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ABSTRACT
Estimating the cardinality of unions and intersections of sets
is a problem of interest in OLAP. Large data applications
often require the use of approximate methods based on small
sketches of the data. We give new estimators for the cardi-
nality of unions and intersection and show they approximate
an optimal estimation procedure. These estimators enable
the improved accuracy of the streaming MinCount sketch
to be exploited in distributed settings. Both theoretical
and empirical results demonstrate substantial improvements
over existing methods.

CCS Concepts
•Mathematics of computing → Probabilistic algo-
rithms; •Theory of computation → Sketching and
sampling; •Computing methodologies → Distributed
algorithms;
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1. INTRODUCTION
Consider a dataset D. The basic approximate distinct

count problem is to construct a memory efficient summa-
rization S of D and to estimate the cardinality of the set of
unique items A using just the sketch S. Under this basic for-
mulation, a sketch answers a cardinality question that must
be specified before computing the sketch. We consider the
extended problem of estimating the cardinality of set unions,
|A1 ∪A2|, and intersections, |A1 ∩A2|, using using multiple
sketches. This has two important consequences. First, com-
binatorially many cardinality questions can be accurately
answered by sketches. Second, the significant improvements
in accuracy using the HIPS or optimal martingale estimator
of [10] and [23] can be realized in distributed settings. More
specifically, we wish to define union ∪̃ and intersection ∩̃
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operations on sketches and derive cardinality estimates are
optimal or nearly optimal.

This problem of estimating the number of distinct ele-
ments in a dataset in a memory efficient manner appears
in a wide range of applications. For example, in data ana-
lytics and OLAP, a web company may count distinct users
accessing a service [21]. The summarizations are used in
networking to detect denial of service attacks by counting
network flows [15], and in databases to optimize query plans
[22]. Other applications include graph analysis where they
are used to estimate the diameter of a graph [9], [5].

The extended problem for unions has particular impor-
tance in OLAP and distributed settings. The streaming
cardinality estimator given by [23], [10] are optimal in the
sense that no unbiased estimator has lower asymptotic vari-
ance. This is much stronger than typical space-complexity
results in the theory literature [2], [19] that just guarantee
an optimal rate. It guarantees optimality of the constant
in front of the rate. This optimality is evident in practice
as the estimators require half the space of existing meth-
ods to achieve the same error on MinCount sketches. The
streaming estimator, however, cannot be applied directly
in distributed settings. In a map-reduce setting, the map-
pers computing efficient streamed sketch summaries need a
method to combine them at a reducer. A union operation
on the sketches would allow the efficiency gains to be trans-
fered to distributed settings and turn the streamed sketch
into a mergeable summary [1]. These efficiency gains can
be tremendous as empirical results show efficient cardinal-
ity estimation for unions can reduce variance and the space
requirements by an order of magnitude when many sketches
are merged. In OLAP settings, one is often interested in
cardinality estimates on multi-dimensional data, for exam-
ple counting the number of users accessing a web service
by geographic location, time window, and other factors [21].
This results in exponentially many cardinalities to estimate.
Unions and intersections allow a limited number of sketches
to answer a multitude of cardinality questions.

Cardinality estimates for intersections are not as well stud-
ied as for unions. While most sketches for approximate dis-
tinct counting have a natural but inefficient union operation,
they do not have one for intersections. Intersection car-
dinality estimates are often computed using the inclusion-
exclusion principle or by using Jaccard similarity [13], [4]
when an estimator is available. These methods still require
first accurately estimating the cardinality of the union or
the Jaccard similarity of a set with the union.

Our contributions are as follows. We introduce two tech-



niques for computing unions and intersections on approx-
imate distinct counting sketches: pseudo-likelihood based
methods and re-weighting component estimators. These are
applied to Streaming MinCount sketches in this paper but
may be applied to other sketches as well. The resulting es-
timators demonstrate state of the art performance on both
real and synthetic datasets. The pseudo-likelihood based
MinCount method is conjectured to be asymptotically ef-
ficient as it is nearly the same as the asymptotically ef-
ficient maximum likelihood estimator. This establishes a
nearly ideal baseline for comparison. Re-weighted compo-
nent estimators are much simpler to implement and gener-
alize, and they are empirically shown to be as efficient as
the pseudo-likelihood based estimators. We also derive vari-
ance estimates which allow confidence intervals to be given
for the cardinality estimates. In the special case where the
streams are different permutations of the same set, we show
that merging the streaming estimates yields a more accu-
rate estimate than the estimator on a single stream. Thus,
unlike existing methods, the union operation on streaming
sketches exploits information about the order of elements in
each stream. The variance after averaging over all possible
orderings is shown to be 2/3 the variance of the streaming
MinCount estimator. In addition to improved estimation,
the resulting methods yield mergeable summaries [1] under
both union and intersection operations unlike existing meth-
ods.

2. EXISTING BASIC METHODS
The basic approximate distinct counting problem has been

well studied in the literature beginning with the seminal pa-
per by Flajolet and Martin [17]. Methods include Linear
Probabilistic Counting (LPCA) [25], HyperLogLog [16], the
Multiresolution Bitmap [15], the S-bitmap [7], α-stable dis-
tribution methods [12], and MinCount [18]. Kane, et al
[19] also gave a method that is optimal in terms of space-
complexity.

As described in [23], all these methods generate a stochas-
tic process called the area process that is governed solely by
the number of distinct elements encountered. A sketch S
can be mapped to a set R(S) ⊂ (0, 1) called the remaining
area. Given a random hash, each element in a stream is
hashed to some value U . If U is still in the remaining area,
U ∈ R(S), the sketch is updated by cutting out a portion
of the remaining area containing U . Otherwise, it does not
affect the sketch. Since a value U cannot be cut out twice,
duplicates do not affect the sketch. Under the assumption
that the hash function is a strong universal hash, the original
distribution of the data is irrelevant. A sketch is a function
of the independent Uniform(0, 1) random variates that are
the hashed distinct items. It is a random quantity whose
distribution depends only on the number of distinct items.
Cardinality estimation is thus a statistical parameter esti-
mation problem where the sketch is the observed data.

