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Abstract

Large-scale generative models such as GPT and DALL-E have revolutionized
natural language processing and computer vision research. These models not only
generate high fidelity text or image outputs, but are also generalists which can solve
tasks not explicitly taught. In contrast, speech generative models are still primitive
in terms of scale and task generalization. In this paper, we present Voicebox,
the most versatile text-guided generative model for speech at scale. Voicebox is
a non-autoregressive flow-matching model trained to infill speech, given audio
context and text, trained on over 50K hours of speech that are neither filtered nor
enhanced. Similar to GPT, Voicebox can perform many different tasks through
in-context learning, but is more flexible as it can also condition on future context.
Voicebox can be used for mono or cross-lingual zero-shot text-to-speech synthesis,
noise removal, content editing, style conversion, and diverse sample generation. In
particular, Voicebox outperforms the state-of-the-art zero-shot TTS model VALL-E
on both intelligibility (5.9% vs 1.9% word error rates) and audio similarity (0.580
vs 0.681) while being up to 20 times faster. See voicebox.metademolab.com
for a demo of the model.

1 Introduction

Recent advances in large-scale generative models [Brown et al., 2020, Nichol et al., 2021, Ramesh
et al., 2021] have led to a major paradigm shift towards building general-purpose models, which
can perform many new tasks not explicitly trained on. These generative models learn to predict the
missing data given the context. Post training, we can directly input a question, optionally with a few
contextual question-answer examples, instead of fine-tuning with labeled data. To give a concrete
example, the model can answer a question like, “What is the capital of Japan?” with an example of
such a relationship in the context: “The capital of Germany is Berlin. The capital of Japan is”.

While the training objective appears simple, it subsumes many tasks as one can convert them into
some form of context. For the model to perform well at every task, it implies that the estimation of
p(missing data | context) needs to be accurate for every context. Hence, scale and diversity are the
most crucial factors for building general-purpose models [Hoffmann et al., 2022, Aghajanyan et al.,
2023], as we see the state-of-the-art (SOTA) language and vision-language models are trained on
web-scale data with billions to hundreds of billions of parameters.

Despite the success of large-scale generative models in other areas, most speech models are still
trained on datasets at the scale of tens to hundreds of hours [Ren et al., 2021, Kim et al., 2020, 2021,
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Figure 1: Voicebox task generalization through in-context learning.

Popov et al., 2021, Huang et al., 2022, Tan et al., 2022, Casanova et al., 2021]. Previous works
consider highly curated datasets such as VCTK [Yamagishi et al., 2019], which contains only clean
audio recorded in studio from about 100 speakers with little speaking style and text variation. Such
models struggle to synthesize speech with rich variation in emotion, voice, background noise, acoustic
condition, and have not been tested on the abilities to generalize to tasks not explicitly trained on.

There had been a few attempts of using in-the-wild data such as CommonVoice [Ardila et al., 2019],
Librispeech [Panayotov et al., 2015], and LibriTTS [Zen et al., 2019] for training text-to-speech
(TTS) models. It led to huge quality degradation compared to training on curated datasets [Hsu et al.,
2019, Wang et al., 2021]. In particular, while in-the-wild data are generally of lower quality, the gap
between synthesized and training speech is big compared to that of the models trained on curated
speech [Wang et al., 2021], which suggests that previous models terribly underfit in-the-wild data.

This paper presents Voicebox, the most versatile text-conditioned speech generative model at scale.
Voicebox is trained on a text-guided speech infilling task, where the goal is to generate masked speech
given its surrounding audio and text transcript. This can be considered as a guided in-context learning
problem, where audio style is inferred from the audio context and textual content is specified through
transcript. Voicebox does not require any audio style labels (e.g., speaker, emotion, and noise), which
differentiates Voicebox from the majority of prior work where such labels are used extensively. Prior
work uses labels to make the mapping between input (text and audio style) and output (speech) more
deterministic to reduce underfitting [Wang et al., 2021, Popov et al., 2021]. We show that Voicebox’s
text-guided speech infilling approach is much more scalable in terms of data while subsuming many
common speech generative tasks.

In terms of modeling, Voicebox is a non-autoregressive (NAR) continuous normalizing flow (CNF)
model [Chen et al., 2018]. Similar to diffusion models [Ho et al., 2020], CNFs model the trans-
formation from a simple distribution to a complex data distribution (p(missing data | context)),
parameterized by a neural network. We train Voicebox with flow-matching [Lipman et al., 2023], a
recently proposed method that enables efficient and scalable training of CNFs via a simple vector
field regression loss. In contrast to auto-regressive models, Voicebox can consume context not only
in the past but also in the future. Moreover, the number of flow steps can be controlled at inference
time to flexibly trade off quality and runtime efficiency.

Voicebox is trained on 60K hours of English audiobooks and 50K hours of multilingual audiobooks
in 6 languages for the mono and multilingual setups. Voicebox achieves SOTA performance on
mono-lingual/cross-lingual zero-shot TTS, speech denoising, speech editing, diverse speech sampling
and an application to data creation for speech recognition. To tackle the lack of comparability due to
the use of subjective metrics, this paper presents a series of metrics using public models to facilitate
reproducible comparison and model development for speech generation studies.
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The contribution of this work can be summarized as follows:

1. Voicebox represents a breakthrough in generative modeling for speech. By learning to solve
a text-guided speech infilling task with large scale data, Voicebox can solve tasks it was not
explicitly trained to accomplish via in-context learning.

2. Voicebox outperforms VALL-E and achieves a new SOTA English zero-shot TTS result
(5.9% → 1.9% on word error rate (WER) and 0.580 → 0.681 on audio similarity).

3. Voicebox is the first model that can perform high-quality cross-lingual zero-shot TTS across
six languages. It does not use any style labels, pre-trained embedders, or multilingual
samples. Compared to the prior cross-lingual SOTA YourTTS, Voicebox reduces the average
WER from 10.9% to 5.2%, and improves audio similarity from 0.335 to 0.481.

4. Voicebox is capable of infilling speech of any length and outperforms the prior SOTA A3T,
on text guided denoising with -8.8% WER, +0.450 similarity, and +0.80 mean opinion score.

5. Voicebox can generate diverse and realistic speech. An ASR system can be trained solely
on synthetic speech generated by Voicebox, resulting in only 0.4%/1.7% absolute WER
increase on Librispeech test-other/test-clean compared to training on real data. In contrast,
previous TTS models suffer from at least 18.2%/44.5% absolute WER increase.

2 Related Work

Generative speech models Most speech generative models are task-specific and trained on dif-
ferent datasets. One common type of task is audio style conversion, which aims to convert only a
specific attribute while keeping other attributes the same. Voice conversion [Kameoka et al., 2018,
Lorenzo-Trueba et al., 2018], emotion conversion [Robinson et al., 2019, Kreuk et al., 2022], speech
enhancement [Xu et al., 2014, Défossez et al., 2020, Serrà et al., 2022] belong to this category. Many
of these models are supervised and trained on pairs of data that only differ in one attribute, for
example, emotion [Kreuk et al., 2022]. It is hard to obtain such data. Moreover, some attributes, such
as speaking style, are hard to annotate. Hence, these models are often trained on small datasets and
do not generalize well.

Controllable text-to-speech synthesis (TTS) is another common task, which aims to synthesize speech
in a target audio style (e.g., voice, speaking style, recording environment) given text. While some
styles like voice can be specified through labels [Kim et al., 2021] or pre-trained embeddings like
YourTTS [Casanova et al., 2021] and Jia et al. [2018]; others like prosody are hard to annotate or
embed. Previous studies [Wang et al., 2018, Akuzawa et al., 2018, Hsu et al., 2019] tried to control
them by learning a residual embedding. However, these models encode style in a low-dimensional
space and impose an overly simple distribution of speech given text and residual embedding [Ren
et al., 2021, Shen et al., 2017]. They cannot generate realistic noisy speech given a low dimensional
vector, and performance degrades when conditioned on noisy references [Hsu et al., 2019].

Infilling can be considered as another type of task. It aims to predict speech given context [Lakhotia
et al., 2021, Borsos et al., 2022a] and optionally text guidance [Bai et al., 2022, Borsos et al., 2022b,
Wang et al., 2023]. Instead of learning an explicit embedding to control style, infilling models
predict speech coherent to the context. In other words, these models perform in-context learning
similar to Large Language Models (LLMs), which specifies the task (i.e., the desired style to convert)
through context. While this is a step toward building large scale generalist models using little explicit
supervision, most prior work using text guidance still assumes a deterministic mapping from text and
context to target [Bai et al., 2022, Borsos et al., 2022b], which is only realistic for very short segments.
Hence, models with those assumptions could typically only infill segments up to 1 second [Borsos
et al., 2022b]. Voicebox is a text-guided infilling model, but it leverages the CNF model that can
parameterize any distribution. Hence, Voicebox can infill speech of any length and can be trained on
in-the-wild datasets with rich variation, and provide a general solution that subsumes many tasks in a
text-guided fashion.

Large scale in-context learning models With the advancement in neural codec for speech [Hsu
et al., 2021, Défossez et al., 2022, Zeghidour et al., 2022], many recent studies explore token-based
language modeling for speech generation. The GSLM-family [Lakhotia et al., 2021, Kharitonov
et al., 2021, Nguyen et al., 2022] are textless language models built upon HuBERT units [Hsu et al.,
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2021] for speech continuation without using text. HuBERT units encode mostly content [Polyak
et al., 2021], and the generated speech does not preserve the voice of the prompt. To tackle this,
AudioLM [Borsos et al., 2022a] considers a cascaded approach which first generates HuBERT-like
tokens and then predicts SoundStream [Zeghidour et al., 2022] tokens, a reconstruction based codec
that preserves style. These models are not conditioned on text and are evaluated on spoken language
modeling tasks.

VALL-E [Wang et al., 2023] is most related to Voicebox. It is a text conditioned LM trained on
Encodec [Défossez et al., 2022] tokens (similar to SoundStream). Encodec tokenizes speech with a
residual quantization layer, which encodes each frame with 8 codebooks at a 75Hz frame rate. The
codebooks are ordered such that the first code contains the most information and so on. VALL-E has
two modules. The first is an auto-regressive (AR) model that predicts the first code of each frame
given text and the audio prompt. The second is an NAR model that predicts the remaining seven
codebooks sequentially (all frames are predicted simultaneously when predicting each codebook).

