
Towards Fair Federated Recommendation Learning:
Characterizing the Inter-Dependence of System and Data

Heterogeneity
Kiwan Maeng

Meta
Cambridge, MA, USA
kwmaeng@fb.com

Haiyu Lu
Meta

Menlo Park, CA, USA
hylu@fb.com

Luca Melis
Meta

New York, NY, USA
lucamelis@fb.com

John Nguyen
Meta

Menlo Park, CA, USA
ngjhn@fb.com

Mike Rabbat
Meta

Montreal, Québec, Canada
mikerabbat@fb.com

Carole-Jean Wu
Meta

Cambridge, MA, USA
carolejeanwu@fb.com

ABSTRACT
Federated learning (FL) is an effective mechanism for data privacy
in recommender systems that runs machine learning model train-
ing on-device. While prior FL optimizations tackled the data and
system heterogeneity challenges, they assume the two are indepen-
dent of each other. This fundamental assumption is not reflective
of real-world, large-scale recommender systems — data and system
heterogeneity are tightly intertwined. This paper takes a data-driven
approach to show the inter-dependence of data and system hetero-
geneity in real-world data and quantifies its impact on the overall
model quality and fairness. We design a framework, RF2, to model
the inter-dependence and evaluate its impact on state-of-the-art
model optimization techniques for federated recommendation tasks.
We demonstrate that the impact on fairness can be severe under
realistic heterogeneity scenarios, by up to 15.8–41× compared to
a simple setup assumed in most (if not all) prior work. The result
shows that modeling realistic system-induced data heterogeneity
is essential to achieving fair federated recommendation learning.

CCS CONCEPTS
• Information systems→ Recommender systems; • Comput-
ing methodologies→ Modeling and simulation.

ACM Reference Format:
KiwanMaeng, Haiyu Lu, Luca Melis, John Nguyen, Mike Rabbat, and Carole-
Jean Wu. 2022. Towards Fair Federated Recommendation Learning: Char-
acterizing the Inter-Dependence of System and Data Heterogeneity. In the
Sixteenth ACM Conference on Recommender Systems (RecSys ’22), Septem-
ber 18–23, 2022, Seattle, WA, USA. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3523227.3546759

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
RecSys ’22, September 18–23, 2022, Seattle, WA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9278-5/22/09. . . $15.00
https://doi.org/10.1145/3523227.3546759

1 INTRODUCTION
Recommender systems are a fundamental building block of mod-
ern internet services, empowering day-to-day applications. They
suggest videos on Netflix [17] and YouTube [15], musics on Spo-
tify [33], apps on the Google Play Store [12], and stories on Insta-
gram [50]. A recent study showed that 60% of YouTube’s and 75% of
Netflix’s videos watched were selected based on recommender sys-
tems [14, 65, 73]. Recommendation systems are one of the important
machine learning workloads, comprising 50% of the training [2]
and 80% of inference cycles [21] at Meta in 2019.

While recommender systems were traditionally trained inside
datacenters, recent studies are increasingly exploring training the
models on client devices, using federated learning (FL) [53, 54].
FL is a privacy-enhancing training method that is already well-
adopted in many commercial products for non-recommendation
use-cases, including Google’s Gboard [23, 75] and Meta’s Oculus
keyboard [22]. FL trains a model locally on each client device using
its local data and later aggregates only the model updates. FL does
not require raw user data to leave the client device.

Training models with FL faces several challenges due to the
data and system heterogeneity of participating clients [35]. Data
heterogeneity means data in each user device is not independent and
identically distributed (IID), hampering convergence [35]. System
heterogeneity means client devices (e.g., smartphones) have widely
varying system capabilities, which limits the model capacity and
training efficiency [35]. In particular, to tackle system heterogeneity,
many prior works proposed various tier-aware optimizations [6, 10,
16, 28, 39, 42], which apply different levels of optimizations to each
device tier based on the system capabilities (Section 2.2.3).