Using an optimal estimation procedure can lead to sub-
stantial efficiency gains. For example, the LogLog and Su-
perLogLog methods [14] share the same sketch as Hyper-
LogLog and differ only in the estimation procedure. How-
ever, LogLog requires 1.56 times the memory of Hyper-
LogLog to achieve the same error and 2.4 times the memory
of Streaming HyperLogLog. Likewise, the original cardinal-
ity estimation method for the α-stable sketch proposed in
[12] uses over twice the memory as that used in [8]. The dis-

advantage of using the optimal streaming methods described
in [23] and [10] is that they require the data to arrive in a
single stream. They are not immediately applicable in dis-
tributed settings or in OLAP settings where the sketches are
pre-aggregations that need to be further merged.

3. NAIVE ESTIMATION
We first consider basic estimation procedures for unions

and intersections on distinct counting sketches. Many sketches
used in approximate distinct counting have a natural union
operation. For example, the LPCA sketch is a bitmap and
is equivalent to a Bloom filter with the number of hashes
k = 1. Taking the union of LPCA sketches simply takes the
bitwise OR of the sketches. The resulting sketch is identi-
cal to the sketch computed on the union of the original sets.
This property holds for other sketches such as HyperLogLog
[16] and MinCount [18] as well. In other words, there is an
operation ∪̃ such that S(A1)∪̃S(A2) = S(A1 ∪A2) where S
is the function that generates a sketch from a streamed set.
For notational convenience, we will denote Si = S(Ai).

Unlike the union, typically no natural intersection oper-
ation exists for approximate distinct counting sketches. A
simple method to obtain cardinality estimates for the inter-
section is to use union estimates and the inclusion-exclusion
principle, |A1 ∩ A2| = |A1| + |A2| − |A1 ∪ A2|. In the case

where there is an estimate Ĵ(S1, S2) for the Jaccard similar-
ity, two existing intersection cardinality estimator are given
by [4] and [13]. Throughout, we will use a hat to denote

estimated quantities, with N̂(S) denoting a cardinality esti-
mate using sketch S. The naive and Jaccard based estimates
of the cardinality of the union and intersection are given by

N̂naive(S1∪̃S2) = N̂(S(A1 ∪A2)) (1)

N̂naive(S1∩̃S2) = N̂(S1) + N̂(S2)− N̂(S(A1 ∪A2))

N̂Jaccard,1(S1∩̃S2) = Ĵ(S1, S2)N̂(S1∪̃S2)

N̂Jaccard,2(S1∩̃S2) =
Ĵ(S1, S2)

1 + Ĵ(S1, S2)

(
N̂(S1) + N̂(S2)

)
These estimation strategies turn out to be suboptimal.

For the intersection estimators, one reason is that the error
is often roughly proportional to the size of the union or the
larger set, while a good procedure should give error that is
bounded by the size of the smaller set. This can also lead to
pathologies where the naive cardinality estimate of the in-
tersection is negative. If a simple correction to replace these
negative estimates by zero is used, the resulting estimator is
provably biased.

4. STREAMING MINCOUNT
In this paper we focus on applying new estimation tech-

niques to Streaming MinCount sketches. The techniques
may be used for other sketches, and their application is dis-
cussed in section 13. The choice of Streaming MinCount
is driven by two reasons. The first is that it simplifies the
calculations since collision probabilities are negligible. The
second is that the uniqueness of hash values allows for a
closed intersection operation and gives more flexibility to
the sketch.

The basic MinCount sketch stores the k minimum hash
values and is also known as the K-minimum values [2] or
bottom-k [11] sketch. When the hash values are uniformly



distributed on (0, 1), the estimator for the MinCount sketch
is (k − 1)/τ where τ is the largest stored hash value. It is
easy to see that this estimator approximates the cardinality
since the kth smallest hash value out of n roughly uniformly
spaced values is approximately k/n. It can be shown that
the estimator is the unique minimum variance unbiased esti-
mator [6] when only the final set of hash values is observed.

The Streaming MinCount sketch augments the basic Min-
Count sketch with a running estimate of the cardinality.
This estimate is given by

N̂(S) =

n∑
t=1

Zt
τt

(2)

where τt is the threshold for sketch S after encountering t
elements and Zt = 1 if the sketch changed at time t. The
threshold for a sketch is the largest stored hash value. The
streaming estimator operates by incrementing the running
estimate by 1 in expected value for each newly encountered
element. By exploiting the sequence of sketches rather than
just the final sketch, the streaming update procedure reduces
the variance of the estimator by half.

5. IMPROVED ESTIMATORS
The usual union operation throws away valuable informa-

tion for the MinCount sketch. To see this consider the case
where the sets A1, A2 are disjoint and of equal cardinality.
The best estimator would simply add N̂(S1∪S2) = N̂(S1)+

N̂(S2) which has variance (|A1|2+ |A2|2)/k = |A1∪A2|2/2k.
However, the MinCount sketch throws away half of the hash
values to maintain the size limit of k hash values. The result-
ing union estimate correspondingly has twice the variance,
|A1 ∪A2|2/k. This is the strategy employed by [4].

We introduce a simple improvement by constructing the
largest possible merged MinCount sketch rather than fixing
the size at k. Let τ(S) be the threshold, the largest stored
hash, for sketch S. Let h(S) denote the set of hashes stored
in sketch S and h(S, τ ′) be the set that is ≤ τ ′. For conve-
nience, denote τi = τ(Si). Improved union and intersection
operators ∪0,∩0 on MinCount sketches are defined by

τmin := τ(S1 ∪0 S2) := τ(S1 ∩0 S2) := min{τ1, τ2}
h(S1 ∪0 S2) := h(S1, τmin) ∪ h(S2, τmin)

h(S1 ∩0 S2) := h(S1) ∩ h(S2)

In other words, the hash values larger than the minimum
threshold are discarded, and the sketches are merged by tak-
ing the union or intersection of the remaining hash values.

The resulting union sketch is exactly the same as a Min-
Count sketch of size |h(S1 ∪ S2)| constructed from A1 ∪A2.
The intersection sketch is similar but allows for the threshold
to not be in the intersection. This yields a closed intersection
operator. It generates a new sketch and not just an estimate
of the cardinality. The union and intersection estimators are

N̂improved(S1 ∪0 S2) =
|h(S1 ∪0 S2)| − 1

τmin
(3)

N̂improved(S1 ∩0 S2) =
|h(S1 ∩0 S2)| − δ(S1, S2)

τmin
(4)

where δ(S1, S2) = 1 if τmin ∈ h(S1∩0S2) and is 0 otherwise.
This improvement may also be applied to the Discrete

MaxCount sketch introduced by [23]. However, there is no

obvious generalization of this improvement to the Hyper-
LogLog sketch. For the Streaming MinCount sketch, al-
though it does not define a union or intersection cardinality
estimator that exploits the gains from the streaming esti-
mates N̂(Si), it allows a closed intersection operation to be
defined.