VALL-E demonstrates state-of-the-art (SOTA) zero-shot TTS performance through in-context learn-
ing, where speech of the desired style is used as the prompt. The model considers the prompt as part
of the whole utterance such that it generates the rest of the utterance containing the target text in
the same audio style. Voicebox has several design advantages compared to VALL-E. 1) Voicebox
can use context both in the past and future, which is useful for editing where only a segment in the
middle needs to be generated. 2) Voicebox can generate speech much faster than VALL-E because
flow-matching can produce high quality samples with less than ten NAR steps, while VALL-E
requires one AR and seven NAR steps. 3) Voicebox decouples duration and audio modeling, enabling
finer grained alignment control. 4) Voicebox is compatible with any continuous features including
Encodec embeddings.

3 Method

3.1 Background: Flow Matching with an optimal transport path

Let Rd be the data space with data points x ∈ Rd drawn from some unknown distribution q(x).
Continuous Normalizing Flows (CNFs) Chen et al. [2018] are a family of generative models that
learn the transformation from a simple prior distribution p0 (e.g., normal distribution) to the data
distribution p1 ≈ q. CNFs parameterize a time-dependent vector field vt : [0, 1]× Rd → Rd that is
used to construct a flow: ϕt : [0, 1]× Rd → Rd that pushes points from the prior towards the target
distribution. The relationship between a vector field and a flow is defined via the ordinary differential
equation (ODE) as:

d

dt
ϕt(x) = vt(ϕt(x)); ϕ0(x) = x. (1)

For a flow ϕt, the probability path (time-dependent probability density function) p : [0, 1]× Rd →
R>0 can be derived via the change of variables formula:

pt(x) = p0(ϕ
−1
t (x)) det

[
∂ϕ−1

t

∂x
(x)

]
. (2)

To sample from pt(x), we first draw x0 from p0 and then solve the initial value problem yt given
dy/dt = vt(y) and y0 = x0 with an ODE solver.

Let pt be a probability path and ut be the corresponding vector field that generates pt. The vector
field vt(x; θ) parameterized by a neural network θ can be trained with the Flow Matching objective:

LFM (θ) = Et,pt(x)||ut(x)− vt(x; θ)||2, (3)

where t ∼ U [0, 1] and x ∼ pt(x). While the objective appears simple, in practice we do not have the
prior knowledge of pt or vt, and cannot directly compute the loss or its gradient estimator.

Let x1 be a random variable distributed according to data distribution q. Lipman et al. [2023] first
notes that a probability path pt(x) can be constructed via a mixture of simpler conditional paths
pt(x | x1) whose vector field ut(x | x1) can be easily computed. To construct pt(x), a conditional
path is defined such that 1) p0(x | x1) = p0(x) and 2) p1(x | x1) = N (x | x1, σ

2I), a Gaussian
distribution centered at x1 with a sufficiently small σ (typically 10−5). The marginal path is computed
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as
∫
pt(x | x1)q(x1)dx1, which closely approximates q(x1) at t = 1. With that, [Lipman et al.,

2023] presents the Conditional Flow Matching (CFM) objective,

LCFM (θ) = Et,q(x1),pt(x|x1)||ut(x | x1)− vt(x; θ)||2. (4)

It is proven that FM and CFM have identical gradients w.r.t. θ. More importantly, one can easily
draw samples from pt(x | x1) and compute ut(x | x1) to derive an unbiased gradient estimator.

To train Voicebox, we adopt the optimal transport (OT) conditional path proposed in [Lipman et al.,
2023]. It is a simple and intuitive Gaussian path pt(x | x1) = N (x | µt(x1), σt(x1)

2I) with mean
µt(x) = tx1 and standard deviation σt(x) = 1−(1−σmin)t changing linearly in time. The associated
conditional vector field is ut(x | x1) = (x1 − (1− σmin)x) / (1− (1− σmin)t), and the conditional
flow is ϕt(x | x1) = (1 − (1 − σmin)t)x + tx1. The authors of [Lipman et al., 2023] note that
diffusion models actually correspond to special cases of Gaussian paths and empirically the OT path
leads to faster training, faster generation, and better performance compared to diffusion paths.

3.2 Problem formulation

Given a dataset of transcribed speech (x, y) where x and y denote an audio sample and its transcript,
respectively, the goal is to build a single model that can perform many text-guided speech generation
tasks through in-context learning. We propose to train such a generative model on the text-guided
speech infilling task, which predicts a segment of speech given its surrounding audio and the complete
text transcript. Let m be a binary temporal mask which is of the same length as x, 3 and xmis = m⊙x
and xctx = (1−m)⊙ x be the complementary masked versions of x. The generative model learns
p(xmis | y, xctx). In other words, y and xctx are the context and xmis is the missing data.

3.3 Model and Training

Motivated by the need that some applications require fine-grained alignment control between speech
and text, we decouple Voicebox into two components: an audio model and a duration model. Let
x = (x1, x2, · · · , xN ) be an audio sample of N frames, y = (y1, y2, · · · , yM ) be a text sequence
of M phones, and l = (l1, l2, · · · , lM ) be the per-phone duration where lj denotes how many audio
frames yj correspond to and

∑M
j=1 l

j = N . We further define z = rep(y, l) = (z1, z2, · · · , zN ) to
be the frame-level phone transcript, which repeats each yj by lj times such that zi denotes the phone
label of the audio frame xi. For a pair of (x, y), l and z can be estimated through forced alignment
using a speech recognition model. The estimation of q(xmis | y, xctx) is then broken down into the
audio model q(xmis | z, xctx) and the duration model q(lmis | y, lctx), where lmis and lctx denote l
masked by m′ and 1−m′, and m′ is downsampled from m based on l where m = rep(m′, l)

Audio Model Given a context z and xctx of length N , the distribution of xmis is highly stochastic
especially when xmis has a large temporal span. Hence, we parameterize it with a CNF and train
it using the flow matching objective with the optimal transport path. Audio x is represented as an
80-dimensional log Mel spectrogram (xi ∈ R80) extracted at a 100Hz frame rate.4 The audio context
xi
ctx = 0 where mi = 1 and xi

ctx = xi where mi = 0.

For simpler conditioning, we model the conditional distribution q(x | z, xctx) of all frames x instead
of only masked frames xmis. A neural network is used to parameterize the conditional vector field
vt(w, xctx, z; θ) that additionally takes xctx and z as input. Note that w is the sample at flow step t,
and x corresponds to w at step t = 1.

Given as input xctx ∈ RN×F , w ∈ RN×F , phone sequence z ∈ [K]N with K denoting the number
of phone classes, and a time step t ∈ [0, 1], we employ a Transformer model to parameterize the vector
field vt. A lookup table, denoted as L ∈ RK×H , is used to embed the phone sequence z, resulting
in the embedded sequence zemb ∈ RN×H where ziemb = L(zi) for i ∈ 1, . . . , N . Subsequently, the
three sequences (w, xctx, and zemb) are concatenated frame-by-frame and projected by employing
matrix Wp ∈ R(2F+H)×D, thereby obtaining the sequence Xc ∈ RN×D where D represents the
embedding dimension of the Transformer model.

3“temporal” refers to the physical time of the audio sample, not the time t ∈ [0, 1] of the flow in CNF.
4A Mel-spectrogram can be converted back to a waveform using a vocoder.
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To embed the flow step, a sinusoidal positional encoding is applied to map t ∈ [0, 1] to xt ∈ RD.
The sequence Xt ∈ R(N+1)×D, which serves as the input to the Transformer model, is derived
by concatenating Xc with the vector xt along the time dimension. Given the Transformer output
vt(w, xmis, z; θ) ∈ RN×F , which is the sub-sequence corresponding to Xc, the loss is computed as:

Laudio-CFM(θ) = Et,m,q(x,z),p0(x0)||(x− (1− σmin)x0)− vt(w, xctx, z; θ)||2, (5)

with w = (1− (1− σmin)t)x0 + tx. This function computes the loss on all frames, including those
that are not masked and would not be required during inference. To divert the model’s focus to
masked frames, we present a masked version of Laudio-CFM:

Laudio-CFM-m(θ) = Et,m,q(x,z),p0(x0)||m⊙ ((x− (1− σmin)x0)− vt(w, xctx, z; θ)) ||2, (6)

where the loss is only computed on masked frames. Appendix B.1 shows it leads to better results

Duration model We consider two solutions. The first one closely follows the audio model. It
models q(l | y, lctx) via a conditional vector field which swaps (x, xctx, z) with (l, lctx, y) and
accordingly for the flow, where l, lctx ∈ RM×1 and y ∈ [K]M . The masked version of the CFM
loss is used for training. On the other hand, previous studies have shown that regression duration
models can produce reasonable speech [Ren et al., 2021, Łańcucki, 2021]. Hence we consider a
second solution that regresses the masked duration lmis given the context duration lctx and phonetic
transcript y. The same Transformer model is used, except that there are only two input sequences
instead of three, and the time embedding is not used. The model is trained with an L1 regression loss
on masked phones:

Ldur-regr-m(θ) = Em,q(l,y)||m′ ⊙ (lmis − g(lctx, y; θ)) ||1, (7)

where g denotes the regression-based duration model. This is similar to the duration model used in
FastSpeech2 [Ren et al., 2021], but with additional duration context lctx as input.

3.4 Inference

To sample from the the learned audio distribution p1(x | z, xctx), a noise x0 is first sampled from p0,
and then an ODE solver is used to evaluate ϕ1(x0) given dϕt(x0)/dt = vt(ϕt(x0), xctx, z; θ) and
the initial condition ϕ0(x0) = x0.

Intuitively, the ODE solver computes ϕ1(x0) by evaluating vt at multiple t to approximate the
integration from t = 0 to t = 1 given the initial condition ϕ0(x0) = x0. A larger number of function
evaluations (NFEs) often leads to a more accurate solution of ϕ1(x0) at the cost of longer run time.
There are also solvers that can adjust the number of evaluations adaptively. This provides great
flexibility for users to decide the trade-off between speed and accuracy. Moreover, we find that
empirically Voicebox can already generate very high quality speech with less than 10 NFEs, making
it significantly faster compared to auto-regressive models.

