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Abstract

Data augmentation is key to improving the generalization ability of deep learning
models. Mixup is a simple and widely-used data augmentation technique that has
proven effective in alleviating the problems of overfitting and data scarcity. Also,
recent studies of saliency-aware Mixup in the image domain show that preserving
discriminative parts is beneficial to improving the generalization performance.
However, these Mixup-based data augmentations are underexplored in 3D vision,
especially in point clouds. In this paper, we propose SageMix, a saliency-guided
Mixup for point clouds to preserve salient local structures. Specifically, we ex-
tract salient regions from two point clouds and smoothly combine them into one
continuous shape. With a simple sequential sampling by re-weighted saliency
scores, SageMix preserves the local structure of salient regions. Extensive exper-
iments demonstrate that the proposed method consistently outperforms existing
Mixup methods in various benchmark point cloud datasets. With PointNet++, our
method achieves an accuracy gain of 2.6% and 4.0% over standard training in 3D
Warehouse dataset (MN40) and ScanObjectNN, respectively. In addition to gener-
alization performance, SageMix improves robustness and uncertainty calibration.
Moreover, when adopting our method to various tasks including part segmen-
tation and standard 2D image classification, our method achieves competitive
performance. Code is available at https://github.com/mlvlab/SageMix.

1 Introduction

Deep neural networks have achieved high performance in various domains including image, video,
and speech. Recent researches [1, 2, 3, 4, 5, 6] have been proposed to employ deep learning model
for 3D vision, especially in point clouds. However, in the point cloud domain, deep learning models
are prone to suffer from weak-generalization performance due to the limited availability of data
compared to the image datasets, which contain almost millions of training samples. For alleviating
the data scarcity issue, data augmentation is a prevalent solution to increase the training data.

In the image domain, Mixup-based methods [7, 8, 9] combine two training images to generate
augmented samples. More recent Mixup methods [10, 11, 12, 13] focus on leveraging saliency to
preserve the discriminative regions such as foreground objects. Despite the success of saliency-
aware Mixup methods, it has been less studied in point clouds due to its unordered and non-grid
structure. Moreover, saliency-aware augmentation methods require solving an additional optimization
problem [11, 12], resulting in a considerable computational burden.
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Figure 1: Comparison of Mixup methods on point clouds. Given two original samples, (left)
guitar and (right) chair, we generate samples by various Mixup methods. (Top) PointMixup does not
preserve the discriminative structure. (Middle) The samples generated by RSMix contain the local
structure of each sample, but the discontinuity occurs at the border. (Bottom) Our method, SageMix,
generates a continuous mixture preserving the local structure of original shapes.

Recently, several works [14, 15, 16] have attempted to extend the concept of Mixup to point clouds.
PointMixup [14] enables the linear interpolation of point clouds based on optimal assignment.
RSMix [15] proposed a shape-preserving Mixup framework that extracts and merges the rigid subsets
of each sample. However, these approaches have limitations. PointMixup generates samples without
preserving the local structure of the original shapes. For example, in the top row of Figure 1, the
structure of the guitar is not preserved in generated samples. RSmix generates discontinuous samples
and these artifacts often hinder effective training. Furthermore, these methods disregard the saliency,
thereby causing the loss of the discriminative local structure in the original point cloud.

In this paper, we propose a Saliency-Guided Mixup for point clouds (SageMix) that preserves
discriminative local structures and generates continuous samples with smoothly varying mixing ratios.
For saliency estimation, we measure the contribution of each point by the gradients of a loss function.
Through a simple sequential sampling via re-weighted saliency scores, SageMix samples the query
points to extract salient regions without solving additional optimization problems. Then, SageMix
smoothly combines point clouds, considering the distance to query points to minimize the loss of
discriminative local structures as illustrated in Figure 1 (e.g., the neck of a guitar and the back of a
chair, etc.).

In summary, our contributions are fourfold:

• We propose a novel saliency-guided Mixup method for point clouds. To the best of our
knowledge, this is the first work that utilizes saliency for Mixup in point clouds.

• We design a Mixup framework that preserves the salient local structure of original shapes
while smoothly combining them into one continuous shape.

• Extensive experiments demonstrate that SageMix brings consistent and significant improve-
ments over state-of-the-art Mixup methods in generalization performance, robustness, and
uncertainty calibration.

• We demonstrate that the proposed method is extensible to various tasks including part
segmentation and standard image classification.