6. STATISTICAL EFFICIENCY
The improvements proposed in the previous section are

suboptimal in terms of statistical efficiency. Statistical ef-
ficiency is a far more stringent optimality criterion than
optimal space-complexity when comparing estimators. A
consistent estimator θ̂n of a parameter θ is asymptotically
(statistically) efficient if its asymptotic variance is equal to
the Cramer-Rao lower bound on the variance [24]. Whereas
space-complexity ensures that the error rate is optimal, asymp-
totic efficiency ensures both the rate and the constant factor
governing the rate are optimal. This is an important dis-
tinction, since the rate is typically meaningless for estima-
tion. Under mild regularity conditions, parameter estima-
tion problems on i.i.d. observations invariably have an opti-
mal rate of Θ(1/

√
n), and almost any reasonable estimation

procedure achieves that rate. Only the constant governing
the rate yields meaningful comparisons for estimators. By
contrast, space-complexity is meaningful when considering
the problems of constructing and encoding a sketch but not
for estimation [23].

Under mild regularity conditions, the maximum-likelihood
estimator (MLE) is an asymptotically efficient estimator.
Although we are not able to derive the exact MLE, in section
8.2 we derive both the conditional likelihood given the car-
dinality of the input sets as well as a full pseudo-likelihood.
We conjecture that maximizing the full pseudo-likelihood
gives an estimator that is asymptotically equivalent to the
MLE. Although a full proof is out of the scope of this paper,
we give a heuristic proof sketch that may be able to establish
the asymptotic efficiency.

In addition to the class of likelihood based estimators, we
derive a class of re-weighted estimators based on linear com-
binations of the streaming cardinality estimates. These esti-
mators have the advantage of being easy to implement and
easy to generalize to other sketches. Although we show how
to optimally weight the linear combinations, the resulting
estimators are not theoretically guaranteed to be asymptot-
ically efficient, but empirical results suggest that they are
efficient or close to efficient.

7. NOTATION AND ASSUMPTIONS
The remainder of the paper focuses on exploiting the ef-

ficiency gains from streaming estimation to improve cardi-
nality estimation for union and intersection.

To fix some notation, suppose each sketch Si contains ki
hash values and estimates the cardinality |Ai| = ni. The
total cardinality is ntot = | ∪i Ai|. The threshold τi for a
sketch Si is the maximum stored hash value. The propor-
tion of the total that belongs to set Ai is denoted by pi =
|Ai|/ntot. For simplicity, only pairwise unions and intersec-
tions are analyzed in detail, but merging multiple sketches
is discussed in section 11 In the pairwise case, define q0 =
|A1 ∩A2|/ntot, q1 = |A1\A2|/ntot, and q2 = |A2\A1|/ntot.

For the analysis of the methods, we consider the asymp-
totic regime where for each i, ki/ntot → 0 and qi → ci > 0



as ntot → ∞ for some constants ci. The hash function is
assumed to be a strong universal hash that generates i.i.d.
Uniform(0, 1) random variates.

8. LIKELIHOOD BASED METHODS
As described in section 2, cardinality estimation is a sta-

tistical parameter estimation problem. Under this formula-
tion, statistical theory provides two important results. The
useful pieces of information in the sketch are encoded by
sufficient statistics, and the maximum likelihood estimator
is an asymptotically efficient estimator.

8.1 Sufficient statistics
The notions of sufficiency and ancillarity are important in

statistical estimation. A statistic is sufficient if it contains all
the information necessary to reconstruct the likelihood func-
tion. Under the likelihood principle, the likelihood contains
everything useful for parameter estimation. A statistic is an-
cillary if it is irrelevant for estimating the parameter. More
formally, it is a statistic whose distribution does not depend
on the parameter of interest. This gives a basic strategy for
finding good estimators. Find the smallest sufficient statis-
tic containing as few ancillary statistics as possible. Propose
an estimator that is a function of the sufficient statistic.

For the MinCount sketch, the exact values of the stored
hashes relative to the threshold are irrelevant for estimation
and, hence, ancillary statistics. The value of the threshold,
the largest hash, is a sufficient statistic when only the final
set of hashed values is observed. Furthermore, this thresh-
old is a complete and minimal sufficient statistic, so by the
Lehman-Scheffe theorem, the usual MinCount estimator is
a minimum variance unbiased estimator as shown by [6].

Likewise, the exact values of the stored hashes are irrel-
evant when estimating the cardinality of the union or in-
tersection of two sets. Assuming the sizes of the sketches
for A1, A2 are fixed at k, a set of sufficient statistics for
the cardinality of the union and intersection is given by the
thresholds of the individual sketches, τ1 and τ2, the number
of common stored hashes |h(S1 ∩0 S2)|, the total number of
hashes less than or equal to the smaller of the two thresholds
|h(S1∪0 S2)|, and the streaming estimates of the cardinality

N̂(Si) and variance V̂ar(Si).

8.2 Likelihood
The first class of estimators we present are the likelihood

based estimators. Given a sufficient statistic, the parame-
ter of interest may be estimated using the asymptotically
efficient maximum likelihood estimator (MLE). The asymp-
totic variance of the MLE is given by the inverse Fisher
information. Under mild regularity conditions, this is the
expected Hessian of the negative log-likelihood evaluated at
the true parameters. This yields a natural estimate for the
variance of the MLE as well. Compute the Hessian of the
negative log-likelihood at the estimated rather than the true
parameters and take its inverse.

A closed form for the full likelihood of the Streaming Min-
Count sketch is not known. Instead, we first derive the like-
lihood function for the basic MinCount sketch. By plugging
in the streaming estimates into this likelihood, it can be used
to construct a surrogate likelihood or a pseudo-likelihood [3]
for the intersection or union. This surrogate is a form of
profile-likelihood for the Streaming Mincount sketches that

include the streaming estimates as part of the sketches. We
then derive an approximation to the full likelihood.

We first derive the generative process for a pair of basic
MinCount sketches from sets A1, A2 in lemma 1. This al-
lows derivation of the likelihood. A rough description of the
process is as follows. First, generate a threshold τ1 and pro-
pose values for |h(S1∩0S2)| and |h(S2, τ1)\h(S1, τ1)| without
considering the constraint that S2 contains at most k2 hash
values. If their total is less than k2 and the constraint on S2

is not violated, then τ1 = τmin, and to complete sketch S2,
simply draw the requisite number of additional points above
τ1 to compute τ2. Otherwise, τ2 < τ1 and the proposed val-
ues are thinned using sub-sampling.

