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Abstract

Different video understanding tasks are typically treated
in isolation, and even with distinct types of curated data
(e.g., classifying sports in one dataset, tracking animals
in another). However, in wearable cameras, the immer-
sive egocentric perspective of a person engaging with the
world around them presents an interconnected web of video
understanding tasks—hand-object manipulations, naviga-
tion in the space, or human-human interactions—that un-
fold continuously, driven by the person’s goals. We argue
that this calls for a much more unified approach. We pro-
pose EgoTask Translation (EgoT2), which takes a collec-
tion of models optimized on separate tasks and learns to
translate their outputs for improved performance on any or
all of them at once. Unlike traditional transfer or multi-
task learning, EgoT2’s “flipped design” entails separate
task-specific backbones and a task translator shared across
all tasks, which captures synergies between even heteroge-
neous tasks and mitigates task competition. Demonstrat-
ing our model on a wide array of video tasks from Ego4D,
we show its advantages over existing transfer paradigms
and achieve top-ranked results on four of the Ego4D 2022
benchmark challenges.1

1. Introduction
In recent years, the introduction of large-scale

video datasets (e.g., Kinetics [6, 33] and Something-
Something [22]) have enabled the application of powerful
deep learning models to video understanding and have
led to dramatic advances. These third-person datasets,
however, have overwhelmingly focused on the single task
of action recognition in trimmed clips [12, 36, 47, 64].
Unlike curated third-person videos, our daily life involves
frequent and heterogeneous interactions with other hu-
mans, objects, and environments in the wild. First-person
videos from wearable cameras capture the observer’s
perspective and attention as a continuous stream. As such,

*Work done during an internship at FAIR, Meta AI.
1Project webpage: https://vision.cs.utexas.edu/

projects/egot2/.
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Figure 1. Given a set of diverse egocentric video tasks, the pro-
posed EgoT2 leverages synergies among the tasks to improve each
individual task performance. The attention maps produced by
EgoT2 offer good interpretability on inherent task relations.

they are better equipped to reveal these multi-faceted,
spontaneous interactions. Indeed egocentric datasets, such
as EPIC-Kitchens [9] and Ego4D [23], provide suites
of tasks associated with varied interactions. However,
while these benchmarks have promoted a broader and
more heterogeneous view of video understanding, they
risk perpetuating the fragmented development of models
specialized for each individual task.

In this work, we argue that the egocentric perspective
offers an opportunity for holistic perception that can ben-
eficially leverage synergies among video tasks to solve all
problems in a unified manner. See Figure 1.

Imagine a cooking scenario where the camera wearer ac-
tively interacts with objects and other people in an environ-
ment while preparing dinner. These interactions relate to
each other: a hand grasping a knife suggests the upcoming
action of cutting; the view of a tomato on a cutting board
suggests that the object is likely to undergo a state transi-
tion from whole to chopped; the conversation may further
reveal the camera wearer’s ongoing and planned actions.

https://vision.cs.utexas.edu/projects/egot2/
https://vision.cs.utexas.edu/projects/egot2/


Apart from the natural relation among these tasks, egocen-
tric video’s partial observability (i.e., the camera wearer is
largely out of the field of view) further motivates us to seek
synergistic, comprehensive video understanding to leverage
complementary cues among multiple tasks.

Our goal presents several technical challenges for con-
ventional transfer learning (TL) [65] and multi-task learn-
ing (MTL) [63]. First, MTL requires training sets where
each sample includes annotations for all tasks [15, 24, 48,
53, 55, 62], which is often impractical. Second, egocen-
tric video tasks are heterogeneous in nature, requiring dif-
ferent modalities (audio, visual, motion), diverse labels
(e.g., temporal, spatial or semantic), and different tem-
poral granularities (e.g., action anticipation requires long-
term observations, but object state recognition operates at
a few sparsely sampled frames)—all of which makes a
unified model design problematic and fosters specializa-
tion. Finally, while existing work advocates the use of
a shared encoder across tasks to learn general representa-
tions [3, 18, 26, 32, 39, 44, 45, 51], the diverse span of ego-
centric tasks poses a hazard to parameter sharing which can
lead to negative transfer [21, 24, 38, 53].

To address the above limitations, we propose EgoTask
Translation (EgoT2), a unified learning framework to ad-
dress a diverse set of egocentric video tasks together. EgoT2
is flexible and general in that it can handle separate datasets
for the different tasks; it takes video heterogeneity into ac-
count; and it mitigates negative transfer when tasks are not
strongly related. To be specific, EgoT2 consists of special-
ized models developed for individual tasks and a task trans-
lator that explicitly models inter-task and inter-frame rela-
tions. We propose two distinct designs: (1) task-specific
EgoT2 (EgoT2-s) optimizes a given primary task with the
assistance of auxiliary tasks (Figure 2(c)) while (2) task-
general EgoT2 (EgoT2-g) supports task translation for mul-
tiple tasks at the same time (Figure 2(d)).