2 Preliminaries

In this section, we briefly review the basic concept of Mixup and summarize the variants of Mixup
for images and point clouds (Table 1).
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Table 1: Variants of Mixup.

Method Equation

Image

mixup [9] x̃ = λxα + (1− λ)xβ

Manifold mixup [7] h̃ = λhα + (1− λ)hβ

CutMix [8] x̃ = M ⊙ xα + (1−M)⊙ xβ

SaliencyMix [13] x̃ = M(xα)⊙ xα + (1−M(xα))⊙ xβ

Puzzle Mix [11] x̃ = Z ⊙Π⊤
αxα + (1− Z)⊙Π⊤

β xβ

Co-Mixup [12] x̃ =
∑m

i Zi ⊙ xi

Point cloud
PointMixup [14] P̃ = {λpαi + (1− λ)pβϕ(i)}

n
i

RSMix [15] P̃ = (Pα − Sα) ∪ Sβ→α

SageMix P̃ = {λip
α
i + (1− λi)p

β
ϕ(i)}

n
i

Vicinal risk minimization with Mixup. Given observed data D = {(xi, yi)}mi and a function
f : X → Y , Chapelle et al. [17] learns the function f by minimizing the empirical vicinal risk:
Rν(f) = 1

m′

∑m′

i=1 ℓ(f(x̃i), ỹi), where ℓ is the loss function, and (x̃, ỹ) is the virtual feature-
target pair from the vicinal distribution ν of the observed data D. To construct an effective vicinal
distribution in the image domain, Zhang et al. [9] introduced Mixup:

x̃ = λxα + (1− λ)xβ , ỹ = λyα + (1− λ)yβ , (1)

where (xα, yα), (xβ , yβ) are two pairs of data in training dataset D, and λ ∼ Beta(θ, θ) is a mixture
ratio. Following [9], Verma et al. [7] proposed Manifold Mixup that applies Mixup in hidden
representations (i.e., h̃ = λhα + (1 − λ)hβ) and CutMix [8] generates samples via cut-and-paste
manner with binary mask M ∈ {0, 1}W×H (i.e., x̃ = M⊙xα+(1−M)⊙xβ , where⊙ indicates the
element-wise product). Combining with saliency, SaliencyMix [13] improved CutMix by selecting the
patch M(xα) with the maximum saliency values. Puzzle Mix optimizes the mask Z ∈ [0, 1]W×H and
transport Π for maximizing the saliency of the mixed sample (i.e., x̃ = Z⊙Π⊤

αxα+(1−Z)⊙Π⊤
β xβ).

Beyond two samples, Co-Mixup mixes multiple samples in a mini-batch by optimizing multiple
masks (i.e., x̃ =

∑m
i Zi ⊙ xi).

While saliency-aware Mixup methods boost the generalization of deep learning models, they are
originally designed for the image domain. Hence, these methods are not directly applicable to point
clouds due to the unordered and irregular structure.

Mixup in point cloud. Several works [14, 15] tried to leverage the Mixup in point cloud. Point-
Mixup [14] linearly interpolates two point clouds by

P̃ = {λpαi + (1− λ)pβϕ∗(i)}
n
i , ỹ = λyα + (1− λ)yβ , (2)

ϕ∗ = argmin
ϕ∈Φ

n∑
i

∥pαi − pβϕ(i)∥2, (3)

where Pt = {pt1, ..., ptn} is the set of points with t ∈ {α, β}, n is the number of points, and
ϕ∗ : {1, ..., n} 7→ {1, ..., n} is the optimal bijective assignment between two point clouds. In
RSMix [15], they generate an augmented sample by merging the subsets of two objects, defined as
P̃ = (Pα − Sα) ∪ Sβ→α, where St ⊂ Pt is the rigid subset and Sβ→α denotes Sβ translated to
the center of Sα.

Although these methods have shown that Mixup is effective for point clouds, some limitations
have remained unresolved: loss of original structures, discontinuity at the boundary, and loss of
discriminative regions. Here, to address these issues, we propose a new Mixup framework in the
following section.
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Figure 2: Illustration of SageMix pipeline. Given a pair of samples Pα, and Pβ , SageMix
sequentially samples the query points qα, and qβ (green) based on saliency using Equation (4)
and Equation (5), respectively. Then, using smoothly varying weights with respect to the distance to
query points, SageMix generates an augmented sample P̃ preserving the salient local structures.