Lemma 1. Given sets A1, A2 and a random universal hash,
MinCount generates random sketches S1, S2 of sizes k1, k2
respectively. The sufficient statistics for the parameters |A1|,
|A2|, and |A1 ∩ A2| are τ1, τ2, |S1 ∪0 S2|, and |S1 ∩0 S2|.
These statistics have the distribution given by the following
process.

τ1 ∼ Beta(k1, |A1| − k1 + 1)

U ∼ HyperGeometric(|A1 ∩A2|, |A1\A2|, k1)

V ∼ Binomial(|A2| − U, τ1)

C ∼ Bernoulli(U/k1)

If U + V < k2 then

|S1 ∩0 S2| = U, |S1 ∪0 S2| = k1 + V

τ2 − τ1
1− τ1

∼ Beta(k2 − U − V, |A2| − k2 + 1)

If U + V = k2 and C = 1,

|S1 ∩0 S2| = U, |S1 ∪0 S2| = k1 + V, τ2 = τ1

Otherwise, τ2 < τ1 and

|S1 ∩0 S2| ∼ HyperGeometric(U, V, k2)

τ2 ∼ τ1 ×Beta(k2, U + V − C − k2 + 1)

|S1 ∪0 S2| ∼ k2 +Binomial(k1 − U − (1− C), τ2/τ1)

Proof. The order statistics of the hash values determine
the MinCount sketch. The order statistics of n uniform ran-
dom variates are jointly Dirichlet distributed with parameter
1 ∈ Rn, and the marginal distributions are Beta distributed.
The labeling of uniform random variates as belonging to
A1\A2, A2\A1, or A1 ∩ A2 follows a multinomial distribu-
tion. The lemma follows from conditional distributions for
the Dirichlet and multinomial distributions and their prop-
erties.

Note that in the case where U + V − C < k2 or, equiva-
lently τ2 ≥ τ1, every generated variable is also observed in
the final sketch. There are no hidden variables that need
to be integrated out to form the likelihood. By symme-
try, exchanging the indices of the variables and parameters
does not change the likelihood. This observation reduces the
computation of the log-likelihood to the simple case with no
hidden variables and gives the following theorem.

Theorem 2. Let variables x1, x2, x1∩2 represent estimates
of |A1|, |A2|, |A1∩A2|, respectively. The log-likelihood of the



MinCount sketch may be written as follows.

`0(x1, x2, x1∩2;S1, S2)

= 1(τ2 ≥ τ1) log p

(
τ1, τ2, H

∣∣∣∣x1, x2, x1∩2)
+ 1(τ1 > τ2) log p

(
τ2, τ1, H

∣∣∣∣x1, x2, x1∩2)
where H = (|S1 ∩0 S2|, |S1 ∪0 S2|) and the conditional prob-
abilities are given by the generative process in lemma 1.

To obtain an estimator that exploits the streaming cardi-
nality estimates, simply replace x1 = N̂(S1) and x2 = N̂(S2)
to obtain a marginal profile likelihood.

N̂profile(S1 ∩ S2) = arg max
x1∩2

`0(N̂(S1), N̂(S2), x1∩2) (5)

N̂profile(S1 ∪ S2) = N̂(S1) + N̂(S2)− N̂profile(S1 ∩ S2).

After taking a union or intersection, the resulting sketch
contains the new cardinality estimate along with the hash
values stored by the improved MinCount sketch. Note that
although the union cardinality estimate uses the inclusion-
exclusion principle, it is simply a reparameterization of the
intersection cardinality, and maximum likelihood estimates
are invariant under reparameterization.

Since some of the distributions have discrete parameter
spaces, we relax the optimization of the log-likelihood by re-
placing factorials with the corresponding continuous gamma
function when doing maximum likelihood estimation.

8.3 Full pseudo-likelihood
The profile-likelihood given above has a few deficiencies.

It is asymptotically inefficient; it not a sufficiently good ap-
proximation to the true likelihood, and it does not account
for the distribution p(N̂(S1), N̂(S2)|h(S1), h(S2)). Unfor-
tunately, this conditional distribution of the streaming es-
timates given the unaugmented sketches is intractable to
compute. Instead, we approximate it with a tractable dis-
tribution to form what we refer to as a full pseudo-likelihood.

We use a bivariate normal as the tractable distribution.
This choice is well-motivated as one would expect that the
central limit theorem to yield this as the limit distribution.
The mean of this distribution is given by the streaming
cardinality estimates. An approximate covariance matrix
Σ(S1, S2) for the streaming cardinality estimates is derived
in section 10. To simplify calculations, one may also use
other choices such as a diagonal matrix.

Mathematically, the likelihood is given by

`(x1, x2, x1∩2;S1, S2) = `0(x1, x2, x1∩2;S1, S2)

+ log φ
(
nA, nB |N̂(S1), N̂(S2),Σ(S1, S2)

)
where φ is a bivariate normal density and Σ(S1, S2) is an
approximate covariance matrix for the streaming cardinal-
ity estimates. The resulting pseudo-likelihood cardinality
estimators for the intersection and union are

N̂pseudo(S1 ∩ S2) = arg max
x1∩2

max
x1,x2

`(x1, x2, x1∩2) (6)

N̂pseudo(S1 ∪ S2) = arg max
x1+x2−x1∩2

max
x1,x2

`(x1, x2, x1∩2). (7)

Note that this also allows the estimates of |A1| and |A2| to
be improved when there is substantial overlap between the

sets. In particular, when A1 = A2, the estimate of |A1| will

be an average of the estimates N̂(S1) and N̂(S2).
The variance estimates for the pseudo-likelihood cardinal-

ity estimators are

V̂ar(N̂pseudo(S1 ∩ S2)) = D2
x1∩2

`

∣∣∣∣
N̂pseudo

(8)

V̂ar(N̂pseudo(S1 ∪ S2)) = D2
x1+x2−x1∩2

`

∣∣∣∣
N̂pseudo

(9)

where D denotes the directional derivative and N̂pseudo is
the maximizer of the pseudo-likelihood.

