only stable one.  The membrane tends 
to wrap around the sphere instead of being pushed to one side. Note that our simulation stops when the 
membrane right under the spherical indenter is so stretched that the size of deformed mesh is of the same 
order of indenter size such that contact between the membrane and the indenter cannot be maintained. At 
this point, the local stretch ratio of membrane is beyond 50 and it is likely that some material failure such 
as plastic deformation or local fracture would have already occurred. This result suggests that, for a 
small/sharp indenter, the membrane will be pierced through instead of pushed sideways, which is consistent 
with previous studies [36]. On the other hand, when the size of the spherical indenter increases to the same 
order of or even larger than the membrane dimension itself, the contact approaches the plane indentation 
limit and bifurcation will again occur (see supplementary video S4 for the case / 100Sr a  ). 



 

                                  (a)                                                                                     (b) 

Figure 13 (a) cross-section of the deformed shape of an inflated membrane indented by a spherical indenter with radius 
/ 0.2Cr a  . (b) bifurcation diagrams for different indenter radii. 

For an axisymmetric membrane, the deformation involves stretch in both the radial and circumferential 
directions. Therefore, unlike the 2D scenario, the deformed shape may have some level dependency on the 
material model selection and so is the critical volume and the post-buckling path (e.g. Figure 13(b)). Such 

a dependency is beyond the scope of this work and can be pursued in a future work. 

5. Biased bifurcation and the effects of friction 

In this section, we demonstrate biased bifurcation and the effects of friction using a 2D membrane in 
contact with a line indenter as an example.  

For an ideal system that has no perturbation or bias at all, the symmetric deformation is always a valid 
equilibrium solution and bifurcation would not occur. For frictionless contact, any infinitesimal bias such 
as putting the indenter slightly off center or even numerical error, is sufficient to trigger the bifurcation. If 
the geometry imperfection is finite as shown in Figure 14 (a), the symmetry of bifurcation no longer holds 
as the arclengths CP  and CQ  are not equal. Using the same geometry methods as given in Section 3.1, we 

get the bifurcation diagram shown in Figure 14 (b). The bifurcation paths disconnect into two pieces. 
Without perturbation, the membrane just follows the lower path. To access the upper branches, a rather 
large disturbance is required to overcome the energy barrier between the branches. 



 

                                  (a)                                                                                     (b) 

Figure 14 (a) schematics of membrane deformation with a finite indenter offset. (b)A bifurcation diagram for 2D line indentation 
with bias / 0.2x a   

In real system, even when there is no geometric imperfection, friction at the contact interface can delay 
the onset of bifurcation or require a larger disturbance for bifurcation to occur. To study the effects of 
friction, as shown in Figure 15, we fix a material point that is S  away from the center of membrane in the 
undeformed configuration to the line indenter (placed at the center, i.e., 0x  ) in order to create an 
artificial offset. We then further inflate the membrane to a prescribed volume 0V . Since the contact point 

between the membrane and line indenter is specified rather than determined, the tensions within parts A 
and B are not necessarily equal and the resulting tension difference needs to be balanced by friction at the 
contact point (hence this type of perturbation does not apply to the frictionless case).  

 

Figure 15 Schematic for deformed and undeformed membrane shapes. The material point that is S away from the center of 
the membrane in the undeformed configuration is “fixed” onto the line indenter and the volume enclosed by the deformed 

membrane is prescribed. 

The shapes of the arcs A and B can be determined by geometric constraints similar to Eq. (14), a volume 
constraint, and the fact that the pressures applied on part A and B are equal: 
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where T is the membrane tension and related to the stretch ratio by 
3

1T
T
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  (see Eq. (11)). Once 

we solve for the deformed shape, we further calculate half of total strain energy of the system as 
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(again, half of the energy is considered for simplicity of expression.) There are three extrema in Figure 16 
(a) corresponding to three possible equilibrium solutions, among which the symmetric configuration (

0S  ) is a local energy maximum such that it is not a stable solution. Any perturbation will cause the 

system to jump to the local energy minima where there is a finite offset. The offset S  can be converted 

to height difference h  and, as a result, the local energy minima match with the solution branches in the 
bifurcation diagram, as shown in Figure 17 (a).  