Compared with a unified backbone across tasks [62],
adopting task-specific backbones preserves peculiarities of
each task (e.g. different temporal granularities) and miti-
gates negative transfer since each backbone is optimized on
one task. Furthermore, unlike traditional parameter shar-
ing [51], the proposed task translator learns to “translate”
all task features into predictions for the target task by se-
lectively activating useful features and discarding irrelevant
ones. The task translator also facilitates interpretability by
explicitly revealing which temporal segments and which
subsets of tasks contribute to improving a given task.

We evaluate EgoT2 on a diverse set of 7 egocentric
perception tasks from the world’s largest egocentric video
benchmark, Ego4D [23]. Its heterogeneous tasks extend
beyond mere action recognition to speaker/listener identi-
fication, keyframe localization, object state change classifi-
cation, long-term action anticipation, and others, and pro-
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Figure 2. (a) Conventional TL uses a backbone pretrained on the
source task followed by a head transferring supervision to the tar-
get task; (b) Traditional MTL consists of a shared backbone and
several task-specific heads; (c) EgoT2-s adopts task-specific back-
bones and optimizes the task translator for a given primary task;
(d) EgoT2-g jointly optimizes the task translator for all tasks.

vide a perfect fit for our study. Our results reveal inher-
ent task synergies, demonstrate consistent performance im-
provement across tasks, and offer good interpretability in
task translation. Among all four Ego4D challenges involved
in our task setup, EgoT2 outperforms all submissions to
three Ego4D-CVPR’22 challenges and achieves state-of-
the-art performance in one Ego4D-ECCV’22 challenge.

2. Related Work
Transfer Learning. TL [65] aims at transferring knowl-

edge from a source domain to improve the performance
in a target domain. The most widely adopted approach
is to pretrain a model on a source task then finetune on
the target task, as shown in Figure 2(a). Following this
paradigm, many video classification models [1, 5, 42, 59]
are initialized from models pretrained on ImageNet [11].
In addition, many works propose to transfer knowledge
from a large-scale video dataset (e.g., Kinetics [6, 33])
to benefit action recognition in smaller-scale datasets [54]
such as UCF-101 [52] and HMDB-51 [37] or to improve
other video tasks, such as spatiotemporal action localiza-
tion [2,17,19,27,49] and video anomaly detection [25,41].
While this technique is ubiquitous in video understanding,
prior approaches only consider the transfer from one sin-
gle source task (dataset) and are thus unable to model the
relations among multiple video tasks simultaneously.

Taskonomy [62] presents task transfer with a thorough
analysis on the structure of multiple visual tasks. Many
works [15, 48, 53, 61] continue along this direction and ex-
plore visual task relations, yet they limit the discussion to



static images and generally require a unified design across
all tasks. In contrast, we consider a diverse set of egocen-
tric video tasks, which are addressed with a heterogeneous
set of task-specific video architectures (e.g., accommodat-
ing different time, space, or multimodality). Clearly, forc-
ing the same network architecture across all tasks can be
suboptimal for each individual task. This motivates our pro-
posed EgoT2-s (Figure 2(c)), where we preserve the hetero-
geneous backbones developed for each task and build a task
translator on top of the task-specific models.

Multi-task Learning. In MTL [63], a single model is
trained to address multiple tasks simultaneously in order to
capture synergistic supervision across tasks. As depicted
in Figure 2(b), hard parameter sharing [51] (i.e., sharing a
backbone among tasks and keeping one separate head for
each task) is the most commonly used technique within this
genre. Although MTL has shown to be beneficial of video
analysis [3, 18, 26, 32, 39, 44, 45], there is ongoing debate
about the best strategies to determine what parameters to
share across which tasks [7, 24, 31, 53, 55]. As pointed out
in [34], when MTL is achieved by means of a single com-
mon backbone, the performance tends to decrease when the
number of tasks grows beyond a certain point. Furthermore,
many works [21,24,38,53] observe that over-sharing a net-
work across unrelated tasks causes negative transfer and
hinders individual task performance. While soft parameter
sharing [14, 60] mitigates this by retaining distinct copies
of parameters, it still requires adopting the same identical
architecture and “similar” weight values across all tasks.