8.4 Optimality of pseudo-likelihood
Since the pseudo-likelihood is a surrogate for the true like-

lihood, asymptotic efficiency results for the maximum like-
lihood estimator do not directly apply. However, we conjec-
ture that the pseudo-likelihood estimator is asymptotically
equivalent to the maximum likelihood estimator. This re-
sult would not be surprising since one would expect that
the streaming cardinality estimates converge to a bivariate
normal distribution by the central limit theorem. Further-
more, by asymptotic results for M-estimators [24], such as
the MLE, if the quadratic approximation of the pseudo-
log-likelihood and log-likelihood converge to the same limit,
their asymptotic distributions are the same. Since we es-
timate the conditional covariance for the streaming esti-
mates given the basic sketch, we have approximated all the
quadratic terms of the log-likelihood.

9. RE-WEIGHTED ESTIMATORS
We provide a second class of union and intersection car-

dinality estimators that are easier to implement than the
pseudo-likelihood based estimators. They are also easier
generalize to sketches other than MinCount and to multi-
set operations. These estimators are formed by taking the
weighted average of several unbiased or consistent estima-
tors of the cardinality. We derive how to optimally combine
these component estimators to obtain an estimator that per-
forms nearly identically to the pseudo-likelihood based esti-
mator. For the estimators presented in this paper, we use
component estimators where each estimator is a multiplica-
tive scaling of a single streaming cardinality estimate.

We first describe the optimal procedure for combining
multiple component estimators. Then we propose a set of
component estimators and derive the variances and covari-
ances needed to combine them. The procedure to optimally
combine estimators is given by the following lemma.

Lemma 3 (Optimal weighting). Given unbiased (or

consistent) estimators N̂1, ..., N̂m with non-singular covari-
ance matrix Σ, the optimal weights that sum to 1 and min-
imize variance are given by

wopt ∝ Σ−11m (10)

where 1m is the m-vector of all ones. The resulting estimator
is unbiased (or consistent) and has variance (1TmΣ−11m)−1.

Proof. Since all the estimators are unbiased (or consis-
tent), the re-weighted estimator is also unbiased (or consis-
tent). Given unnormalized weights v, the variance of the es-

timator vT N̂/vT 1 is Var(vT N̂/vT 1) = vTΣv/vT 11T v. Min-
imizing this Rayleigh quotient give the optimal weights.



Typically, the covariance Σ is not known, so a plug-in
estimate of Σ is used to generate the weights. An alternate
weighting is to treat the estimators as being independent
and simply use the diagonal of the covariance. In this case,
the simple re-weighted estimator is

N̂simple =

m∑
i=1

zN̂i(S)

Var(N̂i(S))
(11)

where z is a normalization constant that ensures weights
sum to 1. Although this does not provide guarantees on the
improvement, we find that this performs nearly as well as
the optimal weighting.

We now consider the two ingredients needed to define a
re-weighted estimator: a set of consistent estimators that
form the components of the combined estimator and the
covariance of these estimators to determine the weights.

9.1 Component estimators
The idea for defining the component estimators is to have

maximally uncorrelated estimators. We minimize correla-
tion by using component estimators which make use of only
one of the streaming cardinality estimate in each component.
This gives that the resulting weighted estimator is expressed
as a linear combination of streaming cardinality estimates.
These component estimators are shown to be unbiased or
consistent and, hence, suitable candidates for a re-weighted
estimator. The approximate variance of the estimators is
computed in order to allow for computation of the weights.

To derive the component estimators, note that both the
cardinality of the union and the intersection may be decom-
posed into a ratio times the cardinality of one of the sets in
the operation.

|A1 ∪A2| =
|A1 ∪A2|
|Ai|

|Ai|, |A1 ∩A2| =
|A1 ∩A2|
|Ai|

|Ai|.

Define αi = |A1 ∩A2|/|Ai| and βi = |A1 ∪A2|/|Ai|. Simple
estimators for αi and βi are

α̂i = |h(S1 ∩0 S2)|/|h(Si, τmin)|

β̂i = |h(S1 ∪0 S2)|/|h(Si, τmin)| (12)

These give a consistent, plug-in estimator for the cardi-
nality of an intersection and union as shown in the following
lemma, proven in the long version of the paper, and theorem.

Lemma 4. The estimator α̂i is an unbiased estimator of
|A1 ∩ A2|/|Ai| conditional on |h(Si, τmin)| being non-zero.
It is consistent under the conditions in section 7. Similarly,
β̂i is a consistent estimator of |A1 ∪A2|/|Ai| under the con-
ditions in section 7.

Theorem 5. The estimators

N̂i(S1 ∩ S2) = α̂iN̂(Si), N̂i(S1 ∪ S2) = β̂iN̂(Si)

are consistent estimators of the |A1 ∩ A2|, |A1 ∪ A2| under
the conditions given in section 7.

Proof. This immediately follows from Slutzky’s theorem
since α̂i, β̂i, N̂(Si) are consistent.

Another possible choice for component estimators is to
pretend that all items in A2 appear after A1 in the stream.
A more accurate streaming cardinality estimate can be cal-
culated by not updating the threshold. However, the result-
ing re-weighted estimator is suboptimal when A1 and A2 are

disjoint and equal in size. It is equivalent to averaging the
suboptimal improved union estimate with optimal sum of
streaming estimates.

9.2 Component variances
The variance of each component estimator is required to

apply the simple re-weighting scheme. This is approximated
by decomposing the component estimator so that the multi-
pliers and cardinality estimates can be treated as essentially
independent. Write

√
ki(α̂iN̂(Si)−niαi) =

√
kiα̂i(N̂(Si)−

ni) +
√
ki(αi − αi)ni. Assuming the central limit theorem

applies to N̂(Si), Slutzky’s lemma and the central limit the-
orem imply that the quantity converges in distribution to
a normal distribution with variance less than or equal to
α2
i kVar(N̂(Si)) + n2

i kVar(α̂i). The missing term measur-

ing Cov(N̂(Si), α̂i) is excluded as the terms are negatively

correlated. The same argument applies to β̂i.
In this case, the expectation and variance of N̂(Si) are

already given in [23] and the expectations are known or ap-
proximated by lemma 4. The only remaining quantities to
compute are Var(α̂i) and Var(β̂i). The variances of α̂i, β̂i
may be approximated using the following formulas.

Var (α̂i) ≈
αi(1− αi)
|h(Si, τmin)| (13)

Var
(
β̂i
)
≈ 1− pi
p2i |h(Si, τmin)| =

βi(βi − 1)

|h(Si, τmin)| .