3 Method

The main goal of SageMix is to generate an augmented sample that 1) maximally preserves the salient
parts, 2) keeps the local structure of original shapes, and 3) maintains the continuity in the boundary.
To achieve this goal, SageMix extracts salient regions centered at query points and smoothly combines
them through continuous weights in Euclidean space. The overall pipeline is illustrated in Figure 2
and pseudocode is provided in Algorithm 1 . In this section, we delineate the process for selecting the
query point based on the saliency map in Section 3.1 and Mixup methods for preserving the salient
local structure in Section 3.2.

3.1 Saliency-guided sequential sampling

We first introduce a query point qt ∈ Pt that is considered the center of the region for preserving the
local shape. A naïve random sampling for a query point is simple, but it does not guarantee that it is
placed in a salient region. Thus, we propose saliency-guided query point selection for maximally
maintaining the salient part. We denote the saliency St of the input Pt by the norm of the gradient
(i.e., St = ∥∇Ptℓ(f(Pt), yt)∥), following [11, 12]. Deterministically selecting a query point with
a maximum saliency score (i.e., qt = pti∗ , where i∗ = argmaxi(S

t
i )) sounds promising but in

practice, this makes it difficult to generate diverse samples since query points are always located at
the same position. Moreover, if two query points qα, qβ are closely located in the Euclidean space, it
is challenging to preserve the local structure of each sample because of the significant overlap.

To address these issues, SageMix sequentially selects the query point based on the saliency scores.
The first step is to extract the query point qα = pαi∗ . To maximize the diversity, the query point is
sampled with respect to the probability distribution defined as

Pr(Iα = i) =
sαi∑n
i s

α
i

, (4)

where sα ∈ Sα is the saliency of pαi and Iα is a random variable for index (i∗ ∼ Iα). That is, the
points in a salient region have a high chance to be chosen as a query point. This simple sampling
method efficiently provides diverse query points, thereby minimizing redundant selections. Given
query point qα, the next step is to define a sampling method for qβ to alleviate the overlap between
selected parts. We encourage the sampler to distance qβ from qα by reweighting the saliency scores:

Pr(Iβ = i) =
∥pβi − qα∥sβi∑n
i ∥p

β
i − qα∥sβi

. (5)
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Algorithm 1 A saliency-guided Mixup for point clouds
Input: Pα,Pβ , yα, yβ , Sα, Sβ , σ, ϕ, θ
P = {p1, ..., pn} : set of points, y : target, S = {s1, ..., sn} : saliency values, σ : bandwidth, ϕ :
assignment function, θ : shape parameter
Output: P̃, ỹ

1: Draw qα = pαi from Pα w.r.t. Pr(Iα = i) =
sαi∑n
i sαi

▷ Equation (4)

2: Draw qβ = pβi from Pβ w.r.t. Pr(Iβ = i) =
∥pβ

i −qα∥sβi∑n
i ∥pβ

i −qα∥sβi
▷ Equation (5)

3: for i = 1 to n do
4: wα

i , w
β
i ← Kσ(p

α
i , q

α),Kσ(p
β
i , q

β) ▷ Equation (6)
5: λi ← πwα

i

πwα
i +(1−π)wβ

ϕ(i)

▷ π ∼ Beta(θ, θ), Equation (9)

6: p̃i ← λip
α
i + (1− λi)p

β
ϕ(i) ▷ Equation (8)

7: end for
8: λ← 1

nΣ
n
i λi

9: ỹ ← λyα + (1− λ)yβ

10: return P̃ = {p̃1, .., p̃n}, ỹ

Assuming the point pβi → qα, the probability of selecting the point pβi decreases. This implies that
SageMix samples a query point considering both distance and saliency. Finally, with Equation (4)
and Equation (5), we can obtain the remotely located query points with high saliency scores, resulting
in augmented samples preserving the discriminative structures of original shapes.

3.2 Shape-preserving continuous Mixup

Since our objective is to preserve the region around the query point qt, we need to impose high weight
on the points near the query point. Further, to alleviate the discontinuity between two samples, the
weight should smoothly vary in Euclidean space. Herein, we use a Gaussian Radial Basis Function
(RBF) kernel to calculate weights:

wt
i = Kσ(p

t
i, q

t) = exp
(
−∥p

t
i − qt∥2

2σ2

)
, (6)

where wt
i is the weight on the point pti and σ ∈ R+ is a bandwidth for kernel. The weight wt

i smoothly
increases as the distance to qt decreases, resulting in the region around the query point being prone
to respect its original shape. As shown in (Figure 2), the parts with higher weights maintain their
original local structure more in a mixed sample, e.g., the body of the guitar and the tail of the airplane.