In the video domain, several works utilize synergies be-
tween related tasks (e.g., action recognition with gaze pre-
diction [18, 26, 39] or body pose estimation [44]). How-
ever, when selected tasks are not strongly related, prior ap-
proaches that split the learning capacity of a shared back-
bone over multiple tasks can suffer from task competi-
tion and inferior performance. In the image domain, with
the great advancement of transformers [58], training with
multiple datasets together for a generalist model is gain-
ing popularity. Recent work [8, 20, 29, 30, 35, 43] inves-
tigates a unified transformer architecture across a diverse
set of tasks. Our variant EgoT2-g (Figure 2(d)) is moti-
vated by the desiderata of shared knowledge encapsulated
by MTL and of a generalist model. Unlike previous learn-
ing paradigms, we adopt a “flipped design” involving sep-
arate task-specific backbones and a task translator shared
across all tasks. This effectively mitigates task competition
and achieves task translation for all tasks simultaneously.

3. Approach
We are given K video tasks, Tk for k = 1, · · · ,K. We

note that our approach does not require a common training
set with annotations for all tasks. Let the dataset for task Tk
be DTk = {(xTk

i , yTk
i )}Nk

i=1, where (xTk
i , yTk

i ) denotes the

i-th pair of (input video, output label) and Nk represents
the number of given examples. Note that “labels” yTk

i can
be a variety of output types, and are not limited to category
labels. For simplicity we omit the subscript i hereafter.

We consider two formulations with distinct advantages:
(1) task-specific translation, where we partition the tasks
into one primary task Tp and K � 1 auxiliary tasks, and
optimize the objective to improve performance on Tp with
the assistance of the auxiliary tasks (EgoT2-s, Sec. 3.1); (2)
task-general translation, where we treat all K tasks equally,
and the goal is to maximize the collective performance of all
the tasks (EgoT2-g, Sec. 3.2). As demonstrated in our ex-
periments, objective (1) leads to the strongest performance
on the primary task, while objective (2) offers the benefit of
a single unified model addressing all tasks at once.

3.1. Task-Specific Translation: EgoT2-s
The training of EgoT2-s is split over two stages.

Stage I: Individual-Task Training. We train a separate
model fk on each individual task dataset DTk , obtaining K
task-specific models {fk}Kk=1. We do not place any restric-
tions on the task-specific model designs, nor do we require a
unified design (i.e., identical encoder-decoder architecture)
across tasks. Therefore, any available model checkpoint de-
veloped for task Tk can be adopted as fk within our frame-
work, offering maximum flexibility.
Stage II: Task-Specific Translation. We train a task trans-
lator that takes features produced by task-specific models
as input and outputs predictions for the primary task. For-
mally, let hk 2 RTk⇥Dk be features produced by the k-th
task-specific model fk, where Tk is the temporal dimension
and Dk is the per-frame feature dimension for model fk.
Following the feature extraction step, we design a projec-
tion layer Pk 2 RDk⇥D for each fk to map task-specific
features to a shared latent feature space. This yields a tem-
poral sequence of task-specific tokens h̃k 2 RTk⇥D.

We process this collection of task-specific temporal
sequences using a transformer encoder [58] of L lay-
ers to capture both inter-frame and inter-task dependen-
cies. We denote the propagation rule of layer l by
zl+1 = Encoderl(zl). Finally, we adopt a decoder head
DecoderTp to obtain predictions for the primary task Tp.

In all, this stage has four major steps: (1) feature ex-
traction; (2) feature projection; (3) transformer fusion; and
(4) feature decoding. The procedure is summarized below:

hk = fk(x
Tp), 8k 2 {1, 2, · · · ,K} (1)

h̃k = Pkhk, 8k 2 {1, 2, · · · ,K} (2)

z0 = [h̃1, h̃2, · · · , h̃K ]

zl+1 = Encoderl(zl), 8l 2 {0, 1, · · · , L� 1}
(3)

y
Tp

pred = DecoderTp(zL) (4)
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Figure 3. An illustration of EgoT2-s (left) and EgoT2-g (right) on three candidate tasks. The left figure illustrates EgoT2-s on three social
interaction tasks, where the input to each model is unimodal (i.e., video) or multimodal (i.e., video and audio). The right figure shows
the design of EgoT2-g on three example tasks that focus on different aspects of human-object interactions (i.e., localization, object state
change classification, and action recognition). EgoT2-s learns to “translate” auxiliary task features into predictions for the primary task
and EgoT2-g conducts task translation conditioned on the task of interest.

where y
Tp

pred denotes the prediction given by EgoT2-s. Dur-
ing the second stage of training, we freeze the task-specific
models and optimize the task translator with respect to the
primary task dataset DTp .