These approximate variances may be used in the simple
re-weighting scheme given in equation 11.

V̂ar(N̂i(S1 ∩ S2)) ≈ N̂i(S1 ∩ S2)2
(

(1− α̂i)
α̂i|h(Si, τmin)| +

1

2ki

)
V̂ar(N̂i(S1 ∪ S2))) = N̂i(S1 ∪ S2)2

(
(β̂i − 1)

β̂i|h(Si, τmin)|
+

1

2ki

)
The component estimators may be compared to the im-

proved intersection and union estimators given in section 5.
Since αi|h(Si, τmin)| ≈ |h(S1 ∩0 S2)| and βi|h(Si, τmin)| ≈
|h(S1 ∪0 S2)|, the variance of the improved intersection es-
timator is approximately |A1 ∩ A2|2/αi|h(Si, τmin)|. The
variance of the component intersection estimator, and simi-
larly the component union estimator, can be approximated
by

Var(N̂i(S1 ∩ S2)) ≈ Var(N̂improved(S1 ∩ S2)) (14)

− |A1 ∩A2|2
(

1

|h(Si, τmin)| −
1

2ki

)
Var(N̂i(S1 ∪ S2)) ≈ Var(N̂improved(S1 ∪ S2)) (15)

− |A1 ∪A2|2
(

2− βi
|h(Si, τmin)| −

1

2ki

)
For the intersection estimates, since |h(Si, τmin)| ≤ ki, both
component estimators are better than the than the basic im-
proved estimator even though they exploit the accuracy of
only one of the streaming cardinality estimates N̂(Si). Fur-
thermore, the component with the smaller |h(Si, τmin)| has
the greater improvement over the basic improved estimator.
A surprising consequence of this approximation is that this
component should represent an improvement over the ba-
sic improved estimator even when the streaming cardinality
estimate is not even used. In that case, the 1/2ki term is
replaced by 1/ki in the improvement term. We believe the



reason is that the basic improved estimator loses information
about the size of the smaller set which constrains the size
of the intersection. For the union estimates, the improve-
ment depends on the multiplier βi. If βi ≤ 3/2, then the
component estimator beats the basic improved estimator.

10. COVARIANCE ANALYSIS
Computing the covariance of the streaming estimates is

a necessary step for obtaining the full quadratic approxi-
mation to the log-likelihood used by the pseudo-likelihood
estimator. It is also needed to compute the weights for the
full re-weighted estimator. We present the main ideas and
results for calculating the covariance and leave the detailed
calculations to the long version of the paper.

In the streaming formulation of MinCount, the remaining
area process R(St) = τt implicitly depends on the order π
in which elements arrive. This dependency is difficult to an-
alyze. We consider an alternative formulation that expands
and extends the proof ideas in [10] and is based on the ranks
of the hash values. The Streaming MinCount estimator can
be expressed as

N̂(S) = k +

n∑
i=k+1

Zi
U(i)

(16)

where U(i) is the ith smallest hash value and Zi = 1 if and
only if the estimator was incremented by 1/U(i). Equiva-
lently, Zi = 1 if and only if fewer than k of the i−1 smallest
hash values appear before the ith smallest value. Mathe-
matically, Zi = 1(|{j < i : πj < πi}| < k) where πi is the
position of U(i) in the stream.

When considering multiple sketches, denote the ath stream-

ing estimate by N̂(Sa) = ka+
∑ntot
i=ka+1 Z

(a)
i /U(i) where U(i)

are the order statistics for all the hash values for A1 ∪ A2.
This rank formulation is the key to the analysis in this sec-
tion. It separates the analysis into three independent com-
ponents: the order statistics for the hash values U(·), the

random orderings π(a), and an indicator Y
(a)
i denoting if

U(i) belongs to stream a. By the independence of Z and
U and bilinearity of the covariance operator, the covariance
Cov(N̂(S1), N̂(S2)) of two streaming cardinality estimates
can then decomposed into the cross terms

Cov

(
Z

(1)
i

U(i)

,
Z

(1)
i

U(i)

)
= Cov

(
Z

(1)
i , Z

(2)
j

)
E
(

1

U(i)

1

U(j)

)
+ EZ(1)

i EZ(2)
j Cov

(
1

U(i)

,
1

U(j)

)
(17)

Of these terms, Cov
(
Z

(1)
i , Z

(2)
j

)
depends on the order of ele-

ments in both streams. In particular, it depends on whether
the common elements A1 ∩ A2 appear in the same order or
different orders in the streams. We consider two cases: the
orders are the same and the orders are independent random
permutations.

The covariances of the cardinality estimates are given by

Σindependent ≈
n2
totk1k2
κ2
max

q0
p1p2

(
1

2κmin
− 1

6κmax

)
(18)

Σidentical ≈ Σindependent + q0

(
1

2
− q0

3p1p2

)
n2
totκmin
κ2
max

where κmin =
⌊
min

{
k1
p1
, k2
p2

}⌋
and κmax =

⌊
max

{
k1
p1
, k2
p2

}⌋
.

The covariance Σindependent is of particular interest when
q0 = 1 so that the sets A1 = A2. The best estimate when the
hash function is fixed takes the average of Streaming Min-
Count estimates over all possible orderings of the same set.
This limit estimator reduces the variance to Σindependent =
n2

3k
. By contrast, when applied to a single stream the Stream-

ing MinCount estimator has variance n2

2k
. Thus, even in the

case where every cardinality estimate is for exactly the same
set, the estimates can be improved by combining them. This
result is borne out in figure 2 as the basic MinCount sketch
requires 3 times the space as the averaged Streaming Min-
Count sketches when q0 = 1 and the sets are all the same.

10.1 Conditional covariance
For the pseudo-likelihood described in section 8.2, the

required normal approximation is for the conditional dis-
tribution p(N̂(S1), N̂(S2)|τ) rather than the unconditional
covariance. Under a multivariate normal approximation,
this conditional distribution is easy to approximate. Let
N̂mincount be the non-streaming MinCount estimator that
is based only on the offset τ . Assume that the joint distri-
bution of N̂(S1), N̂(S2), N̂mincount(S1), and N̂mincount(S2)
is multivariate normal. The covariance may be denoted in
block form by (

Σss Σsm
ΣTsm Σmm

)
(19)

where s,m denote the streaming and non-streaming Min-
Count estimators.