3.5 Classifier-Free Guidance

Classifier guidance (CG) [Dhariwal and Nichol, 2021] is a technique used to trade off mode coverage
and sample fidelity for diffusion models post training, similar to the effect of truncated or low-
temperature sampling for generative adversarial networks [Brock et al., 2018] and discrete flow
models [Kingma and Dhariwal, 2018]. It modifies the score estimate of a diffusion model to include
the gradient of the log likelihood of an auxiliary classifier. Ho and Salimans [2022] notes that CG
approximates sampling from p(x | c)p(c | x)α where c is the conditioner, and this can be simulated
without a classifier by mixing the score estimate of a conditional model and an unconditional model.
The unconditional model can be jointly trained by dropping the conditioner c with some probability,
and the same model provides score estimates for both p(x) and p(x | c).
We extend the idea of classifier free guidance (CFG) to flow-matching models. The conditioner c
is equivalent to (z, xctx) for audio models and (y, lctx) for duration models, which is dropped with
puncond during training. During inference, the modified vector field ṽt for the audio model becomes

ṽt(w, xmis, z; θ) = (1 + α) · vt(w, xctx, z; θ)− α · vt(w; θ), (8)

where α is the strength of the guidance, and vt(w; θ) is obtained by dropping xctx and z. We use α
and αdur for the CFG strengths for audio and duration model, respectively, which are selected based
on empirical results.
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3.6 Applications

We demonstrate that Voicebox exhibits in-context learning abilities similar to LLMs by presenting a
few examples of how to create context to perform tasks Voicebox was not explicitly trained on. These
examples are also illustrated in Fig. 1.

Zero-shot TTS & alignment-preserved style transfer Given a target text ŷ and a transcribed
reference audio (x, y), zero-shot TTS aims to synthesize speech resembling the possibly unseen
audio style of the reference. Voicebox performs the task by treating the reference audio and the
target speech as one utterance where the target speech is masked. Let l and z be phone duration and
frame-level transcript of (x, y). The target duration l̂ is sampled given the duration context l and
concatenated phone sequence cat(y, ŷ). The target speech x̂ is then sampled given the context x and
concatenated frame-level phones cat(z, rep(ŷ, l̂)).

Voicebox can also convert the audio style for speech x̄ while preserving its alignment z̄. This is
useful for editing audio that is synchronized with other modalities such as video. Similar to zero-shot
TTS, Voicebox can simply perform the task by sampling target speech x̂ given the context x and
concatenated frame-level phones cat(z, z̄).

Transient noise removal & content editing When recording speech, one might misspeak a few
words or the recording my be interrupted by unexpected background noise. In these scenarios it is
desired to just modify the problematic segment instead of re-recording the speech. Voicebox can
perform transient noise removal through re-generating the noise corrupted segment given the original
frame-level transcript and the surrounding clean audio. Specifically, given the frame-level transcript
z of a transcribed noisy speech (x, y), a user creates a mask m to indicate the noisy segment. The
segment x̂mis is then sampled given z and xctx = (1 − m) ⊙ x. The audio model would likely
generate clean speech for x̂mis because during training clean audio context co-occurs with clean
target audio most of the time. The new audio x̂ = x̂mis + xctx.

For content editing, let ŷ be the new desired transcript with some words from the original transcript
y replaced, and l be the original duration. A user first constructs lctx (of the same length as ŷ) by
copying the lengths of phones that are not replaced from l, and set the lengths to 0 for new phones.
The duration of new phones l̂mis is sampled given lctx and ŷ, and the new duration l̂ = l̂mis + lctx.
The new frame-level transcript is constructed with ẑ = rep(ŷ, l̂). Similarly, the audio context xctx

is of the same length as ẑ, and is created by filling frames mapped to unreplaced phones with the
corresponding frames in x, and leaving those for new phones with 0. The frames for the new phones
x̂mis are sampled given ẑ and xctx. The edited speech is computed as x̂ = x̂mis + xctx.

Diverse speech sampling & alignment-preserved style shuffling Voicebox can generate diverse
speech samples by infilling the whole utterance. We first use the duration model to sample l̂ given the
phone transcript ŷ. We then use the audio model to sample x̂ given ẑ = rep(ŷ, l̂).

Similar to style transfer, Voicebox can also shuffle the audio style while keeping the alignment by
sampling x̂ conditioning on the frame-level transcript z̄ of the target speech clip x̄.

4 Metrics

Voicebox formulates many speech generation tasks as text-guided in-context learning problems. The
common goal of audio-conditioned tasks is to produce realistic speech that is coherent with the
context and has the correct textual content. For tasks not conditioned on audio context, it is desired to
generate diverse and realistic samples with distribution similar to training data with correct content.

Prior studies often adopt subjective metrics like mean opinion scores (MOS) [Ribeiro et al., 2011]
which are not comparable across papers or even across studies in the same paper, because ratings
can be biased by the quality of samples from other systems evaluated in the same trial. Some
studies have also considered automatic quantitative metrics measuring signal-level similarity, such as
mean cepstral distance (MCD) [Kubichek, 1993, Skerry-Ryan et al., 2018] for speech synthesis and
voice conversion, and signal-to-noise/distortion ratio (SNR/SDR) [Le Roux et al., 2019] for speech
enhancement. These metrics assume the output is deterministic given input, which is often ill-posed
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and unfairly penalizes generative models that produce realistic and valid samples. The caveats of
signal level metrics have also been discussed in image generative modeling literature [Saharia et al.,
2022]. In this paper, we advocate the following reproducible model-based perceptual metrics.

Correctness and intelligibility This can be measured by the word error rate (WER) of the synthe-
sized speech’s transcription with respect to the input text, which has been adopted in prior work [Wang
et al., 2018]. Public automatic speech recognition (ASR) models are used for comparability. For
English-only setups, we follow [Wang et al., 2023] and use HuBERT-L [Hsu et al., 2021] pre-trained
on 60K hours of Librilight [Kahn et al., 2019] and fine-tuned on 960 hours of Librispeech [Panayotov
et al., 2015]. For multilingual setups we use the Whisper large-v2 model [Radford et al., 2022].

It should be noted that while a lower WER suggests that the generated speech is more intelligible
by the model and contains more correct content, it does not necessarily imply the quality is better.
Similarly, when generating diverse samples or when transferring to an audio style that is more
expressive or more noisy, generated speech can be harder for an ASR model to recognize, which
leads to a higher WER, which does not imply the sample is bad.

Coherence This is measured by the similarity between the embedding of generated speech and
that of the audio context, where different embedding models would reflect coherence of different
attributes. VALL-E proposed to use WavLM-TDCNN speaker embedding model [Chen et al., 2022],
which maps an audio clip to a fixed dimensional vector, to measure voice similarity. We consider
the same model to compare with VALL-E. In particular, VALL-E reports similarity with respect
to resynthesized audio context by its vocoder (Encodec-decoder), which we call SIM-resyn (SIM-
r). SIM-resyn is not comparable across models using different vocoders. Hence, we advocate for
computing similarity against the original audio context, which we call SIM-orig (SIM-o).

Diversity and quality Fréchet Inception Score (FID) [Heusel et al., 2017] is widely adopted for
image generation evaluations, which captures the similarity between generated and real images at
the distribution level in some feature space. It fits a Gaussian distribution for real samples and
one for generated samples in some feature space, and compute the Fréchet distance between the
two. A shorter distance implies the distributions are more similar and generally reflects both higher
sample quality and diversity. We adapt the metric for speech by using self-supervised wav2vec
2.0 features [Baevski et al., 2020] and refer to it as Fréchet Speech Distance (FSD). We verify its
effectiveness in Appendix C.1 along with alternative features.

As supplementary metrics, we include quality MOS (QMOS) for subjective audio quality evaluation,
and similarity MOS (SMOS) for subjective audio similarity evaluation given pairs of prompt and
system-generated audio clips. Both of which are in the scale of 1 to 5 with 5 being the best. 50
samples are evaluated for each system and 10 ratings are collected for each sample. Averaged ratings
along with 95% confidence interval are reported. For that, the CrowdMOS Ribeiro et al. [2011]
package was used with the recommended recipes for filtering outliers and inaccurate ratings. The
MOS instructions can be found in Appendix C.5.

To evaluate duration models, one can continue using the aforementioned metrics to gauge the end-to-
end performance. Alternatively, we also present a few standalone metrics focusing on the duration
model. Descriptions and results can be found in Appendices C.2 to C.4.

5 Experiment

5.1 Setup

Data We train the English-only model on 60K hours ASR-transcribed English audiobooks and
the multilingual model on 50K hours of multilingual audiobooks from six languages: English (En),
French (Fr), German (De), Spanish (Es), Polish (Pl) and Portuguese (Pt). Following [Babu et al.,
2022], for a given upsampling factor β, we upsample low resource languages to mimic sampling
batches from a multinomial distribution ps ∼

(
ns

N

)β
s=1,...,S

where S is the total number of languages,
ns the number of pretraining hours of language s, and N the total number of hours. We set β = 0.25.

The two models are abbreviated as VB-En and VB-Multi. The Montreal Forced Aligner
(MFA) [McAuliffe et al., 2017] is used to phonemize and force align the transcript based on the MFA
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phone set, which is a modified version of the international phonetic alphabet (IPA). Word position
postfixes are added. Audio is represented as a 80-dimensional log Mel spectrogram and a HiFi-GAN
vocoder trained on the same 60K hours of English speech is used to generate waveform. More details
about phone representation, data transformation, and vocoder can be found in Appendices A.1 to A.3.

Model Transformer [Vaswani et al., 2017] with convolutional positional embedding [Baevski et al.,
2020] and ALiBi self-attention bias [Press et al., 2021] are used for both the audio and the duration
model. ALiBi bias for the flow step xt is set to 0. The audio model has 24 layers, 16 attention heads,
1024/4096 embedding/feed-forward network (FFN) dimension, 330M parameters. We add skip
connections connecting symmetric layers (first layer to last layer, second layer to second-to-last layer,
etc.) in the style of the UNet architecture. States are concatenated channel-wise and then combined
using a linear layer. The duration model has 8 heads, 512/2048 embedding/FFN dimensions, with
8/10 layers for English/multilingual setup (28M/34M parameters in total). All models are trained in
FP16.