Figure 3 (left) illustrates the design of EgoT2-s using
three social interaction tasks from Ego4D [23] as an exam-
ple. EgoT2-s allows heterogeneity in the task-specific mod-
els (i.e., f1 is unimodal while f2 and f3 are multimodal;
also the three task-specific models can be associated with
different frame rates and temporal durations) and utilizes a
transformer encoder to model inter-frame and inter-task re-
lations. The resulting EgoT2-s learns to adaptively utilize
auxiliary task features for the primary task prediction.

3.2. Task-General Translation: EgoT2-g
EgoT2-s optimizes performance for a single primary

task. Therefore, in the event all K tasks must be addressed,
it requires K separate training runs and K distinct transla-
tors. This motivates us to extend EgoT2-s to perform task
translation for all K tasks at once. In EgoT2-g, the task
translator processes features from all K tasks and learns to
“translate” features conditioned on the task of interest.

The first stage of EgoT2-g is identical to EgoT2-s. For
the second stage, we propose two main modifications. First,
we replace the task-specific decoder in EgoT2-s with a
“generalist” decoder that outputs predictions conditioned on
the task of interest. Natural language provides us with a
flexible scheme to specify all tasks as a sequence of sym-

bols. Inspired by [8], we tokenize all task outputs and
replace the original task-specific decoder with a sequence
decoder [50] for a unified interface. Specifically, we first
transform the original label yTk to a target output sequence
yTk
seq 2 RM , where M is the target sequence length. For

the task translator to produce task-dependent outputs, we
prepend a task prompt token yprompt to the target output,
i.e., yTk

seq1 = yprompt. We then let the sequence decoder
generate a sentence answering the requested task. Figure 3
(right) illustrates how we express task outputs as sequences
of discrete tokens and attach task prompts.

With the transformed output, we treat the problem as a
language modeling task and train the task translator to pre-
dict subsequent tokens (one token at a time) conditioned on
the input video and its preceding tokens. The training objec-
tive is LTk =

PM
j=1 wj logP (yTk

seqj |x
Tk ,yTk

seq1:j�1
). Note

that the maximum likelihood loss is weighted to mask the
loss corresponding to the task prompt token: wj is set to 0
for j = 1, and to 1 for any other j. During inference, the
task prompt is prepended, and the task translator predicts
the remaining output tokens. We use argmax sampling (i.e.,
take the token with the largest likelihood) to sample tokens
from the model likelihood and transform the output tokens
back to the original label space. Detokenization is easy as
we simply reverse the tokenization process.

The second modification lies in the training strategy.
While EgoT2-s adopts the primary task dataset for training,
EgoT2-g requires joint training on all K task datasets. Sim-



ilar to the training strategy in [8, 20], we sample one batch
from each task, compute the task loss, aggregate the K gra-
dients, and perform model updates in one training iteration.
The final training objective is L =

PK
k=1 LTk .

Figure 3 contrasts the design of EgoT2-s and EgoT2-g.
They both provide a flexible framework that can incorporate
multiple heterogeneous task-specific models (e.g., the three
example tasks we give here focus on different aspects of
human-object interactions). With a design and an optimiza-
tion that are specialized to a single primary task, EgoT2-s
is expected to lead to superior individual task performance
while EgoT2-g brings the efficiency and compactness ben-
efits of a single translator addressing all tasks.

4. Experiments
4.1. Experimental Setup
Dataset and Tasks. We evaluate on Ego4D [23], the
world’s largest egocentric dataset with 3,670 hours of
videos spanning hundreds of scenarios (e.g., household,
outdoor, leisure). It offers five benchmarks: episodic mem-
ory (EM), hands and objects (HO), audio-visual diariza-
tion (AV), social interactions (Social) and forecasting. For
our study, we select 7 tasks spanning 4 benchmarks, rep-
resenting a variety of tasks in egocentric perception, as il-
lustrated in Figure 4. The 7 tasks fall into two broad clus-
ters: (a) human-object interactions and (b) human-human
interactions. Table 1 summarizes our task setup. For each
cluster, we use tasks from the same benchmark as well as
tasks across benchmarks, in an attempt to reveal connec-
tions among seemingly unrelated tasks. The 7 candidate
tasks are heterogeneous in nature as they are defined on
videos of varying duration, adopt different video models
as backbones, and process unimodal (i.e., video) or mul-
timodal (i.e., video and audio) input, offering a diverse task
setup for our study. See Appendix A.2.1 for more details.
Models and Baselines. For each task, we adopt for con-
sistency the baseline models introduced with the Ego4D
dataset2 as the task-specific (TS) models in EgoT2. For
task-specific translation (Sec. 4.2), we train one task trans-
lator for each primary task and use all the other tasks in the
same cluster (either human-object interactions or human-
human interactions) as auxiliary tasks. We compare EgoT2-
s with two representative transfer learning approaches: (1)
Transfer [62] denotes finetuning a transfer function on top
of features produced by the auxiliary task models (Figure
2(a)). (2) Late Fusion [45] (LF) concatenates auxiliary
task features along with primary task features, and finetunes
a few layers that receive the concatenated features as input
for the final prediction. Furthermore, to gauge possible im-
provements over TS by increasing capacity, we consider a

2We use model checkpoints provided on the Ego4D website: https:
//github.com/EGO4D.
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Figure 4. Task Setup. We select a broad set of egocentric video
tasks that focus on (a) human-object interactions and (b) human-
human interactions from Ego4D benchmarks.