Given two point clouds (Pα,Pβ) and their corresponding weights ({wα
i }ni , {w

β
i }ni ), we generate

an augmented sample via point-wise interpolation. For differentially mixing points, we define the
mixing ratio for the i-th point pair as

λα
i =

wα
i

wα
i + wβ

ϕ(i)

, λβ
ϕ(i) =

wβ
ϕ(i)

wα
i + wβ

ϕ(i)

, (7)

where ϕ is the assignment in Equation (3). Note, that the point-wise mixing ratio λα
i is the ratio

between the weight of two paired points (i.e., λβ
ϕ(i) = 1− λα

i ), thus enabling linear interpolation. For

simplicity, we use the notation λi, (1− λi) instead of λα
i , λ

β
ϕ(i). Then, we generate the virtual point

cloud by modifying the Equation (2) to

P̃ = {λip
α
i + (1− λi)p

β
ϕ(i)}

n
i , ỹ = λyα + (1− λ)yβ , (8)

where λ = 1
n

∑n
i λi can be interpreted as the overall mixing ratio that is used in label interpolation.

In Mixup, the distribution of λ is a key factor for model training [9]. To control the distribution of λ,
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Table 2: 3D shape classification performance on MN40/OBJ_ONLY/PB_T50_RS.

Model Method
Dataset

MN40 OBJ_ONLY PB_T50_RS

PointNet [3]

Base 89.2 79.1 65.4

+ PointMixup [14] 89.9 79.4 65.7
+ RSMix [15] 88.7 77.8 65.7

+ SageMix 90.3 79.5 66.1

PointNet++ [4]

Base 90.7 86.5 79.7

+ PointMixup [14] 92.3 87.6 80.2
+ RSMix [15] 91.6 87.4 81.1

+ SageMix 93.3 88.7 83.7

DGCNN [6]

Base 92.9 86.2 79.9

+ PointMixup [14] 92.9 86.9 82.5
+ RSMix [15] 93.5 86.6 82.2

+ SageMix 93.6 88.0 83.6

we introduce a prior factor π ∼ Beta(θ, θ):

λi =
πwα

i

πwα
i + (1− π)wβ

ϕ(i)

. (9)

Remarks. Our SageMix can emulate both PointMixup and RSMix depending on the bandwidth σ. If
the bandwidth σ is sufficiently large, Kσ(p

t
i, q

t) ≈ Kσ(p
t
j , q

t) = c,∀i ̸=j , where c ∈ R+, resulting in
λi ≈ πc

πc+(1−π)c = π. That is, all points are mixed in the same ratio as PointMixup. Conversely, when
the bandwidth becomes smaller, SageMix changes the mixing ratio drastically around the boundary
between the two shapes and generates an augmented sample like RSMix. Qualitative results are
available in Section 4.2. See Section 4.2 for qualitative results. Additionally, with a minor change,
SageMix is applicable in feature space as Manifold Mixup, see Appendix B.2 for more discussion.

4 Experiments

In this section, we demonstrate the effectiveness of our proposed method SageMix with various
benchmark datasets. First, for 3D shape classification, we evaluate the generalization performance,
robustness, and calibration error in Section 4.1. Next, we provide an ablation study and analy-
ses of SageMix in Section 4.2. Lastly, we study the extensibility of our method in Section 4.3.
Implementation details are provided in Appendix A.

Data. We use two benchmark dataset: 3D Warehouse dataset (MN40) [18] and ScanObjectNN [19].
MN40 is a synthetic dataset containing 9,843 CAD models for training and 2,468 CAD models
for evaluation. Each CAD model of MN40 is obtained from 3D Warehouse [18]. ScanObjectNN,
obtained from SceneNN [20] and ScanNet[21], is a real-world dataset that is split into 80% for
training and 20% for evaluation. Among the variants of ScanObjectNN, we adopt the simplest version
(OBJ_ONLY) and the most challenging version (PB_T50_RS). For training models, we use only
coordinates (x,y,z) of 1024 points without additional information such as the normal vector.