Training VB-En/VB-Multi audio models are trained for 500K/750K updates with an effective batch
size of 240K frames. For training efficiency, audio length is capped at 1,600 frames and chunked
randomly if the length exceeds this threshold. Duration models are trained for 600K updates with an
effective batch size of 60K frames. The Adam [Kingma and Ba, 2014] optimizer is used with a peak
learning rate of 1e-4, linearly warmed up for 5K steps and linearly decays over the rest of training.
For audio models, we clip the gradient norm to 0.2 for training stability. The audio/duration sequence
is masked with pdrop = 0.3/0.2, and otherwise a segment of r% sequence length is masked, where
r ∼ U [70, 100]/U [10, 100]. puncond is set to 0.2 for audio/duration models.

Inference The torchdiffeq [Chen, 2018] package is used, which implements both fixed and
adaptive step ODE solvers. By default, the midpoint solver is used with a step size of 0.0625. The
resulting NFE is 64/32 with/without classifier-free guidance. The regression duration model is used
by default. Silence at both ends are trimmed to 0.1 second max.

Baselines We consider three baselines: 1) VALL-E [Wang et al., 2023], SOTA for English zero-shot
TTS trained on Librilight. 2) YourTTS [Casanova et al., 2021], SOTA multilingual (English, French,
and Portuguese) zero-shot TTS model trained on VCTK, LibriTTS, TTS-Portugese [Casanova et al.,
2022], and M-AILABS French. It is a flow-based model adapted from VITS [Kim et al., 2021]
using a pre-trained multilingual speaker embedder for voice conditioning. 3) A3T [Bai et al., 2022],
SOTA for NAR speech editing and infilling trained with a regression loss on VCTK. We also consider
Demucs [Défossez et al., 2020], a SOTA speech enhancement model trained with regression and
adversarial losses for denoising experiments. Table 1 summarizes the tasks each baseline is capable
of solving.

Table 1: Comparing Voicebox with baselines on task capabilities. Through infilling, A3T and
Voicebox can remove transient noise but not stationary background noise. VALL-E can only generate
speech conditioning on the past context. Hence, the generated segment would only be coherent to the
past context but will not have a smooth transition to the future context. With that, we label VALL-E
as incapable of denoising or editing.

Model ZS TTS Denoise Partial Edit Sampling
VALL-E ✓ ✗ ✗ ✓
YourTTS ✓ ✗ ✗ ✓
A3T ✓ ✓(short) ✓ ✗
Demucs ✗ ✓ ✗ ✗

Voicebox ✓ ✓(short) ✓ ✓

5.2 Monolingual zero-shot TTS

Table 2 presents the zero-shot TTS results of the English model VB-En. Following [Wang et al.,
2023], the test set is constructed by selecting 4 to 10 second long samples from Librispeech test-clean.

9



We consider cross-sentence prompting where a 3 second clip from another sample of the same speaker
is used as audio context, and continuation where the first 3 seconds of each utterance is used.

We ran subjective MOS studies comparing ground truth, YourTTS, and Voicebox. A3T is not included
because of the bad performance and VALL-E is not included because the model is not available.
Voicebox outperforms all baselines on all metrics in both cases. In particular, Voicebox transfers style
much more effectively (+0.101/+0.108 SIM-r on cross-sentence/continuation) than VALL-E, and the
gap is even bigger when compared against raw audio (+0.141 SIM-o on continuation). MOS studies
also confirm the quality and similarity of Voicebox are subjectively better than YourTTS.

Table 2: English zero-shot TTS results on filtered LS test-clean. "-" results are not available. We
obtain VALL-E continuation SIM result through communication with the authors.

Model WER SIM-o SIM-r QMOS SMOS
Ground truth 2.2 0.754 n/a 3.98± 0.14 4.01±0.09

cross-sentence
A3T 63.3 0.046 0.146 - -
YourTTS 7.7 0.337 n/a 3.27± 0.13 3.19±0.14

VALL-E 5.9 - 0.580 - -
VB-En 1.9 0.662 0.681 3.78± 0.10 3.71±0.11

continuation
A3T 18.7 0.058 0.144 - -
VALL-E 3.8 0.452∗ 0.508 - -
VB-En (α = 0.7) 2.0 0.593 0.616 - -

5.3 Cross-lingual zero-shot TTS

Tables 3 and 4 presents cross-lingual zero-shot TTS results, where the audio context and the target text
are in different languages. Note that VB-Multi is not trained on any sample with multiple languages
in an utterance spoken by the same speaker. The test set is constructed using filtered MLS test split
described in Appendix A.4. For each target text, we sample one 3-second long audio context from
each language, which creates 36 language transfer directions in total.

Voicebox yields better performance than YourTTS everywhere. Specifically, on En/Fr/Pt which
YourTTS supports, Voicebox obtains 3.1%/5.9%/8.1% lower WERs and 0.136/0.141/0.160 higher
similarity averaged across audio context in six languages. The average audio similarity MOS is 0.59
(3.89 vs 3.30) higher for Voicebox and the average quality MOS is 0.27 (3.50 vs. 3.23) higher.

Table 3: Multilingual zero-shot TTS results on filtered MLS test sets. GT/YT/VB-Multi refers to
ground truth/YourTTS/multilingual Voicebox. “Ref” column shows the audio context language.

Ref De En Es Fr Pl Pt
WER SIM-o WER SIM-o WER SIM-o WER SIM-o WER SIM-o WER SIM-o

GT - 5.9 0.725 5.0 0.636 4.1 0.729 5.2 0.714 4.9 0.743 5.8 0.725

YT

De n/a n/a 7.3 0.373 n/a n/a 11.3 0.361 n/a n/a 13.7 0.263
En n/a n/a 7.0 0.403 n/a n/a 11.4 0.298 n/a n/a 14.1 0.234
Es n/a n/a 7.6 0.327 n/a n/a 11.6 0.316 n/a n/a 13.5 0.256
Fr n/a n/a 7.6 0.363 n/a n/a 10.7 0.459 n/a n/a 13.1 0.299
Pl n/a n/a 7.8 0.349 n/a n/a 11.8 0.370 n/a n/a 15.1 0.308
Pt n/a n/a 7.6 0.322 n/a n/a 11.8 0.297 n/a n/a 13.6 0.436

AVG n/a n/a 7.5 0.356 n/a n/a 11.4 0.350 n/a n/a 13.9 0.299

De 4.8 0.632 4.8 0.522 3.6 0.442 5.3 0.489 5.5 0.449 5.4 0.420
En 5.9 0.435 4.2 0.535 4.1 0.423 6.8 0.423 8.3 0.402 7.6 0.385
Es 4.9 0.460 4.3 0.479 3.6 0.613 5.3 0.473 5.2 0.436 5.4 0.435
Fr 4.9 0.476 4.3 0.485 3.7 0.479 5.1 0.602 4.8 0.408 5.4 0.418
Pl 4.7 0.491 3.8 0.503 3.5 0.528 5.1 0.503 4.0 0.641 4.9 0.476
Pt 4.9 0.422 4.6 0.426 3.7 0.476 5.5 0.453 4.8 0.406 5.2 0.620

VB-Multi
(α = 1.0)

AVG 5.0 0.486 4.4 0.492 3.7 0.494 5.5 0.491 5.5 0.457 5.7 0.459
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Table 4: Multilingual zero-shot TTS SMOS/QMOS results on filtered MLS English test set with
prompts in different languages. YT/VB-Multi refers to YourTTS/multilingual Voicebox. “Ref” shows
the audio context language.

Ref=De Ref=En Ref=Es Ref=Fr Ref=Pl Ref=Pt

SMOS (target text = En)
YT 3.26±0.11 3.24±0.11 3.22±0.12 3.48±0.10 3.26±0.09 3.38±0.11

VB-Multi (α = 1.0) 3.89±0.10 3.93±0.08 3.84±0.10 3.92±0.09 3.81±0.08 3.96±0.09

QMOS (target text = En)
YT 3.29±0.12 3.17±0.13 3.29±0.12 3.08±0.12 3.35±0.12 3.21±0.12

VB-Multi (α = 1.0) 3.67±0.09 3.48±0.09 3.45±0.11 3.31±0.12 3.75±0.11 3.35±0.13

5.4 Transient noise removal

We construct a noisy test set by mixing the filtered Librispeech test-clean from Section 5.2 with
non-speech noise such that it overlaps with 50% of the duration at a -10dB signal-to-noise ratio. Note
that for infilling models like A3T and Voicebox, the type and the SNR of transient noise would not
affect the performance, because the corrupted segment is entirely masked and speech is re-generated
independent of the corrupted segment. Results of additional conditions can be found in Appendix B.2.

Table 5 presents the results comparing Voicebox with A3T and Demucs. It should be noted that A3T
and Voicebox utilize transcript and location of the noise while Demucs does not. Nevertheless the
goal of the study is to present a new paradigm and show Voicebox can perform denoising without
being explicitly trained. Compared to the baselines, Voicebox generates samples that are much more
intelligible (2.0% WER), more similar to the clean parts of the audio (0.612 SIM-o), and of higher
quality (3.87 MOS) in this challenging noise condition. A3T is better than Demucs on intelligibilty
and quality, but the infilled speech is not coherent because it is only trained on VCTK and cannot
generalize to new audio styles.

Table 5: Transient noise removal where noise overlaps with 50% of the speech at a -10dB SNR.
Model WER SIM-o QMOS
Clean speech 2.2 0.687 4.07±0.15

Noisy speech 41.2 0.287 2.50±0.15

Demucs 32.5 0.368 2.86±0.17

A3T 11.5 0.148 3.10±0.15

VB-En (α = 0.7) 2.0 0.612 3.87±0.17

5.5 Diverse speech sampling and application to ASR data generation

Table 6 compares the ability to generate diverse samples for Librispeech test-other text. We consider
English Voicebox (VB-En) with regression (regr) or flow-matching (FM) duration models. VITS-
VCTK additionally conditions on a speaker ID, which we randomly sample for each sentence.
YourTTS conditions on text and a reference audio, which we draw from the LS train splits.