Task Benchmark Mod. Duration
(seconds)

Model
backbone

(a)

PNR HO V 8.0 I3D RN-50 [6]
OSCC HO V 8.0 I3D RN-50 [6]
AR Forecasting V 8.0 SlowFast [19]
LTA Forecasting V 16.0 SlowFast [19]

(b)
LAM Social V 0.2 3D RN-18 [57]
TTM Social A&V 2.7 3D RN-18 [57]
ASD AV A&V 3.7 TalkNet [56]

Table 1. Task Descriptions. ‘Mod.’ is short for modality; ‘A’ and
‘V’ denote audio and video, respectively.

Finetuning [13] baseline, which finetunes a few layers on
top of the features produced by the primary task model. In
order to make a fair comparison, the first-stage training of
these baselines is identical to that of EgoT2, and the number
of parameters in the second stage of training is set to match
that of EgoT2-s as closely as possible.

For task-general translation (Sec. 4.3), the task translator
is jointly optimized for all tasks within a cluster3, thus we
have one task translator for human-object interactions that
attends to all tasks simultaneously and one translator that
performs three human-human interaction tasks at the same
time. For comparison with EgoT2-g, we implement the
most widely adopted multi-task learning approach, hard
parameter sharing [51] (Figure 2(b)).
Implementation Details. There is one video preprocess-
ing step before the feature extraction step in Equation (1),
where we transform the original video input from xTp to
match the input format of the k-th task-specific model fk. In
particular, xTp is first upsampled or downsampled to match
the frame rates required by fk. Next, if the temporal span
of the auxiliary task is smaller than that of the primary task,
we slide fk in a moving window to extract a sequence of
features, where the window length is the temporal span re-
quired by fk, and stride size is a hyperparameter. Con-
versely, if fk requires video inputs of a longer temporal span

3There is a significant domain gap between human-human and human-
object interaction videos. See Appendix A.3 for cross-cluster EgoT2-g.

https://github.com/EGO4D
https://github.com/EGO4D


Tp is PNR Tp is OSCC Tp is AR Tp is LTA
# Params ·106 Error # Params ·106 Acc. # Params ·106 Acc. (%) " # Params ·106 ED@20 #
Trainable (All) (s) # Trainable (All) (%) " Trainable (All) Verb Noun Trainable (All) Verb Noun

TS model [23] 32.2 (32.2) 0.615 32.2 (32.2) 68.22 63.3 (63.3) 22.18 21.55 180 (242) 0.746 0.789

Finetuning [13] 8.4 (40.6) 0.611 8.4 (40.6) 67.93 4.9 (66.8) 21.64 22.84 48.6 (266) 0.744 0.787
Transfer [62] (PNR) N/A N/A 8.4 (40.6) 66.80 4.9 (37.1) 19.98 5.44 65.4 (97.6) 0.778 0.902
Transfer [62] (OSCC) 8.4 (40.6) 0.611 N/A N/A 4.9 (37.1) 20.00 9.61 65.4 (97.6) 0.774 0.899
Transfer [62] (AR) 9.5 (71.4) 0.613 9.4 (71.4) 70.98 N/A N/A N/A 53.3 (115) 0.745 0.806
LF [45] (All Tasks) 9.6 (135) 0.610 9.6 (135) 72.10 5.2 (131) 21.11 19.24 83.6 (427) 0.744 0.788
EgoT2-s (All Tasks) 6.4 (132) 0.610 7.4 (133) 72.69 4.3 (130) 23.04 23.28 41.8 (348) 0.731 0.769

Table 2. Results of EgoT2-s as we vary the primary human-object interaction task Tp. First row records performance of the task-specific
(TS) model we obtain in the first-stage training; we compare EgoT2-s with other baseline methods in the second-stage training. We list the
number of trainable parameters for each separate stage as well as the total (i.e., trainable parameters plus parameters of frozen TS models)
in parentheses. Following [23], the evaluation metric is temporal localization error (unit: seconds) for PNR, accuracy for OSCC and AR,
and edit distance at future 20 time stamps (i.e., ED@20) for LTA. For localization error and ED@20, lower is better. EgoT2-s reliably
adapts the auxiliary tasks to suit the target task.