Since the streaming estimate is optimal, it cannot be im-
proved upon by conditioning on the threshold. In partic-
ular, under a re-weighting scheme a linear combination of
the streaming and non-streaming estimators does not im-
prove the variance. Hence, the non-streaming estimator is
approximately equal to the streaming estimator plus uncor-
related noise, Σsm ≈ Σss. The last component is the co-
variance of the non-streaming MinCount estimates which is
Cov(N̂mincount(S1), N̂mincount(S2)) ≈ q0Var(N̂mincount(S`))
where ` is the sketch with the higher threshold. Under a
multivariate normality approximation where n̂i denotes the
current estimate for ni, the conditional variance and mean
µss,i|τ = E(N̂(Si)|τ) are given by

Σss|τ ≈ Σss − ΣssΣ
−1
mmΣss

µss|τ ≈
(
N̂(S1)

N̂(S2)

)
− ΣssΣ

−1
mm

(
N̂mincount(S1)− n̂1

N̂mincount(S2)− n̂2

)
.

10.2 Multiplier covariance
The covariance of the multipliers may be approximated

by first conditioning on the value in the denominator. This
gives rough estimates

Cov(α̂1, α̂2) ≈ ρ2(1− ρ2)

k1
(20)

Cov(β̂1, β̂2) ≈ ρ2(1− ρ2)

k1
− ρ2
k1

(
p1
p2
− q20
p22

)
(21)

where ρ2 = q2/p2 and τ1 < τ2. The multiplier covariances
may be incorporated by the same argument as in section 9.2.

11. MULTI-SET OPERATIONS
Oftentimes the query of interest merges many sketches

together rather than pairs. For example, if the data is pro-



cessed on d mappers in a map-reduce framework, d sketches
must be merged to estimate the cardinality.

Merging multiple estimators using re-weighting is simple.
The component estimators are slightly modified, and the
re-weighting is virtually unchanged since covariance calcu-
lations are pairwise calculations. The multipliers αi, βi esti-
mate the size of a set relative to the intersection or union of
all the sets. The only difference is that the minimum thresh-
old τmin = mini{τi} and the number of relevant hashes
|h(∩0Si)|, |h(∪0Si)| are taken over all the sets rather than a
pair.

Generalizing pseudo-likelihood based methods is more dif-
ficult. Although the same technique of ordering the thresh-
olds to compute the likelihood may be used, the likelihood
itself contains exponentially many parameters when there
are more than two sketches. The intersection of any subset
of the sets {Ai} is a parameter. This makes the optimiza-
tion problem difficult, and the finite sample performance of
likelihood based methods is not well understood.

Another strategy is to exploit that pairwise intersections
and unions are closed operations. The result of intersect-
ing or taking the union of two sketches results in another
sketch. These sketches may be further merged. For the
profile-likelihood, which does not utilize any variance or co-
variance information for the estimates N̂(S1) and N̂(S2),
the merge operation is straightforward. For other meth-
ods, a surrogate for the covariances of the merged estimates
needed for computation of the cardinality estimate.

12. EMPIRICAL RESULTS
The new estimators were evaluated on both real and sim-

ulated data. The results on real data exactly match the
theory and empirically demonstrate that there is no differ-
ence between applying the methods on real or simulated
data. We examine the behavior of the estimators in a va-
riety of cases. In all cases, the pseudo-likelihood and re-
weighted estimators that exploit the streaming cardinality
estimates had the best performance and performed similarly.
To assess the performance of the estimators, we computed
the Relative Efficiency (RE) of the estimators and the rela-

tive size required. The RE is defined as RE(N̂ (1), N̂ (2)) =

Var(N̂ (2))/Var(N̂ (1)). Since the variance of an estimator
typically scales as 1/m where m is the number of samples
used in the estimator, the RE measures how much more
data N̂ (2) needs to achieve the same accuracy as N̂ (1). An
estimator with RE of 1/2 requires twice as many samples to
match the variance of the baseline estimator. The relative
size is the space required to achieve the same error and is
1/RE. Figure 1 show that, analogous to the improvement
of streaming estimators in the single stream problem, the
new methods require half the space of the improved union
estimator. They achieve even greater reductions in space
when compared to basic MinCount estimator. When inter-
section sizes are small, the new estimators require less than
1/15th of the space of inclusion-exclusion based estimators.
Compared to the basic improved estimator, the merged in-
tersection estimates require half the space when exploiting
the streaming sketches and one set is nearly a subset of the
other.

In simulations for pairwise unions and intersections, we let
|A1| = 220 and considered cases with both balanced, |A2| =
|A1|, or unbalanced, |A2| = |A1|/4, cardinalities. The size of
the intersection was allowed to vary. Unless otherwise noted,
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Figure 1: These figures show the sketch size needed
by different estimators to achieve a given error rel-
ative to the profile-likelihood estimator. For inter-
sections on sets with significantly different cardinal-
ities, the new likelihood and re-weighted estimators
require far less space.

the order of common elements in the streams was the less
favorable order for our methods; the elements appear in the
same order. We tried different sketch sizes in our simulations
but only present the results where the size k = 1024 as there
was no material difference when k = 256 or 4196.

For real data, we used the MSNBC dataset from the UCI
machine learning repository [20] to validate our simulation
results. This dataset consists of 1 million users’ browsing his-
tory of 17 web page categories. We consider the problem of
estimating how many users visited a pair of categories using
only the 17 sketches counting unique visits to each category.
For comparison, we simulated data using parameters that
match the real set and intersection cardinalities. For each
set of parameters 10,000 sketches were generated with inde-
pendent random hashes. Figure 3 shows, as expected, that
the estimated cardinalities using the real data have the same
distribution as the simulated data. A p-value was computed
for each set of parameters testing if the RRMSE for real
and simulated data are different. Under the null hypothesis
that there is no difference in distributions, the p-values are
uniformly distributed. A Kolmogorov-Smirnov test yields a
p-value > 0.6, so there is statistically no evidence in the test
that the simulated data behaves differently from the real
data.