Qualitatively, A3T generates the same robotic voice when not conditioned on audio context and VITS-
LJ generates high quality but a single voice, hence both yield high FSD (bad quality or diversity) but
VITS-LJ has a low WER. VITS-VCTK improves the voice diversity and FSD and YourTTS further
advances it as it is trained on more speakers. Voicebox models (with different duration samplers)
outperform the baseline on FSD by large margins, showing Voicebox’s ability to produce realistic
and diverse samples whose distribution is close to the training data. Among them, the FM duration
model creates more varying speaking styles compared to the regression one which ASR may struggle
more to recognize. Voicebox even yields lower FSDs than the real samples from the Librispeech
test-other split, because the latter contains only tens of speakers and the diversity is limited.

We next train an ASR model using only synthetic speech and evaluate it on real speech, which
has not been successful before because synthetic data were not realistic and representative enough.
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Table 6: Diverse speech generation from LS
test-other text.

Model WER FSD
Ground truth 4.3 171.1

require additional input
VITS-VCTK 10.6 306.6
YourTTS (ref=LS train) 9.0 277.9

text-only
A3T 37.9 373.0
VITS-LJ 5.6 344.2
VB-En (α = 0, dur=regr) 3.1 155.7
VB-En (α = 0, dur=FM, αdur = 0) 5.6 159.8

Table 7: Performance of ASR models trained on
real or synthetic speech, tested on real speech and
decoded with or without a 4-gram language model.

WER on real data
No LM 4-gram LM

ASR training data test-c test-o test-c test-o

Real audio (100hr) 9.0 21.5 6.1 16.2
Real audio (960hr) 2.6 6.3 2.2 5.0

VITS-LJ 58.0 81.2 51.6 78.1
VITS-VCTK 33.8 55.5 30.2 53.1
YourTTS (ref=LS train) 25.0 54.6 20.4 51.2
VB-En (α = 0, dur=regr) 7.1 17.6 6.5 14.6
VB-En (α = 0, dur=FM, αdur = 0) 3.1 8.3 2.6 6.7

Table 7 compares real and synthetic data from Voicebox and three baseline models. Each TTS model
generates one sample per text from the Librispeech training set, resulting in 281K utterances per
system. For real data, we consider train-960 and train-clean-100. Details about the ASR model and
training configurations are in Appendix A.5.

The results are highly correlated with the FSD scores of synthetic data. VITS-LJ gives the worst
results, because the synthetic speech has only one voice. YourTTS performs better on test-clean, but
is similar to VITS-VCTK on test-other. It suggests that while YourTTS is trained on more voices
and can generate speech with higher voice diversity, it still fails to produce realistic noisy speech and
hence the resulting ASR model still underperforms on test-other.

Both Voicebox variants beat the baseline by a large margin. In particular, Voicebox generates more
diverse speech when using the FM duration model, which leads to a better ASR system when used
for training. Compared to the baselines, the ASR model trained on Voicebox data with FM duration
model reduces WERs by over 85% and only lags behind real data by 0.4% and 1.7% absolute.

5.6 Inference efficiency versus performance

We examine the trade-off between the metrics of interest (WER, SIM, FSD) for different settings of
guidance strength (α) and NFE specified by the user. Fig. 2a shows the Voicebox inference time to
generate an audio sample of 10 seconds (including vocoding and predicting duration) as NFE varies
and compares that to VALL-E.5 For NFE=2, Voicebox takes about 0.31 seconds to generate a 10s
audio, about 20 times faster than VALL-E. At NFE=64, Voicebox is only 4% slower than VALL-E.

Next, we study the cross-sentence setup of Section 5.2 to analyze the impact on WER and SIM-r. We
find that for all settings Voicebox has better WER than VALL-E. WER remains stable with mean
of 2.0 and variance of 0.005 as shown in Fig. 2b. Fig. 2c shows that, in the case of SIM-r, lower
classifier guidance strength values (α = 0 or 0.3) produce higher speaker similarity when operating
in a lower NFE regime (< 8). However, as NFE exceeds 16, a higher classifier guidance strength
improves speaker similarity.

Finally, in Fig. 2e we examine FSD by generating samples for Librispeech test-other text. We find that
lower classifier guidance strength produces lower FSD scores and more diverse samples. Increasing
the NFE for each setting improves FSD. Fig. 2d shows the WER of the same test case. We find that
for α = 0, WER increases slightly from 2.8 to 3.1 as NFE goes from 2 to 32. For a larger classifier
guidance strength, WER remains more stable. Through FSD and subjective listening, we discovered
that a lower NFE leads to generating less diverse samples especially when the guidance weight is
lower (α = 0 or 0.3). Although those samples are of lower quality, they are easier for the ASR model
to recognize because they tend not contain extreme audio styles like whispering or high background
noise. As a result, WERs are lower.

5.7 How context length affects monolingual and cross-lingual zero-shot TTS

Monolingual: For in-context zero-shot TTS in Section 5.2, we used 3.0 seconds of prompt audio.
Here we examine how WER / SIM-r vary with different amounts of prompt audio using duration
from regression duration model for the target text. If the desired prompt is longer than the available

5Re-implemented and confirmed with the authors that our re-implementation is faster (6.2 vs 10 seconds).
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Figure 2: Trade-off between NFE and different metrics of interest.

audio, the shorter audio is used as the prompt. Results are shown in Figure 3. As expected, WER
mildly decreases and SIM-r grows quickly and flattens with longer audio prompts. Comparing against
VALL-E, Voicebox is more efficient at leveraging an audio prompt, achieving the same speaker
similarity as VALL-E with roughly two thirds the input audio.
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Figure 3: WER and SIM-r as a function of prompt audio time in seconds for the Zero-shot TTS task
5.2. Audio is generated using classifier-free guidance strength (α) of 0.7 and midpoint ODE solver
with a NFE of 32. The blue line is for Voicebox and the red star is VALLE at 3 seconds. The speaker
similarity (SIM-r) remains same for longer prompts (up to 10s).

Cross-lingual: Here we examine the effect of increasing the prompt length for the case of cross-
lingual zero-shot TTS. As described in 5.2, this setting has a total 36 language transfer directions
for each pair of source and target language. For each target text in a given transfer setting, we
examine how WER / SIM-o6 vary as the prompt length increases. Similarly, the regression duration
model is used for the target text. Fig. 4 and Fig. 5 plot the SIM-o (speaker similarity) and WER
trends respectively. When concatenating the prompt to the target for MLS, we find that the samples
are quite a bit longer than what the model was trained on (16s max length), because MLS test set

6Same trend is observed with SIM-r. We present SIM-o to be consistent with Table 3
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Figure 4: Each subplot considers one of the six target language and shows SIM-o (speaker similarity)
as a function of prompt audio duration in seconds for cross-lingual style transfer from different source
language. We set the classifier-free guidance strength (α) to 1.0 and use midpoint ODE solver with a
NFE of 32.

samples are in average 15 seconds long. To alleviate this out of domain issue and focus the study
on varying the prompt length, we truncate the target sequences to 4 seconds (at word boundaries).
We notice that WERs are higher compared to Table 3, likely because the ASR model struggles with
incomplete sentences. Each subplot contains the trend for one of the target languages from all six
source languages.

The speaker similarity consistently improves as the prompt length is increased, similar to the mono-
lingual setting. In contrast, we find that WER increases as we increase the prompt length for most
directions. The WER increases much more for En → non-En directions. We hypothesize that this
is due to training data imbalance across languages, where English accounts for over 90% of the
multilingual training data. Hence, when transferring from English, the model is more likely to
assume that the whole sentence is in English as the prompt length increases and produce incorrect
pronunciation for the non-English target. Note that during the training phase, the model was only
exposed to audio samples and phonemes originating from a single language.

6 Ethical Statement

We recognize the potential risks of a model capable of generating speech in the style of arbitrary
people. In an effort to diminish these risks we show that a binary classification model is able to
consistently distinguish between real world speech and that which is generated from our model.

Inspired by [Kharitonov et al., 2023], we train a convolutional binary classification model to distin-
guish between real and generated speech. The model consists of 6 blocks with hidden dimension
sizes: [64, 128, 256, 256, 512, 512]. Each block contains a (3 x 1) convolution along the time axis, a
(1 x 3) convolution along the frequency axis, followed by a ReLU activation and batch normalization.
After each block that increases the hidden dimension size we also apply max pooling with a stride
of 2 across both the time and frequency dimensions. Finally, global max pooling is applied and a
linear layer projects to a single value that is fed into a binary cross entropy loss. At inference time we
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Figure 5: Each subplot considers one of the six target language and shows WER as a function of
prompt audio duration in seconds for cross-lingual style transfer from different source language. We
find WER remain reasonably low for all cases except for “English” to “X” style transfer.We set the
classifier-free guidance strength (α) to 1.0 and use midpoint ODE solver with a NFE of 32.

create a sliding window with hop length equal to 250ms and run each chunk of audio through the
classifier and average the outputs.

The model is tested on the dev-clean split of Librispeech. We then take a 100 hour subset of the 60K
hour-English data and set aside 2,703 random utterances (to match the size of dev-clean) which is
used as a validation split. The remaining utterances from the 100 hours subset are used as the ground
truth utterances for training. For each split we synthesize audio, conditioned on each utterance of
the split by masking out frames in the spectrogram corresponding to 90%, 50%, and 30% of the
phonemes of the utterance. All samples are generated using classifier-free guidance with w = 0.7,
midpoint ODE solver (step size 0.0625 / NFE=64), and the regression duration model.

We consider two detection tasks. The first one is to distinguish between original audio and Voicebox-
generated audio. The second one is to distinguish resynthesized audio and Voicebox-generated audio.
The resynthesized audio is created by extracting the Mel Spectrogram from original audio and then
vocoding it with the HiFi-GAN vocoder.