 

                                  (a)                                                                                     (b) 

Figure 16 (a) Total energy of the system as a function of normalized offset when 2.0V  . (b) Tension difference as a function 

of normalized offset when 2.0V   . 

 



 

                                  (a)                                                                                     (b) 

Figure 17 (a) The energy plot is transferred to a function of height difference and overlaid on the bifurcation diagram. The energy 
local minima match exactly the asymmetric equilibrium solution (b) Tension difference as a function of the normalized volume for 
a fixed offset. 

The energetic force that drives the system to its local energy minima is essentially the tension difference 
between parts A and B. This force can also be visualized as the slope in the energy plot in Figure 16(a) and 
Figure 17(a), where we can intuitively see that, by increasing offset or by increasing volume, we effectively 
increase the tension difference. This is numerically verified by the results shown in Figure 16(b) and Figure 
17(b). 

In reality, friction can resist the tension difference and hold the membrane at a given offset to prevent 
bifurcation. We can either increase the offset or increase the volume to increase the tension difference to 
overcome the friction and drive the system to the bifurcated branch. Note that, if we increase volume to 
increase tension difference, the membrane will jump to the bifurcated branch once friction is no longer 
sufficient to hold the membrane. This is different from the smooth continuous bifurcation we see in the 
frictionless case. 

 

6. Discussion and conclusions 

For an inflated membrane indented by a rigid indenter, we find that there can be multiple equilibrium 
solutions that satisfy all equilibrium, constitutive, and kinematic constraints. We compute the total system 
potential energy for each solution and determine if and when one solution becomes energetically preferred. 
Our results show that a deformed membrane remains symmetric if the inflated volume is small. As a critical 
volume is reached, the membrane will bifurcate to an asymmetric shape that has lower total energy. At least 
for the 2-D scenario, most of our results are material model independent as long as the strain energy density 
function is monotonic. Using numerical methods, we are also able to consider different membrane and 
indenter geometries and find that, in general, a cylindrical indenter can trigger bifurcation more easily than 
spherical indenters and that larger indenters are more likely to induce bifurcation than smaller ones. We 
also demonstrate that friction can potentially delay the onset of bifurcation or require a larger bias for 
bifurcation to occur. 

Our results suggest several considerations regarding practical applications. When soft robots navigate 
through complex environments, bifurcation is the preferred state for the soft chamber since we show that 



the bifurcated asymmetric deformation mode can achieve the same volume with significantly less strain 
energy. Therefore, bifurcation can help avoid overstrain of soft robotic skin. One should be very careful 
regarding indenters that have a small or sharp head since the membrane tends to wrap around such indenters. 
Practically speaking, when a membrane is over-pressurized, the indenter can concentrate stresses and easily 
pierce through the membrane.  Note that the lubrication of the membrane surface can also facilitate 
bifurcation. In addition to passive contact with the environment, it is also possible to add electrodes on both 
sides of the membrane to render it as a dielectric elastomer actuator (DEA). Related to this proposed 
implementation, tuning the voltage applied across full-coverage electrodes has been used in prior 
demonstrations to achieve different deformed shapes or snap through instabilities [37,38]. Here, we can 
also potentially leverage patterned-electrode DEAs to actively control the bifurcation behavior of an 
inflated balloon under indentation. 

It should be noted that there are some limitations of our study that can be relaxed in the future. For 
example, we assume that the boundary of the inflated membrane is rigidly fixed. This is usually not the 
case for real soft robots and hence it is important to further investigate how the bifurcation behavior can be 
tuned using different boundary conditions. For simplicity, we also assumed the indenters to be rigid, which 
is not necessarily true for soft robotic or haptics applications. Furthermore, dynamic effects and viscoelastic 
material properties are potentially important for applications that require fast actuation. Studies of how to 
extend the physics explained in current work to specific applications will be done in the future. 
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