Tp is TTM Tp is ASD
# Params ·106
Trainable (All)

mAP
(%) "

# Params ·106
Trainable (All)

mAP
(%) "

TS model [23] 20.2 (20.2) 58.91 15.7 (15.7) 79.05

Finetuning [13] 0.8 (20.8) 59.67 1.1 (16.8) 78.62
Transfer [62] (LAM) 0.8 (15.4) 63.59 1.6 (16.2) 66.40
Transfer [62] (TTM) N/A N/A 1.6 (21.6) 71.06
Transfer [62] (ASD) 0.8 (16.5) 62.31 N/A N/A
LF [45] (All Tasks) 1.2 (51.5) 64.29 1.6 (51.9) 77.54
EgoT2-s (All Tasks) 0.7 (51.1) 66.54 1.5 (51.9) 79.38

Table 3. Results of EgoT2-s as we vary the primary human-human
interaction task Tp. EgoT2-s consistently improves the TS model.

than xTp , we exclude task k from auxiliary task candidates
to avoid providing potential advantages of a longer obser-
vation window to our framework as otherwise we need to
expand video length of xTp to match the requirement of fk.
Moreover, if the auxiliary task dataset is multimodal (i.e.,
video and audio) and the primary task involves only video,
we apply the unimodal video pathway of fk to obtain fea-
tures; if the primary task is multimodal, we provide all task-
specific features that are computable from these modalities.
See Appendix A.2.2 for more implementation details.

4.2. Evaluation of Task-Specific Translation
Results. We conduct experiments with EgoT2-s for each
task being the primary task4 and summarize the results for
human-object interactions and human-human interactions
in Table 2 and 3, respectively.

From the two tables, we observe uneven performance by
the baseline methods. Transfer and Late Fusion sometimes
outperform the dedicated TS model and sometimes under-
perform it. When tasks do not exhibit a strong transfer rela-

4Following the time-span guidelines in Sec. 4.1, LAM is not considered
as the primary task and LTA is not adopted as an auxiliary task. Nonethe-
less, Appendix A.3 shows some special cases for completeness.

tion, reusing the backbone of the auxiliary task for the pri-
mary task leads to negative transfer and performance degra-
dation. For instance, in Table 2, when Tp is AR, Transfer
(OSCC) and Late Fusion both downgrade noun prediction
accuracy, suggesting object state change is more dependent
on verbs and unrelated to noun prediction tasks in AR.

On the contrary, our proposed EgoT2-s learns to adap-
tively utilize task-specific features and effectively mitigates
negative transfer, demonstrating consistent improvement
over the TS model for all 6 cases. For instance, in Table
3, when Tp is ASD, Late Fusion indicates there is a dele-
terious relation from LAM and TTM to ASD, as it suffers
from an accuracy degradation of 1.51% over TS, yet EgoT2-
s still obtains slightly better performance compared to TS
(i.e., 79.38% v.s. 79.05%). Moreover, when auxiliary tasks
are beneficial for the primary task, EgoT2-s outperforms
all baselines with fewer trainable parameters. For example,
when Tp is TTM, it achieves a +7.63% mAP improvement
over the original TS model by training a lightweight task
translator with only 0.7M parameters on top of it (TS is kept
frozen). These results across different primary and auxiliary
task combinations help demonstrate the generalizability of
EgoT2-s. See Appendix A.3 for experiments using a subset
of auxiliary tasks rather than all tasks.
Ablation Study. In Table 4, we ablate three different de-
sign choices of EgoT2-s using TTM as the primary task:
(a) We replace the LAM and ASD TS models in EgoT2-
s with two TTM models with different parameters. This
yields a task fusion transformer that is architecturally iden-
tical to EgoT2-s but takes only TTM tokens as input; (b) We
pass features produced by TS models after temporal pool-
ing as the input of our task fusion transformer; (c) We do
not freeze TS models in our second-stage training. By com-
paring (a) with our default configuration (d), we see that
EgoT2-s indeed benefits from the introduction of auxiliary
tasks. Although equipped with three different TTM models



# Params ·106
Trainable (All)

Auxiliary
Tasks

Temporal
Information

Frozen
TS model

mAP
(%) "

(a) 0.7 (60.8) X X 63.40
(b) 0.7 (51.1) X X 65.47
(c) 51.1 (51.1) X X 66.00
(d) 0.7 (51.1) X X X 66.54

Table 4. Ablation study of EgoT2-s (Tp is TTM).