Baselines. For a comparison with previous studies, we use three backbone models: PointNet [3],
PointNet++ [4], and DGCNN [6]. We compare SageMix with the model under default augmentation
in [3, 4, 6, 19] (Base), and other Mixup approaches (PointMixup [14], RSMix [15]). We report
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Table 3: Robustness and calibration with DGCNN on OBJ_ONLY.

Method
Gaussian noise. Rotation 180° Scaling Dropout Calibration

σ′ : 0.01 σ′ : 0.05 X-axis Z-axis ×0.6 ×2.0 25% 50% ECE(%)

DGCNN [6] 84.9 48.4 32.5 32.4 73.7 73.0 83.3 75.7 19.8
+ PointMixup [14] 85.0 61.3 31.7 32.7 73.8 73.0 84.2 74.9 6.8
+ RSMix [15] 84.2 49.1 32.7 32.6 75.0 74.5 84.0 73.6 18.9
+ SageMix 85.7 51.2 36.5 37.9 75.6 75.2 84.9 79.0 5.1

Table 4: Ablation of Saliency-guided sequential sampling.

Metric DGCNN [6] Uniform Max Saliency only SageMix

OA 86.2 86.8 86.1 87.8 88.0

the performance in overall accuracy. We highlight the best performance in red and second-best
performance in yellow.

4.1 3D shape classification.

Generalization performance. Table 2 summarizes the experimental results of 3D shape classi-
fication on three datasets. Our framework significantly outperforms all of the previous methods in
every dataset and model. Although the datasets are quite saturated, the averages of the improvements
against the Base with PointNet, PointNet++, and DGCNN are 0.7%, 2.9%, and 2.1%, respectively.
With PointNet++, SageMix improves the overall accuracy by 2.6%, 2.2%, and 4.0% compared
to Base in MN40, OBJ_ONLY, and PB_T50_RS, respectively. We observe similar performance
improvements in DGCNN by 0.7%, 1.8%, and 3.7% over Base. These consistent improvements
demonstrate the effectiveness of our framework.

Robustness. We adopt DGCNN and OBJ_ONLY to evaluate the robustness of models trained by
our method. We compare our method with previous methods [14, 15] on four types of corruption: (1)
jittering the point cloud with Gaussian noise (σ′ ∈ 0.01, 0.05), (2) Rotation 180°, (3) Scaling with
a factor in {0.6, 2.0}, and (4) Dropout 25% or 50% of all points. As shown in Table 3, SageMix
consistently improves the robustness in various corruption. Except for Gaussian noise with σ′ = 0.05,
DGCNN trained with SageMix shows the best robustness with significant gains compared to previous
methods. Specifically, SageMix outperforms the other methods with gains of 5.5% for rotation
(Z-axis), 2.2% for scaling (×2.0), and 3.3% for dropout (50%) over base DGCNN.

Calibration. Previous works [22, 23] have proven that deep neural networks tend to be over-
confident resulting in poorly calibrated models. In other words, a well-calibrated model should
provide an accurate probability according to its predictions. Here, we report Expected Calibration
Error (ECE) [22] to estimate the uncertainty calibration of models. We use the same setting as the
robustness test for reporting ECE (Table 3). Overall, this result reveals that SageMix provides the
best performance on uncertainty calibration compared to the other methods. See Appendix B.3 for
more results.

4.2 Ablation study and analyses

We provide various quantitative and qualitative analyses for a better understanding of SageMix. We
use DGCNN and OBJ_ONLY for an ablation study and MN40 for visualization.

Ablation on query point sampling. We explore the effectiveness of saliency-guided sequential
query point sampling. Table 4 shows the results with various sampling methods for query points.
A naïve uniform sampling for query point (Uniform), without considering the saliency, introduces
+0.6% gains over base DGCNN. Interestingly, when SageMix (deterministically) selects the query
point with maximum saliency values (Max), the performance is even degraded (-0.1%). With our
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Figure 3: Qualitative analyses on prior factor π and the bandwidth σ. Given two samples (left)
table and airplane, SageMix generates a sample based on (Top) various π with a fixed σ = 0.3 and
(Bottom) various σ with a fixed π = 0.5. Note that the green points indicate query points.