However, when studying the tier-aware optimizations, no prior
work looked at the inter-dependence of data and system heterogene-
ity, assuming the two are independent of each other. Prior work
used a random mapping approach to model data and system hetero-
geneity simultaneously [16, 28, 42, 74], which always produce zero
correlation between the two (Section 3.2). By analyzing data from
a large-scale recommender system deployment, we show that the
simplistic assumption is not representative of the real world – in
real systems, data and system heterogeneity are tightly intertwined
(Section 3.2). We refer to the tight correlation as system-induced

https://doi.org/10.1145/3523227.3546759
https://doi.org/10.1145/3523227.3546759

RecSys ’22, September 18–23, 2022, Seattle, WA, USA Maeng, et al.

data heterogeneity. We show that the system-induced data hetero-
geneity in real data can cause optimizations to experience fairness
issues, which is a phenomenon not observed in prior work. To the
best of our knowledge, this is the first time system-induced data
heterogeneity and its effects are demonstrated.

Based on this observation, we developed RF2 (Realistic Feder-
ated Recommendation for Fairness), an FL framework for recom-
mender systems that simulates system-induced data heterogeneity.
RF2 includes: (1) code to simulate FL using popular recommenda-
tion models and datasets, (2) a statistical method tocontrol system-
induced data heterogeneity, and (3) implementations of popular
FL optimizations for system heterogeneity [7, 16, 23, 28, 39]. Our
evaluation with RF2 reveals that popular FL optimizations can hurt
the model fairness severely when realistic system-induced data
heterogeneity is present, sometimes by more than 40× compared
to a no system-induced data heterogeneity case. Our evaluation
also lists several interesting observations. We show that methods
that showed similar fairness implications with no system-induced
data heterogeneity can show significantly different fairness impacts
with realistic system-induced data heterogeneity. We also show op-
timizations that achieve the best accuracy are not always the fairest
(e.g., two similar-accuracy optimizations can differ in their fairness
by 4.88×). We hope our evaluation motivates the need to simu-
late more realistic system-induced data heterogeneity, which RF2
achieves. Our key contributions are:

(1) We identify the existence of system-induced data hetero-
geneity and its potential effects in real-world data. To the
best of our knowledge, this work is the first to explicitly
reveal such effects in the real world.

(2) We propose a method to synthesize system-induced data het-
erogeneity onto existing datasets. Datasets generated with
our method can simulate interesting fairness effects of the
real world, while prior approaches cannot.

(3) We present RF2, an FL simulation framework for recommen-
dation models that can simulate system-induced data hetero-
geneity and various FL optimizations. RF2 is open-sourced
at https://github.com/facebookresearch/RF2.

(4) Our evaluation lists several effects of system-induced data
heterogeneity on existing optimizations. We hope the find-
ings will inspire future researchers to design and evaluate
fair FL systems on a more realistic setup.

2 BACKGROUND AND MOTIVATION
2.1 Deep Learning Recommender Systems
Recommender systems suggest items to users by predicting the
likelihood of an interaction (e.g., click or purchase) between a user
and items.We broadly use the term click to refer to any positive user-
item interaction. Various techniques have been explored to deliver
high-quality recommendations, ranging from classical techniques,
e.g., matrix factorization [40], to emerging new deep learning-based
techniques [12, 20, 51, 68, 69, 78, 79], just to name a few. In this
paper, we will focus on deep learning-based approaches and refer
to them as recommender systems.

Deep learning-based recommender systems use features of users
and items as inputs to predict whether a user will click a particular
item. Two commonly-used feature types are dense features and

sparse features. Dense features represent features of continuous
values, such as a user’s age or the price of an item. Sparse features
represent categorical features of discrete values, such as a user’s
gender, the collection of items a user liked in the past, or the genre
of a movie. Sparse features are usually encoded as an extremely
sparse one- or multi-hot vector.

To predict the click probability, recommender systems first trans-
late sparse features into dense embedding vectors using embed-
ding tables [12, 51, 79]. The embedding vectors are merged with
dense features and go through a multi-layer perception (MLP),
producing a prediction at the end. Different model architectures
explore variations in how the features are merged, including simple
concatenation [25], element-wise multiplication [25], pairwise dot
product [12, 51], attention-based weighted averaging [79], or using
another deep model [69, 78].

2.2 Federated Learning
Federated learning (FL) [23] trains a model using a pool of client
devices without each client having to send its data to the server. In
this section, we discuss the workflow of FL and how prior literature
handles data and system heterogeneity.