Table 8 presents the results for each setting. The model can trivially distinguish original audio from
Voicebox-generated audio. This results from the fact that a model can also trivially distinguish
original audio from resynthesized audio, most likely by recognizing artifacts produced by the vocoder.
The task of differentiating Voicebox-generated audio from resynthesized audio is much harder. When
90% of the audio is masked, the model is able to reliably classify the audio as Voicebox-generated.
In lower masking regimes this decreases a bit, but this is likely due to a naive inference method of
averaging the outputs of all sliding windows. Since the majority of windows are non-synthetic, this
leads to mis-classifications.

7 Conclusion and Discussion

This paper presents Voicebox, the most versatile generative model for speech. By learning to solve a
text-guided speech infilling task on large scale multilingual datasets with a power model and training
objective Voicebox demonstrates impressive task generalization capabilities. Voicebox achieves
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Table 8: Synthetic speech detection metrics
% Mask Accuracy Precision Recall
Original audio vs Voicebox-generated audio
30% 1.000 1.000 1.000
50% 1.000 1.000 1.000
90% 1.000 1.000 1.000

Resynthesized audio vs Voicebox-generated audio
30% 0.704 0.714 0.680
50% 0.809 0.796 0.831
90% 0.907 0.881 0.942

state-of-the-art performance on mono and cross-lingual zero-shot TTS, speech inpainting, and diverse
speech sampling, and can generate speech up to 20 times faster than the best autoregressive models.

Limitation Voicebox models presented in this paper are trained on read speech from audiobooks
in up to six written languages. Hence, the current models may not transfer well to conversational
speech [Godfrey et al., 1992], which is more casual and contains more non-verbal sounds such as
laughing and back-channeling (e.g., um-hmm). We plan to tackle the problem by scaling the training
data to incorporate more diverse speech.

On the other hand, Voicebox depends on a phonemizer and a forced aligner to produce frame-level
phonetic transcript. In addition, many existing phonemizers [McAuliffe et al., 2017] are word-based,
which does not take neighboring words of the target into account when predicting the pronunciation.
Such phonemizers cannot accurately predict phonetic transcript given text because pronunciation is
context-dependent in many languages (e.g., liaisons in French). In the future, we will explore more
end-to-end methods where a model would be able to take raw text with punctuation as input [Casanova
et al., 2021], and eliminate the need of phonemizers and forced aligners to improve the performance
and increase the language coverage.

Last but not least, while Voicebox yields impressive results on transferring audio style (voice, speaking
style, emotion, and acoustic condition), the model does not allow independent control of each attribute.
In other words, one cannot ask the model to generate speech that resembles voice of one sample
while resembling the emotion of another sample. We leave disentangled control of attributes through
prompting or text description for future work.

Broader impact A high-quality and versatile generalist speech generation model like Voicebox
can enable many applications that improve the quality of our life. For example, zero-shot TTS could
bring the voice back to people who suffer from diseases or underwent surgeries such as laryngectomy
the causes inability to speak. Zero-shot TTS can also be combined with visual speech recognition
systems [Hsu et al., 2022] to avoid the need of typing. When paired with speech translation models,
cross-lingual zero-shot TTS enables everyone to speak any language in their own voice. Content
editing and speech denoising can be productivity tools for users to create content more effortlessly.
Diverse speech sampling, as shown in the paper, can significantly reduces the cost of creating data
for training speech-input models.

While Voicebox can bring many positive social impacts, it also carries the potential of misuse and
unintended harm. To mitigate the risk, we have presented a highly effective classifier in Section 6
showing that the model can accurately distinguish between real and synthetic speech. For future
work, we also plan to investigate proactive methods for training the generative model such that the
synthetic speech can be more easily detected, such as embedding artificial fingerprints [Yu et al.,
2021] that can be trivially detected without hurting the speech quality.
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A Additional Details of Experiment Setup

A.1 Vocoder

We adapt the HiFi-GAN V1 configuration to generate 16kHz audio from 80 dimensional log Mel
spectral features sampled at 100Hz. To compute the log Mel spectrogram, we use a 1024-point
short time Fourier transform with a 640-sample (40ms) analysis window, 160-sample (10ms) shift,
and the Hann windowing function to compute the amplitude spectrogram, and then apply an 80
dimension Mel filter with a cutoff frequency at 8kHz. The original HiFi-GAN V1 has four transposed
convolution blocks for upsampling. The upsampling factors are [8, 8, 2, 2] and the corresponding
kernel sizes are [16, 16, 4, 4]. Here we only need a total upsampling factor of 160 instead of 256, and
we adjust the upsampling factors to [5, 4, 4, 2] and kernel sizes to [11, 8, 8, 4] accordingly. The other
parameters are identical to the HiFi-GAN V1 configuration. Total number of parameters is 13M.
We train the adapted HiFi-GAN on the 60K hours of English audiobook data for 1.5M updates on 8
GPUs, which takes 7.5 days.

A.2 Phone representation

Ghost silence The frame-level phonetic transcript used for training is obtained through force-
aligning speech and phonetic transcript. In particular, a forced aligner may align some frames to a
special phone “SIL” for non-speech frames (silence or noise). For most forced aligners, only frames
between words and frames at the beginning and at the end of an utterance can be aligned to SIL.

During inference, we are only given the text transcript, which does not tell us where we should insert
silence to. Hence, it is desired to have the duration model not only predict the duration for each phone
(SIL included), but also predict the existence of SIL at eligible locations (between words and at the
two ends of the utterance). To tackle it, we introduce ghost silence to our phonetic transcript, which
are silences in between words with duration of zero frames.

To give an example, suppose the transcript contains three words: “Hey what’s up” with pronun-
ciation “{Hey:[A,B], what’s:[C], up:[D,E,F]}”, and the frame-level phonetic transcript z
obtained through forced alignment is z = (SIL A B B SIL C D D D E E F SIL SIL). The
phonetic transcripts becomes y = (SIL A B SIL C SIL D E F SIL), where the ghost silence is
highlighted in green. The corresponding duration would be l = (1, 1, 2, 1, 1, 0, 3, 2, 1, 2). A ghost
silence is inserted between what’s and up during training, and the duration model should predict the
duration of it as zero to indicate that there should not be a pause between the two words.

Word-position-dependent phone The possible absence of silence between words in the frame-
level phone transcript can make it hard for the audio model to identify word boundaries. To help
the audio model identify the word boundary which is important when reading a sentence, we
introduce word-position-dependent phones which are commonly used in Hidden Markov Model
based acoustic models for speech recognition [Povey et al., 2011]. This adds a postfix to each phone
in the transcript to denote where it is in the corresponding word. There are four postfixes: _B for
beginning, _E for end, _I for intermediate, and _S for singleton. The above example becomes
“{Hey:[A_B,B_E], what’s:[C_S], up:[D_B,E_I,F_E]}” with frame-level phonetic transcript
z = (SIL A_B B_E B_E SIL C_S D_B D_B D_B E_I E_I F_E SIL SIL).

Phone-level mask In terms of masking, given duration l, the relationship of phone-level mask m′

and frame-level mask m can be written as m = rep(m′, l). For the applications where a duration
model is involved (zero-shot TTS, content editing, diverse speech sampling), the frame-level mask
m is extended such that no phone is partially masked. In other words, all the frames corresponding
to a phone is either entirely masked or entirely unmasked. During training, we mask a contiguous
chunk of audio, infilling of which is a more challenging task compared to infilling multiple smaller
segments. All frames that are aligned to a phone are either entirely masked or unmasked. Note that
masking all frames for a phone is not a necessity but was chosen due to ease of implementation.

A.3 Data transformation

The Mel spectrogram is normalized with the global mean (-5.8843) and standard deviation (2.2615) to
stabilize training. The statistics are estimated on 30k random training samples from the 1K hours of
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English audio. Input and output duration are dequantized (x ∼ U [x− 0.5, x+ 0.5]) and transformed
with log(1 + x) following [Ren et al., 2021]. Prediction of duration is quantized and clipped such
that the minimal duration is greater than or equal to zero.

A.4 Cross-lingual zero-shot TTS test data filtering

We create a test set for each language by selecting samples from the MLS test split which have
Whisper transcription WER lower than 20% (or 30% for Polish and Portugueses test splits which
contains less than 1K samples), because we found MLS test set contains many examples with
incomplete transcriptions missing a large portion of the utterance. In addition, a small amount of
utterances were excluded due to MFA alignment failure. Table A1 lists the number of samples
remained for each language.

Table A1: Number of MLS test samples after filtering.
Language #samples before filtering #samples after filtering

English 3769 3535
Spanish 2385 2323
German 3394 3183
French 2426 2284
Polish 520 508

Portuguese 871 838

A.5 Setup for training ASR models with synthetic speech

To train an ASR model in Section 5.5, we extract 80-dimensional log Mel features with a 25ms
window and a 10ms frame shift, and then apply global mean-variance normalization. The ASR
model is an RNN-T with a Conformer-based encoder [Gulati et al., 2020]. The conformer applies
time scale reduction to the input features with stride 6, embeds them into 512-dimensional vectors,
passes these vectors through a 20-layer conformer which has 8 attention heads and 2048-dimensional
fully-connected layers. The conformer output is further mapped to 1024 dimensions through a
linear layer followed by layer normalization before being passed to the joiner. The predictor of the
network first embeds wordpiece units into 512 dimensional embeddings, applies layer normalization,
a 512-dimensional LSTM, a dropout layer and a linear layer that maps the LSTM output to 1024
dimensions. The joiner adds the encoder and predictor outputs, applies tanh non-linearity and uses
a linear layer that maps the 512-dimensional joiner input into wordpiece units. There are 4096
wordpiece units estimated from the LibriSpeech 960hr training text.

We apply SpecAugment [Park et al., 2019] in all ASR runs. The models are trained using Py-
Torch [Paszke et al., 2019] with Adam [Kingma and Ba, 2014] optimizer for 120 epochs unless
otherwise noted. The learning rate follows a tri-stage schedule with a maximum of 0.001. We
applied gradient clipping at 10 and a weight decay parameter of 0.1. For the 960hr setting, we used a
variable batch size capped at 1K utterances or 30K frames, whichever is smaller. This corresponds to
about 45K update steps for 120 epochs. For the 100hr setting, we set the maximum learning rate to
0.0001 and used smaller batch size (capped at 200 utterances or 5K frames). In this case, 120 epochs
corresponded to about 120K updates. For decoding, we used n-best decoding with a beam-size of 15,
and evaluated the WER on the 1-best path.