Table 5: Quantitative analysis on the bandwidth σ

σ 0.1 0.3 0.5 1.0 2.0

OA 87.2 88.0 87.6 87.3 87.6

saliency-guided random sampling for two query points based only on Equation (4) (Saliency Only),
the performance is significantly improved to 87.8% (+1.6%). These results suggest that although
saliency is key to effective training, we also have to consider the diversity for generating a new
sample. Finally, the best accuracy of 88.0% (+1.8%) is obtained by our saliency-guided sequential
sampling considering saliency and the distance between query points together.

Prior factor. We introduce the parameter π as a prior factor for mixing ratio λ. The top row of
Figure 3 is the visualization of samples generated by SageMix with various prior factor π. Given two
samples and their corresponding query points colored in green, SageMix generates a sample with the
salient local regions from both samples, e.g., the head and right-wing of an airplane and the back of a
table are preserved. We observe that the generated sample gets close to the airplane as π → 1, and
vice versa. In short, SageMix controls the distribution of mixing ratio λ based on π.

Bandwidth. The bandwidth σ of the RBF kernel controls the change of point-wise mixing ratios in
SageMix. As mentioned in Section 4.2, when the bandwidth is sufficiently large (σ = 2), SageMix
emulates PointMixup [14]. SageMix tends to yield globally even weights and constant mixing ratios
for all points rather than focusing on local parts. In contrast, as the bandwidth gets smaller, SageMix
tends to impose higher weights around the query point preserving the local structure more precisely.
These are well exemplified in the bottom row of Figure 3. For instance, when σ = 0.25, we notice the
steep change in the boundary of two samples while preserving the salient local structure. This allows
generating augmented samples like RSMix. In short, our SageMix can exhibit similar behaviors as
PointMixup and RSMix depending on the bandwidth σ. We also share the quantitative analysis of the
bandwidth with DGCNN and OBJ_ONLY in Table 5. We observed that SageMix with a wide range
of bandwidth (0.1 to 2.0) consistently outperforms previous Mixup methods (e.g., 86.9%, 86.6% for
PointMixup, RSMix).

4.3 Extensions to part segmentation and 2D image classification.

Part segmentation. For part segmentation, we train DGCNN on 3D Warehouse (SN-Parts) [18].
In part segmentation, since a model predicts a label for each point p̃i, we generate point-wise ground
truth, i.e., ỹi = λiy

α
i + (1− λi)y

β
ϕ(i). Also, for a comparison with previous methods, we used the

official code by the authors of PointMixup and RSMix with minor modifications for generating
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Table 6: Part segmentation performance on SN-Parts [18].

Model Base PointMixup [14] RSMix [15] SageMix

PointNet++ [4] 85.1 85.5 85.4 85.7
DGCNN [6] 85.1 85.3 85.2 85.4

Table 7: 2D image classification performance with PreActResNet18 [24] on CIFAR-100.

Dataset Vanilla Mixup Manifold CutMix SaliencyMix Puzzle Mix Co-Mixup SageMix

CIFAR-100 76.41 77.57 78.36 78.71 79.06 79.38 80.13 80.16

point-wise ground truth. We follow the settings in [4, 6] to evaluate our method and reports the results
in Table 6. Note that although the gain seems small, SageMix outperforms previous Mixup methods.
Also, considering the already saturated performance, we believe that the improvement (+0.6%, +0.3%
in PointNet++, DGCNN) over the base model is noteworthy.

2D classification. Our framework is also applicable to 2D image classification. Following [12],
we used PreActResNet18 [24] in the CIFAR-100 for our experiments. We compare our method
with several Mixup baselines in the image domain [11, 12, 13, 7, 9, 8]. Although our method is
designed for point clouds, it shows competitive performance. SageMix achieves the best accuracy of
80.16% with PreActResNet18 on the CIFAR-100 dataset (Table 7). It is worth noting that PuzzleMix
and Co-Mixup require an additional optimization which introduces a considerable computational
overhead. Specifically, SageMix is ×6.05 faster than Co-Mixup [12] per epoch in the CIFAR-100
dataset. We believe that our simple sampling technique is helpful to improve the generalization power
of the model. For more details, see Appendix B.4.