There were only small difference in performance between
the simple re-weighted estimator and the optimally weighted
estimator except when the cardinalities were unbalanced and
the smaller set was nearly a subset of the larger one. This
difference only observed for intersections. For unions, the
simple re-weighting performed marginally better than the
optimal re-weighting, possibly due to additional error in es-
timating the covariance of the component estimators. We
explain this asymmetry by noting that in the case where
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Figure 2: The left figure shows the RE with respect
to the simple re-weighted estimator when taking the
union of 100 random subsets Ai drawn with proba-
bility p from Atot. The right figure shows the RE
of the full re-weighted estimator to the simple re-
weighted estimator. Using the full covariance struc-
ture improves intersection estimates but error in the
covariance estimate hurts unions very slightly.
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Figure 3: The left figure shows the RRMSE when es-
timators are run on real data versus simulated data.
There is an exact correspondence, The right figure
shows the distribution of p-values testing if there is
a difference between the real versus simulated data.
The distribution fits the null uniform distribution.

A2 ⊂ A1 and the order elements appear is the same, every
item in A2 that updates sketch S1 also updates S2. Thus,
S1 contains almost no information about |A2| that is not
already in S2, and the simple re-weighting adds noise by
giving weight to component N̂1(S1 ∩0 S2). The reverse for
unions is not true; S2 contains useful information not in S1

for estimating |A1|. We note that the covariance estimate
for the component estimators is imperfect as it does not
simply select the smaller set when A2 is a proper subset of
A1. However, the full re-weighted estimator empirically has
relative efficiency ≥ 95% of an optimal re-weighting, so any
improvement would be small.

To simulate the distributed map-reduce setting, the sim-
ple re-weighted estimator was compared to the basic and
improved MinCount estimators when taking the union of
100 sketches. Each sketch was generated by sub-sampling
with probability p from a set of 106 elements. The sampled
items were then randomly permuted before computing the
sketch. Figure 2 shows the simple re-weighted estimator has
high relative efficiency compared to the naive union estima-
tor, especially when the size of the pairwise intersections is
small. Likewise, the improved estimator has high relative
efficiency compared to the basic estimator in those cases.
Here, the re-weighted estimator requires 1/3 the space of
the improved estimator rather than 1/2 due to the accuracy
gains from averaging over independent permutations.

13. DISCUSSION
Although the calculations presented are specialized for the

MinCount sketch, the techniques apply to other sketches as
well such as the Flajolet-Martin (FM) sketch used in Hy-
perLogLog or the Discrete Max-Count sketch in [23]. In
particular, the simple re-weighted estimator can be easily
derived for the FM sketch. The only ingredients needed
are estimates of the Jaccard similarities J(A1 ∩A2, Ai) and
J(Ai, A1 ∪ A2) and their variances. The FM sketch, how-
ever, does not lead to a closed intersection operation that
allows for further merging.

Another possible generalization is to estimate set differ-
ences. For the likelihood based methods, this is exactly the
same as estimating the intersection since it is simply an-
other re-parameterization. For the re-weighting methods,
the multipliers change but the analysis remains the same.

For the methods described in this paper, cardinality esti-
mation for the union or intersection only requires constant
space. There are a finite number of sufficient statistics and
that these can be tabulated with constant memory if the
hash values in each sketch can be accessed in sorted order.
If a merged sketch and not just a cardinality estimate is re-
quired, a closed union operation may result in a larger sketch
where the size is proportional to the number of sets in the
union. The sketch can be truncated to have k hash values to
reduce the space requirements while cardinality estimation
is still performed with all the hash values.

One unexplored area is determining the optimal order of
pairwise merges. If many sketches cannot be merged simul-
taneously, the desired cardinalities may still be computed
using a sequence pairwise unions and intersections that ex-
ploit the closed union and set operations.

13.1 Running times
For all the improved methods in this paper, computing

the sufficient statistic requires O(km) time where m is the
number of sketches. If the hash values are stored in sorted
order, this is reduced to O(k). For the naive estimators,
the running time is O(mk log k) if a heap is used to select
the k values. For the pairwise likelihood based methods,
the pseudo-likelihood function is from an exponential family
and hence, log-concave. Evaluating the gradient and Hes-
sian take constant time, so the running time is proportional
to the number of iterations needed to solve this concave
optimization problem. For the re-weighted component esti-
mators, if the estimated covariance matrix is diagonal, com-
puting the re-weighted estimator takes O(m) time. If a full
covariance matrix is used, then inverting the matrix can take
O(m3) time.

14. CONCLUSION
This paper presents and analyzes two new classes of meth-

ods for estimating cardinalities of intersections and unions
from sketches. These methods are applied to Streaming
MinCount sketches, and variance estimates are derived as
well. All the methods theoretically and empirically outper-
form existing methods for estimating unions and intersec-
tions. The new methods also lead to mergeable summaries
under intersection and union operations. This allows both
intersections and unions on sketches to be chained together
while existing methods only allow unions to be chained. Ex-
tensions to sketches other than the MinCount sketch are also
discussed.



The pseudo-likelihood based estimators are derived as ap-
proximations to the asymptotically optimal maximum likeli-
hood estimator. We conjecture that the full pseudo-likelihood
estimator is asymptotically equivalent to the maximum like-
lihood estimator. The re-weighted component estimators
are derived as near optimally weighted linear combinations
of the streaming estimates. Empirically, the near optimally
re-weighted component estimator matches the performance
of the full maximum pseudo-likelihood estimator.

The derived estimators are useful in a variety of different
settings. The re-weighted estimators can be easily gener-
alized to handle multi-set unions rather than just pairwise
unions. The simple re-weighted estimators can be easily
generalized to other sketches. The profile-likelihood can be
used for sequences of pairwise merges.

The theoretical analysis also allows us to separate and
identify the information contained in different parts of the
sketch. Since the full re-weighted and the conjectured op-
timal pseudo-likelihood methods perform nearly identically
and since the multipliers for component estimators can be
treated as nearly independent from the streaming cardinal-
ity estimates, we see that the stored hash values encode
information about the proportional sizes of the sets relative
to their union and intersection while the streaming cardi-
nality estimate contain information about the absolute size.
Section 10 shows that each streaming estimate contains in-
formation about the order of elements in the stream since the
streaming cardinality variance can be decomposed into an
irreducible component that depends on the order statistics
for the hash values and a reducible component that depends
on the ordering of elements in the stream. In the case of
identical sets, averaging streaming estimates over all pos-
sible orderings variance reduces the variance to n2/3k. In
section 9.2, the single non-streaming component estimator
based on the smaller set is shown to dominate the improved
MinCount estimator that throws away the larger threshold.
All these relevant pieces of information useful for estimation
are contained in the sufficient statistics given in section 8.1
which the pseudo-likelihood estimator makes full use of.

Together these contributions advance the methodology,
theory, and understanding for the approximate distinct count-
ing problem.
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