B Additional Experiments

B.1 Comparing audio model training objectives

While A3T is considered the regression-based speech infilling baseline, it is trained on a smaller
dataset and uses a smaller model compared to Voicebox. Here we present a controlled study comparing
the flow-matching and regression objectives, as well as the effectiveness of masked loss.

We consider a reduced setup for this ablation to save the compute. All models were trained on an
English audiobook dataset with 1K hours of speech using a smaller model configuration (12 layers,
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1024-dimensional Transformer embedding, 2048-dimensional feed-forward layer, 8 attention heads)
for 150k steps with an effective batch size of 120k frames. These models are evaluated on the
cross-sentence zero-shot TTS setup (Section 5.2) and diverse speech sampling (Section 5.5).

Results in Table B2 show that while regression audio models produce comparable WER, the audio
similarity and diversity are significantly worse. Subjective listening also reveals that the audio quality
and audio similarity are much worse. On the other hand, masked loss improves audio similarity and
diversity while having little impact on intelligibility.

Table B2: Comparison of flow-matching and regression models, trained with loss computed on all
frames or only masked frames. Results of the proposed objective is boldfaced.

Method Loss Zero-Shot TTS (cross-sentence) Diverse sampling
WER SIM-r WER FSD

Flow Matching Masked 2.1 0.597 3.1 242.5
Flow Matching All 2.0 0.528 3.1 243.1
Regression Masked 2.0 0.520 2.9 278.8
Regression All 2.0 0.512 2.9 282.8

B.2 Transient noise removal in more conditions

We expand the experiments in Section 5.4 by comparing the models on two noise levels (low noise:
10dB and high noise: -10dB), three overlapping ratios (30%, 50%, 70%), and also two types of noise
(speech noise and non-speech noise).

Results are presented in Table B3. Voicebox consistently produces the most intelligible audio at all
conditions (indicating the percentage of speech to infill). In terms of audio similarity, Voicebox is
constantly better in the high noise condition with gains ranging from 0.265 to 0.324 compared to
Demucs, and is on par with Demucs in low noise condition.

Table B3: Results of transient noise removal with varying overlapping percentage and noise level.
“sp” means added noise is speech, and “non-sp” means non-speech.

WER SIM-o WER SIM-o
sp non-sp sp non-sp sp non-sp sp non-sp

SNR=-10dB, overlap=30% SNR=10dB, overlap=30%
Noisy speech 26.7 24.9 0.202 0.238 3.7 3.1 0.605 0.603
Demucs 20.5 19.7 0.247 0.247 3.2 2.8 0.570 0.567
A3T 7.5 0.058 same as left
VB-En (α = 0.7) 2.2 0.566 same as left

SNR=-10dB, overlap=50% SNR=10dB, overlap=50%
Noisy speech 43.6 40.8 0.256 0.292 4.5 3.8 0.649 0.649
Demucs 34.3 32.5 0.291 0.288 3.8 3.3 0.616 0.613
A3T 11.5 0.064 same as left
VB-En (α = 0.7) 2.0 0.612 same as left

SNR=-10dB, overlap=70% SNR=10dB, overlap=70%
Noisy speech 60.0 56.0 0.260 0.303 6.3 4.6 0.595 0.592
Demucs 49.5 45.4 0.293 0.294 4.6 3.8 0.572 0.564
A3T 16.6 0.063 same as left
VB-En (α = 0.7) 2.0 0.559 same as left

B.3 Choice of audio model output features

The performance of our model is upper bounded by how well the chosen acoustic features can be
reconstructed to waveform. The reconstruction performance is determined jointly by the encoding
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process, as in how much information is lost when encoding waveform into the features, and the
decoding process, as in how well the vocoder can translate the encoded information into waveform.

To motivate the choice of the acoustic feature and the vocoder, we compare four combinations:
the first one is Mel spectrogram + HiFi-GAN which is what this paper adopts. The second is Mel
spectrogram + Parallel WaveGAN [Yamamoto et al., 2020] that is used by A3T [Bai et al., 2022].
The third one is Encodec post-quantization dense feature + Encodec decoder, which is analogous to
VALL-E’s setup. The last one is also Encodec but with pre-quantization dense feature, which we
include to study how much information is lost during quantization.

We also note that Mel spectrogram features are 80 dimensional encoded at 100Hz, which is 8K
dimensions per second, while Encodec features are 128 dimensional encoded at 75Hz, which is 9.6K
dimensions per second, higher than the Mel spectrogram features.

Table B4 presents the results evaluated on the Librispeech dev-clean and dev-other splits. All three
models have the same WER resynthesizing dev-clean split, but ParallelWaveGAN degrades the most
on dev-other. Interestingly Encodec even produces audio of lower WER than the ground truth.

In terms of audio similarity, besides the default audio feature extractor WavLM-TDCNN, we also
include results of similarity computed with another speaker encoder ECAPA [Desplanques et al.,
2020]. Parallel WaveGAN is consistently the worst. However, it is unclear whether HiFi-GAN or
Encodec performs better. Encodec prevails with the WavLM-TDCNN embedder and HiFi-GAN wins
using ECAPA. It may require subjective MOS test to conclude which one reconstructs the audio
better, and we leave exploration of modeling Encodec dense features for future study.

Table B4: Comparison of different audio features and vocoders on audio reconstruction. Librispeech
dev-clean (d-c) and dev-other (d-o) are used for evaluation. WER and audio similarity computed with
WavLM-TDCNN and ECAPA are reported.

Audio feature / Vocoder WER SIM-o (WavLM) SIM-o (ECAPA)
d-c d-o d-c d-o d-c d-o

Ground truth 2.1 4.7 1.000 1.000 1.000 1.000

Mel spectrogram / HiFi-GAN 2.1 4.7 0.915 0.909 0.766 0.762
Mel spectrogram / Parallel WaveGAN 2.1 5.2 0.868 0.847 0.721 0.711
Encodec post-quantized feature / Encodec decoder 2.1 4.5 0.943 0.944 0.724 0.722
Encodec pre-quantized feature / Encodec decoder 2.1 4.4 0.943 0.944 0.724 0.722

C Additional Details and Studies on Metrics

C.1 Measuring speech diversity and quality with FSD

Diversity We first validate if FSD reflects the diversity for a set of speech samples and study its
sensitivity to sample size. To achieve that, we design controlled experiments to compute FSD on sets
of samples with varying diversity and sample sizes. Specifically, we create two partitions from 1K
hours of English speech, where each partition has the same set of speakers and the same number of
utterances for each speaker. The first partition is considered the reference set.

To test the sensitivity to sample size, we use the second partition to create subsets by sampling r%
of utterances from each speaker in that partition. This sampling method is denoted as “utt”. We
computed that on average, each speaker contributed approximately 2.33 sessions, with each session
containing around 52.45 utterances. Therefore, the subsets created using the sampling method are
expected to have similar audio style distributions to the reference set and the FSD is expected to stay
low regardless of the subset size. We consider r ∈ {1, 5, 10, 25, 50, 100}.

To test the correlation with diversity, we again use the second partition to create subsets by sampling
r% of speakers and including all the utterances in the partition from those speakers. This sampling
method is denoted as “spk” where a smaller r leads to a subset with fewer speakers and hence lower
diversity. Therefore the FSD is expected to increase as r decreases. The same set of values for r is
considered. For the same r, the “utt” subset should always have a lower FSD than the “spk” subset.
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We compare three different features for computing the FSD score. The first is the supervised
WavLM-TDCNN feature used for computing audio similarity (SIM-r and SIM-o). The second is the
self-supervised wav2vec 2.0 BASE [Baevski et al., 2020] feature reduced to 128 dimensions using
principle component analysis (PCA). The last one is the supervised audio event classification model
feature that is used to compute FAD [Kilgour et al., 2019] for non-speech audio generation.

Figure C1 first compares using different layers of wav2vec 2.0 features. All of them yield similar
desirable results where “utt” stays low and “spk” increases drastically when the sample size reduces
and speaker diversity decreases. We then decide to use the middle layer (layer 6) as the default feature
for FSD computation.
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Figure C1: FSD based on different layers of wav2vec 2.0 BASE. utt: utterance-based sampling, spk:
speaker-based sampling. Vertical bars denote standard deviation.

Figure C2 further compares wav2vec 2.0-layer 6 with the two other features. WavLM-TDCNN and
wav2vec 2.0-layer 6 present similar trends and both have low variance. Both of them are suitable for
measuring diversity, and we decide to use wav2vec 2.0 features as it is self-supervised and would be
able to capture more holistic information of speech such as prosody and emotion.

In contrast, FAD score [Kilgour et al., 2019] is not appropriate for measuring speech diversity. The
score does not increase much between r = 25% and r = 1% for “spk” sampling method, showing
that the score does not reflect the decreasing speaker diversity. On the other hand, “utt” sampling
method observes huge FAD score increase when reducing the sample size from r = 25% to r = 1%
where the diversity does not change much as the number of speakers remains the same. Moreover,
at r = 1% both sampling methods result in similar FAD score while the two subsets exhibit very
different levels of diversity. We hypothesize that this is because FAD score is computed based on
features extracted from an audio even classifier trained on AudioSet, which learns to distinguish
between events like lawn mower, car engine, and human speech, but does not learn to capture the
variation within speech, such as different voices.

Quality In addition to measuring diversity, Fréchet distance is a commonly used metric for assessing
quality in image generation [Ho et al., 2020]. To show its applicability for speech generation, we
evaluate the FSD score of speech utterances with varying levels of quality. The reference set samples
are 1K hours of English training data, and the hypothesis set is the Librispeech test-clean split with
noise added. We added Gaussian noise at different SNRs, ranging from 0 to 50 dB. Lower SNR
values correspond to lower quality. We use the default speech feature extractor (i.e., wav2vec 2.0,
layer-6) throughout the experiments.
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Figure C2: FSD with different sample size using supervised WavLM-TDCNN, self-supervised
wav2vec 2.0, and supervised audio event classifier features. utt: utterance-based sampling, spk:
speaker-based sampling. Vertical bars denote standard deviation.