5 Related works

Deep learning on point clouds. PointNet [3] is a pioneering work that designs a novel deep neural
network for processing unordered 3D point sets with a multi-layer perceptron. Inspired by CNNs, Qi
et al. [4] propose PointNet++ with a hierarchical architecture. In DGCNN, Wang et al. [6] introduce
EdgeConv which utilizes edge features from the dynamically updated graph. Additionally, various
works have focused on point-wise multi-layer perceptron [25, 26, 27], convolution [28, 29, 30, 1, 2,
5, 31], and graph-based methods [32, 33] to process point clouds. Parallel to these approaches, other
recent works [14, 34, 15, 35, 8] focus on data augmentation to improve the generalization power of
deep neural networks in point clouds.

Mixup. Mixup [9] is a widely used regularization technique, which linearly interpolates a pair of
images to generate an augmented sample. Following this work, Verma et al. [7] propose Manifold
Mixup that extends Mixup to the hidden representations. CutMix [8] replaces a part of an image with
a part of another one. More recent studies [11, 12, 13] have been proposed to preserve the saliency
while mixing samples. In point clouds, PointMixup [14] is the first approach that adapts the concept
of Mixup in point clouds with the optimal assignments. Instead of linear interpolation, Lee et al. [15]
propose RSMix which merges the subsets of two point clouds inspired by CutMix.

Saliency. Measuring the saliency of data using neural networks has been studied to obtain a more
precise saliency map [36, 37, 38]. The saliency has been prevalent in various fields such as object
detection, segmentation, and speech recognition [10, 39, 40, 41, 42]. Similarly, PointCloud Saliency
Map [43] constructed the saliency map to identify the critical points via building a gradient-based
saliency map. Recently, saliency has been used in Mixup framework [11, 12, 13] to prevent
generating samples only with background or irrelevant regions to the target objects.
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6 Conclusion

We propose SageMix, a novel saliency-guided Mixup for point clouds to preserve salient local
structures. Our method generates an augmented sample with a continuous boundary while preserving
the discriminative regions. Additionally, with a simple saliency-guided sequential sampling, SageMix
achieves state-of-the-art performance in various metrics (e.g., generalization, robustness, and uncer-
tainty calibration). Moreover, we demonstrate that the proposed method is extensible to various tasks:
part segmentation and standard 2D image classification. The visualization supports that SageMix
generates a continuous mixture while respecting the salient local structure.
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Appendix

A Implementation details

We conduct experiments using Python and PyTorch3 [44] with a single NVIDIA TITAN RTX for
point clouds and NVIDIA RTX 3090 for 2D image classification. Following the original configuration
in [3, 4, 6], we use the Adam [45] optimizer with an initial learning rate of 10−3 for PointNet4 [3]
and PointNet++4 [4] and SGD with an initial learning rate of 10−1 for DGCNN5 [6]. We train
models with a batch size of 32 for 500 epochs. For a fair comparison with previous works [14, 15],
we also adopt conventional data augmentations with our framework (i.e., scaling and shifting for
MN40 [18] and rotation and jittering for ScanObjectNN 6[19]). When the performance of a baseline
on ScanObjectNN is unavailable in the original paper of PointMixup [14] and RSMix7 [15], we
reproduce the results based on their official code. For hyperparameters of SageMix, we opt θ = 0.2
in entire experiments. Regarding the bandwidth for RBF kernel, we opt σ = 2.0 for PointNet and
σ = 0.3 for PointNet++ and DGCNN.

B Additional Experiments

B.1 Error bars

Performance oscillation is an important issue in point cloud benchmarks. However, for a fair
comparison with the numbers reported in PointMixup [14] and RSMix [15], we followed the prevalent
evaluation metric in point clouds, which reports the best validation accuracy. Apart from this, we
here provide the additional results with five runs on OBJ_ONLY. The mean and standard deviation
are presented in Table 8.

Table 8: Mean and standard deviation measures on OBJ_ONLY.

Method
Model

PointNet [3] PointNet++ [4] DGCNN [6]

Base 78.56±0.51 86.14±0.39 85.72±0.44
+ PointMixup [14] 78.88±0.28 87.50±0.26 86.26±0.34
+ RSMix [15] 77.60±0.56 87.30±0.65 85.88±0.59
+ SageMix 79.14±0.30 88.42±0.26 87.32±0.53

B.2 Manifold mixup

We train DGCNN [6] to validate the SageMix in a feature space. Following manifold Mixup [7], we
apply SageMix in a randomly selected layer. The results are summarized in Table 9. We observe the
competitiveness of SageMix in feature space with the performance improvements by 0.6%, 1.5%,
3.3% in MN40, OBJ_ONLY, and PB_T50_RS, respectively.