(a) # Params
Trainable

PNR
#

OSCC
"

AR
Verb "

AR
Noun "

LTA
Verb "

LTA
Noun "

TS model [23] N/A 0.615 68.2 22.18 21.55 20.82 21.80
Multi-task [51] 32.2 0.617 66.0 N/A N/A N/A N/A
EgoT2-g (P & O) 5.9 0.612 68.6 N/A N/A N/A N/A
EgoT2-g (All) 34.5 0.611 71.7 21.93 22.73 21.91 23.61

(b) # Params
Trainable

LAM
mAP (%) "

TTM
mAP (%) "

ASD
Acc.(%) "

TS model [23] N/A 77.79 58.91 79.05
Multi-task [51] 20.2 60.53 61.91 N/A
EgoT2-g 1.4 77.63 64.49 79.06

Table 5. EgoT2-g for (a) human-object interaction and (b) human-
human interaction tasks. The evaluation metric is error (seconds)
for PNR (P) and accuracy (%) for OSCC (O), AR and LTA. We re-
port the number of trainable parameters required for each method
in the second-stage training (unit: million). Our model is flexible,
accurate, and avoids negative transfer.

and a larger model size (the total number of parameters of
three TTM models is larger than the sum of three TS mod-
els), variant (a) does not bring as much performance gain as
EgoT2-s (d). Also, preserving the temporal information of
task-specific tokens further boosts performance, as can be
seen in the comparison of EgoT2-s (b) with EgoT2-s (d).
Finally, not freezing TS (c) greatly increases the training
cost yet brings no performance gain. These results validate
the design of our proposed EgoT2-s.

4.3. Evaluation of Task-General Translation

Results. Table 5 provides results of EgoT2-g. Since the
TTM and LAM baseline models use identical video back-
bones (i.e., 3D ResNet-18), the hard parameter sharing
multi-task baseline [51] can jointly learn TTM and LAM.
Yet this model design is unable to solve the ASD task
without further modifications to the ASD backbone model.
In contrast, our EgoT2-g provides a flexible solution that
can incorporate a heterogeneous mix of pretrained mod-
els. Similarly, we apply the multi-task baseline to PNR
and OSCC, as they use the same video backbone (i.e., I3D
ResNet-50). Compared with dedicated TS models, our pro-
posed EgoT2-g performs task translation for all tasks at the
same time and achieves on parallel or better performance
for all tasks. For instance, it achieves +5.58% mAP im-

TTM Challenge mAP "
Random Guess [23] 0.50
3D ResNet-18 Bi-LSTM [23] 0.54
EgoT2-g (3D ResNet-18) 0.58
EgoT2-s (3D ResNet-18) 0.58
PNR Challenge Error (s) #
Always Center Frame [23] 1.01
CNN LSTM [23] 0.76
EgoVLP [40] 0.67
Video Swin Transformer [16] 0.66
SViT [4] 0.66
EgoT2-s (I3D ResNet-50) 0.66
OSCC Challenge Acc. "
Always Positive [23] 0.48
I3D ResNet-50 [23] 0.68
Video Swin Transformer [16] 0.68
Divided ST Attention [28] 0.72
EgoVLP [40] 0.74
EgoT2-g (I3D ResNet-50) 0.70
EgoT2-s (I3D ResNet-50) 0.71
EgoT2-s (EgoVLP) 0.75

LTA Challenge ED@20 #
Verb Noun Action

SlowFast + Transformer [23] 0.74 0.78 0.94
Video + CLIP [10] 0.74 0.77 0.94
Hierarchical MLP Mixer [46] 0.74 0.74 0.93
EgoT2-s (SlowFast) 0.72 0.76 0.93

Table 6. Comparison of EgoT2 with SOTA approaches on four
Ego4D challenges (test set). We list the TS model architecture of
EgoT2 in parentheses. Our model improves the state of the art.

provement for TTM and 3.5% accuracy gain for OSCC. No-
tably, on ASD, it retains the top-performance of the original
TS models when the other two auxiliary tasks do not help.
In contrast, we observe task competition for the multi-task
baseline: the improvement for TTM (i.e., +3.0% mAP) is
at the cost of significantly downgraded LAM performance
(i.e., -17.26% mAP). Similarly, sharing an encoder for PNR
and OSCC also leads to task competition and suboptimal
performance for the multi-task baseline. For a side-by-side
comparison, we also implement EgoT2-g that performs task
translation for PNR and OSCC only and observe its ad-
vantages over the multi-task baseline in terms of both per-
formance and trainable parameters. As EgoT2-g does not
require re-training of the backbone, we can integrate any
available model checkpoint developed for each individual
task into our framework and train a lightweight task-general
translator to further boost performance in the second stage.
Comparison with SOTA Approaches. To further demon-
strate the efficacy of both EgoT2-s and EgoT2-g, we submit
our model to the EvalAI server to compare it with winning
submissions to Ego4D-CVPR’22 and Ego4D-ECCV’22
challenges on the withheld test set. Table 6 shows the re-
sults.5 EgoT2-s achieves top performance for all 4 chal-