Our results, summarized in Figure C3, show that a subset with a lower SNR has a higher FSD score.
Therefore, a lower FSD score indicates higher acoustic quality for the set of test samples when
diversity is fixed.
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Figure C3: FSD under different noisy levels. Feature: Wav2vec 2.0 layer-6 feature. Noise is added
upon model output from Voicebox under unconditional setting.

C.2 Standalone metrics for duration models

As mentioned in the main text, we can utilize end-to-end metrics of WER, SIM, and FSD to evaluate
duration models, but also consider metrics specifically for duration.

First, we consider two metrics aimed at the quality of duration predictions, here denoted l̂(lctx, y).
For a regression model, we use l̂(lctx, y) = g(lctx, y; θ). For a flow matching model, we set l̂ as the
mean over 20 samples, ensuring a fairer comparison.

Duration correctness (MS-MAE) Our first metric, multi-sample mean-absolute error (MS-MAE),
is the masked absolute error per-utterance divided by the average number of masked phonemes
per-utterance

Em,l,y||m⊙
(
l − l̂(lctx, y)

)
||1

Em,l,y||m||1
(9)

Speaking rate correlation (MS-Corr) Our next metric, multi-sample correlation (MS-Corr),
computes the average masked predicted duration and unmasked duration context per utterance,
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and computes their correlation across utterances. Comparing MS-Corr with the same correlation
computed from the ground truth, we observe to what extent predicted durations capture appropriate
correlations with the context.

Duration diversity and quality (FDD) Additionally, we evaluate the quality and diversity of
duration samples at the distribution level, similar to our audio evaluation of diversity and quality via
FSD. We produce one sample per utterance from a duration model and collect all sampled phoneme
durations, possibly many per-utterance, into an empirical distribution. We compare means and
variances of this sampled distribution versus the means and variances of the training distribution,
labeled µ, s, and µ′, s′ respectively. We define the Fréchet duration distance (FDD) as the Fréchet
distance between the distributions

(µ− µ′)2 + s+ s′ − 2
√
ss′, (10)

treated as though they were Gaussians. FDD depends on the sampled durations accurately reflecting
the training distribution of real durations. As for FSD, this metric is specific to unconditional
text-to-speech generation.

C.3 Duration model evaluation with standalone metrics

We evaluate three duration model variants. The first and second utilizes flow matching and re-
gression, trained using masked conditional flow matching and regression respectively as described
in Section 3.3. The third is a regression model that ignores duration context lctx and only uses
phonetic transcript y, referred to as unconditional regression below. This is the duration model used
in FastSpeech2 [Ren et al., 2021], A3T [Bai et al., 2022] and many other non-autoregressive speech
synthesis models.

We evaluate our three duration model variants on the Librispeech test-other split on two tasks. The
first is unconditional TTS where we generate all durations from given phonemes (i.e. lctx is entirely
masked). The second task is infilling the second half of each utterance’s durations, where lctx are
durations from the unmasked half of the utterance. This second infilling task distinguishes between
the two regression model variants, since the unconditional regression ignores lctx, and hence predicts
identical durations for the tasks. Duration metrics are computed for TTS and infilling in Table C5
and C6. The prefix Phn or Sil indicates the associated metric was either computed across all non-
silence or all silence phonemes. Start and end silences were not trimmed for these duration metric
evaluations.

Starting with prediction quality metrics (MS-MAE and MS-Corr), the duration-conditional regression
performs slightly better on MS-MAE overall than the other models. Larger differences are seen on
Phn-MS-Corr where the unconditional regression has a correlation substantively below the other
models (Phn-MS-Corr of ground truth is 0.47), indicating conditioning on duration context lctx
is beneficial. Flow-matching shows the largest distinction versus regression on the distributional
comparison captured by FDD. The regression models have generally larger FDD because they
underestimate the standard deviation in phoneme and silence durations, and hence produce samples
with less duration diversity and more regular duration lengths.

Table C5: English TTS duration metrics on LS test-other.
Duration Model Phn-MS-MAE Phn-FDD Sil-MS-MAE Sil-FDD
Unconditional Regression 2.53 0.72 5.32 2.39
Duration-conditional Regression 2.52 0.76 5.10 8.40
Duration-conditional Flow Matching 2.63 0.61 5.18 2.48

C.4 Duration model evaluation with end-to-end metrics

We now present end-to-end metrics for our three duration variants for zero-shot TTS cross-sentence
and continuation, as well as diverse speech generation, corresponding to Sections 5.2 and 5.5.
Zero-shot TTS cross-sentence and continuation results are shown in Table C8 and diverse speech
generation results in Table C7. These results are not comparable with the main text as they utilize the
flow-matching model described in Appendix B.1, denoted as VB-En-1K.
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Table C6: English second-half infilling duration metrics on LS test-other.
Duration Model Phn-MS-MAE Phn-MS-Corr Sil-MS-MAE
Unconditional Regression 2.57 0.26 5.44
Duration-conditional Regression 2.45 0.35 5.20
Duration-conditional Flow Matching 2.52 0.41 5.32

Overall, FSD and SIM are similar across duration variants. On the other hand, WER is sensitive to the
choice of duration model, where the duration-conditional regression achieves a substantially lower
WER. Subjective listening from the duration-conditional regression and flow-matching confirms that
the regression model is producing more regular patterns of speech, that may be easier for ASR to
recognize, while sacrificing some duration diversity.

Table C7: Diverse speech generation from LS test-other text.
Duration Model with VB-En-1K WER FSD (LS-train)
Unconditional Regression 3.8 148.7
Duration-conditional Regression 3.7 148.1
Duration-conditional Flow Matching 5.4 155.1

Table C8: English zero-shot TTS results on filtered LS test-clean.
Duration Model with VB-En-1K WER SIM-o SIM-r
cross-sentence
Unconditional Regression 3.0 0.538 0.584
Duration-conditional Regression 2.7 0.545 0.591
Duration-conditional Flow Matching 3.4 0.528 0.578

continuation
Unconditional Regression 2.5 0.485 0.524
Duration-conditional Regression 2.2 0.491 0.533
Duration-conditional Flow Matching 2.7 0.481 0.525

C.5 MOS instructions

Table C9 shows the instruction presented to the raters for quality mean opinion score study. Table C10
shows the instruction presented to the raters for similarity mean opinion score study.
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Table C9: Quality mean opinion score (QMOS) instruction.

Introduction
Your task is to evaluate the subjective quality and intelligibility of the speech from short
(2-8 second) audio files. Each HIT can be completed in roughly around 120 seconds.

Task Instructions
In this task you will hear samples of speech recordings. The purpose of this test is to
evaluate the quality and intelligibility of each file in terms of its overall sound quality
and the amount of mumbling and unclear phrases in the recording.

Please keep in mind that speech samples can be distorted and noisy, however these are
only specific examples.

Please use a headset for listening and adjust your volume level to your comfort during
this training, and do not change later during the experiment.

You should give a score according to the following scale, known as the MOS (mean
opinion score) scales:

Score (Quality and Intelligibility of the speech)
5 (Excellent)
4 (Good)
3 (Fair)
2 (Poor)
1 (Bad)

Table C10: Similarity mean opinion score (SMOS) instruction.

Task Name
Rate the similarity of the synthesized speech samples to a given prompt.

Task Instructions
Your task is to evaluate the similarity of the synthesized speech samples to the given
speech prompt. You should focus on the similarity of the speaker, speaking style,
acoustic conditions, background noise, etc. You should rank the recordings on the scale
between 1-5, where 5 is the best quality and 1 is the worst.

In other words, please rank the recordings according to their acoustic similarity to the
given prompt, meaning as if they were recorded in the same place by the same speaker
speaking in similar styles. This task typically requires approximately 120 seconds to
complete.

Please use a headset for listening and adjust your volume level to your comfort during
this training, and do not change later during the experiment.
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D Detailed Configurations for Acoustic and Duration model training

Table D11: Detailed configurations for the audio models used in our experiments.
VB-En VB-Multi

Model Parameters

Model Dimension 1024 1024
Number of Heads 16 16
Number of Layers 24 24
Feedforward Dimension 4096 4096
Attention Dropout 0.0 0.0
Activation Dropout 0.1 0.1
ConvPos Width 31 31
ConvPos Groups 16 16
ConvPos Depth 2 2
Skip Connections true true
Alibi Bias true true

Training Parameters

Number of Iterations 500000 750000
Number of GPUs 32 32
Learning Rate (LR) 0.0001 0.0001
Gradient Clipping Value 0.2 0.2
LR Scheduler Warmup Steps 5000 5000
Loss Masking true true

Data Parameters

Tokens per Batch 7500 7500
Conditional Dropout 0.2 0.2
Position Dependent Phones true true
Phoneme Mask Percent 0.0, 0.0 0.0, 0.0
Spectrogram Mask Percent 0.7, 1.0 0.7, 1.0
Spectrogram Drop Percentage 0.3 0.3
Chunk Length 1600 1600
Transform Type normalize normalize
Mean -5.884 -5.884
Standard Deviation 2.261 2.261
Upsampling β - 0.25
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Table D12: Detailed configurations for conditional flow matching based duration models used in our
experiments. For regression based model, we use the same configurations but use regression loss.

VB-En VB-Multi

Model Parameters

Model Dimension 512 768
Number of Layers 8 10
Feedforward Dimension 2048 2048
Attention Dropout 0.1 0.1
Activation Dropout 0.1 0.1
ConvPos Width 15 15
ConvPos Groups 16 16
ConvPos Depth 2 2
Skip Connections true true
Alibi Bias true true

Training Parameters

Number of Iterations 600000 600000
Number of GPUs 4 4
Learning Rate (LR) 0.0001 0.0001
LR Scheduler Warmup Steps 5000 5000
Loss Masking true true

Data Parameters

Conditional Dropout 0.2 0.2
Upsampling β - 0.5
Tokens per Batch 15000 15000
Duration Drop Percentage 0.2 0.2
Duration Mask Percent 0.1, 1.0 0.1, 1.0
Position Dependent Phones true true
Transform Type log log
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