Table 9: SageMix in input and feature space.

Method MN40 OBJ_ONLY PB_T50_RS

DGCNN [6] 92.9 86.2 79.9
+ SageMix (Input Space) 93.6 88.0 83.6
+ SageMix (Feature Space) 93.5 87.7 83.2

3©2016 Facebook, Inc (Adam Paszke). Licensed under BSD-3-Clause License
4©2017 Charles R. Qi. Licensed under MIT License
5©2019 Yue Wang. Licensed under MIT License
6©2019 Vision & Graphics Group, HKUST. Licensed under MIT License
7©2020 dogyoonlee. Licensed under MIT License
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B.3 Uncertainty calibration

In this section, we measure the Expected Calibration Error (ECE) [22] of the model on three datasets.
As shown in Table 10, our model consistently has the lowest calibration error on every dataset.
Specifically, SageMix lowers ECE by 16.1%, 14.7%, and 15.6% compared to vanilla DGCNN in
MN40, OBJ_ONLY, and PB_T50_RS, respectively.

Table 10: Expected calibration error with DGCNN.

Dataset Vanilla PointMixup [14] RSMix [15] SageMix

MN40 18.3 2.4 24.2 2.2
OBJ_ONLY 19.8 6.8 18.9 5.1
PB_T50_RS 18.9 4.2 16.7 3.3

B.4 Detailed results of 2D classification

We largely follow the setting in Co-Mixup8 [12] except for the learning rate. We trained 300 epochs
with the batch size of 128. We adopt SGD as an optimizer with an initial learning rate of 0.1. We set
the weight decay and the momentum as 10−4 and 0.9, respectively. We consider the column number
and the row number as the coordinates of each pixel. For SageMix, we use θ = 0.3 and σ = 8.
In Table 11, we report the accuracy and latency for each method. The second row of the table shows
the running time per epoch. Our method is ×6.05 faster than Co-Mixup [12]. It is worth noting that
our framework achieves state-of-the-art performance with a tolerable computational cost considering
the improvements.

Table 11: 2D classification with PreActResNet18 [24] on CIFAR-100.

Vanilla Mixup Manifold CutMix SaliencyMix Puzzle Mix Co-Mixup Ours

ACC. (%) 76.41 77.57 78.36 78.71 79.06 79.38 80.13 80.16
Time.(sec) 13.1 20.4 20.8 23.4 21.1 34.9 147.0 24.3

C Qualitative results

C.1 Visualization

In this section, we provide the qualitative results of SageMix. As in Figure 4 and Figure 5, given
original samples (left and right), SageMix generate the augmented samples (middle). Also, we
qualitatively compare SageMix with other baselines in Figure 6.

D Negative societal impacts and limitations

D.1 Negative Societal Impacts

SageMix is designed for alleviating the problems of overfitting and data scarcity. To the best of
our understanding, SageMix has no direct negative societal impact. However, similar to previous
augmentation methods, our framework can be misused for malicious application. Especially, point
clouds are widely used in various domains such as autonomous self-driving cars. In the real world,
we cannot guarantee that virtual samples generated by data augmentation are always helpful for
models to recognize objects. To mitigate this potential problem, we need additional verification for
data augmentation methods.

D.2 Limitations

Since SageMix calculates point-wise weights using the RBF kernel, an additional hyperparameter
σ is required. Despite the consistent improvements, we empirically observed that the performance

8©2021 Jang-Hyun Kim, Wonho Choo, Hosan Jeong, and Hyun Oh Song. Licensed under MIT License
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slightly varies according to the bandwidth. Although we demonstrated that our framework improves
dense representation, as shown in part segmentation experiments, other localization tasks such as
object detection have not been studied with our method. We believe that our method can be extended
to diverse tasks including scene segmentation and object detection on indoor and outdoor scene point
cloud datasets. These are left for future work.

16



Figure 4: Visualization of augmented samples by SageMix. Given two samples (left and right),
SageMix generates a sample (middle) based on query points.
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Figure 5: Visualization of augmented samples by SageMix. Given two samples (left and right),
SageMix generates a sample (middle) based on query points.
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Source PointMixup RSMix SageMix

Figure 6: Qualitative results with SageMix and baselines. Given two source samples(left),
PointMixup does not preserve the salient structure and RSMix loses the continuity. SageMix
generates a continuous mixture preserving the local structure of original shapes(right).
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