5ASD & AR are not applicable since they are not Ego4D challenges.



lenges. By only incorporating basic video backbones (e.g.,
3D ResNet-18 and SlowFast) as the task-specific model,
EgoT2-s achieves similar or better performance than works
that adopt more powerful, novel architectures such as Video
Swin Transformer. Moreover, the benefits of our approach
are orthogonal to such architecture improvements: e.g., for
the OSCC challenge, replacing the I3D ResNet-50 back-
bone with the one used in EgoVLP [40] can further elevate
the accuracy of EgoVLP by 1%. This indicates the success
of EgoT2 stems from its effective use of task synergies.

While EgoT2-g is a strong performer that surpasses or
matches TS across all tasks, if we compare its resultswith
those of EgoT2-s, we observe that EgoT2-s demonstrates
superior performance. This is understandable given that
EgoT2-s is individually optimized for each primary task and
employs a specialized translator. On the other hand, EgoT2-
g provides a favorable unified framework that performs task
translation for all tasks simultaneously via the design of a
task-general translator. Thus, EgoT2-s serves as the frame-
work of choice for top performance while EgoT2-g provides
added flexibility. See Appendix A.3 for a detailed compari-
son of the performance and efficiency of these two variants.

4.4. Visualization of Uncovered Task Relations
Our proposed EgoT2 explicitly models task relations via

a task translator and offers good interpretability on task rela-
tions. For EgoT2-s, Figure 5 shows the attention weights of
task tokens when the primary task is LTA and the auxiliary
task is AR. Given two adjacent input video clips, the goal of
LTA is to predict the next action (e.g., put container and turn
off nozzle for the two examples here). In the upper exam-
ple, there is a scene change from the first clip (the temporal
segment corresponding to put wheel) to the second clip (the
clip corresponding to take container). The attention weights
of AR tokens are small for the first clip and large for the sec-
ond clip. Clearly, the future action to predict is more closely
related to the second temporal segment due to similarities in
the scene and objects. In the lower example, the AR tokens
have large attention weights, as the video is temporally sim-
ilar and the previous two actions are indicative of the next
action. These results show how EgoT2-s accurately charac-
terizes temporal and auxiliary task information to improve
the primary task. More visualizations are in Appendix A.4.

Similarly, for EgoT2-g, we visualize its encoder-decoder
attention weights from the last layer transformer in Figure
6. Given the same video clip as input, feature tokens are
activated differently when EgoT2-g is given different task
prompts, demonstrating that EgoT2-g learns to perform task
translation conditioned on the task of interest. As it as-
signs small weights to task features that are not beneficial
for the task of interest (e.g., PNR features to noun predic-
tion tasks), EgoT2-g discards non-relevant task features to

Results of EgoT2-g for PNR & LTA are unavailable (see Appendix A.2.2).

AR Tokens
LTA Tokens

put wheel take container put container

0.0
0.5

turn on nozzle

LTA Tokens
AR Tokens 0.5

0.0

wash car turn off nozzle

unobservedobserved

unobservedobserved

Figure 5. Attention weights of EgoT2-s when Tp is LTA. EgoT2-s
learns to utilize tokens from relevant temporal segments and tasks.
The attention weights of AR tokens are large when the current
action is indicative of future action.
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Figure 6. Attention weights of EgoT2-g. Given the same video
and different task prompts, EgoT2-g assigns different weights to
different task tokens. See text.

mitigate task competition. We also observe temporal differ-
ences of attention weights from same task features, indicat-
ing that EgoT2-g captures both inter-frame and inter-task
dependencies to improve the task of interest. Finally, recall
that in Figure 1, we derive task relations for 4 human-object
interaction tasks via attention weights provided by EgoT2-
g. The attention weights are temporally pooled and aver-
aged over all validation data, revealing task relations from
a global perspective. Results for human-human interaction
tasks are presented in Appendix A.4. In all, EgoT2 pro-
vides good interpretability patterns on (1) which subset of
tasks (2) which time segments lead to the final prediction.

5. Conclusion
As a step towards unified egocentric perception, we pro-

pose EgoT2, a general and flexible design for task transla-
tion. EgoT2 consists of heterogeneous video models op-
timized for each individual task and a transformer-based
task translator that captures inter-frame and inter-task re-
lations. We propose EgoT2-s to improve one primary task
and EgoT2-g to conduct task translation for all tasks simul-
taneously. Results on 7 diverse egocentric video tasks reveal
valuable task relations and validate the proposed design.
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