2.2.1 Workflow of Federated Learning. To train a model using FL,
a centralized server first selects clients to participate from a client
pool. The selected clients download the model from the server and
train it locally using their data. After training, the clients upload
their trained models (or equivalently, the gradients) back to the
server. When all the participating clients upload their gradients,
the server aggregates the gradients and updates the server-side
model. The process repeats until the model converges. In the most
commonly-used FedAvg algorithm [23], the server aggregates client
gradients using weighted averaging, where the number of samples
in each client corresponds to a weight value. Then, the aggregated
gradient is simply added to the server model or applied using a
separate server-side optimizer [66].

2.2.2 Data Heterogeneity. FL is a form of distributed ML training.
However, unlike distributed training in datacenters where data
can be shuffled so that each trainer node has an independent and
identically distributed (IID) subsample [45], the data of each FL
client is non-IID — the number of samples and the feature/label
distributions on each client are different from each other [35]. Data
heterogeneity makes it challenging to reach high model quality [30].
Many algorithms [1, 23, 37, 59, 67] have been proposed to improve
the model quality in the presence of data heterogeneity.

2.2.3 System Heterogeneity and Tier-Aware Optimizations. Client
devices (e.g., smartphones) vary significantly in their system capa-
bilities, including computing power, memory, storage, and network
speed [41, 71, 74]. For example, low-end and high-end smartphones
may experience a 2–6× latency difference when training the same
model [74] and two orders of magnitude difference in their network
bandwidth [64]. The system heterogeneity degrades the efficiency of
FL because each round in FL proceeds only after all the participating
clients finish training. The synchronous nature makes slow clients
become stragglers that bottleneck the entire training process.

To mitigate the straggler effect, recent studies proposed tier-
aware optimizations. The core idea is to group devices with similar

https://github.com/facebookresearch/RF2

Towards Fair Federated Recommendation Learning RecSys ’22, September 18–23, 2022, Seattle, WA, USA

Low-end Devices High-end Devices

Likes:

Degraded FL Full FL

Test

(a) A case without system-induced data heterogeneity

Low-end Devices High-end Devices

Likes:

Degraded FL Full FL

Test

(b) A case with system-induced data heterogeneity

Figure 1: Tier-aware optimizations can hurt fairness when
system-induced data heterogeneity is present. The figure
shows an optimization that makes low-end devices train
only a subset of themodel [10, 16, 28]. The optimization pro-
duces a fair model if the data distribution between low- and
high-end devices are similar (a), but may become unfair if
the data distribution differ significantly (b).

system capabilities into tiers and apply distinct optimizations to
different device tiers, so that lower-tier devices bear lighter com-
putation/communication burdens. Below, we describe some of the
commonly proposed forms:

Excluding low-end devices. The simplest optimization is to
prevent low-end devices from participating in FL entirely to min-
imize the presence of stragglers. This simple solution can either
be implemented by explicitly leaving out low-end devices [23] or
by implicitly setting a training time deadline that low-end devices
cannot meet [7]. Many real products have adopted this strategy. For
example, Google’s Gboard’s next-word prediction disallows devices
with less than 2GB RAM from participating in FL [23].

Over-selection anddropping.Anotherwell-adopted optimiza-
tion is to select N% more clients than needed during selection and
drop the slowest N% during aggregation [52]. Low-end devices are

more likely to be dropped by this optimization because they are
more likely to end up being the slowest N%.

Tiered gradient compression.When there is a network band-
width imbalance between tiers, applying gradient compression (e.g.,
gradient pruning [8, 39, 44, 77] or quantization [4, 39]) more aggres-
sively to devices with a slower network can balance the communi-
cation speed. Not all techniques from other use-cases are applicable
to FL, however. For example, the popular Top-K pruning [47] may
leak which entries of the embedding tables were accessed in FL [53].

Tiered model sizes.When model computation time imbalance
is severe, using smaller models for devices with less computing
capabilities can relieve the imbalance. Several prior work proposed
using a smaller number of channels for low-tier devices to reduce
computation time and memory usage [10, 16, 28]. Upon model
aggregation, channels are only averaged across tiers that use the
channels [10, 16, 28], and knowledge distillation can be additionally
used to further improve model accuracy [28]. Others allowed each
device tier to use an entirely different model from each other and
relied on knowledge distillation to aggregate the knowledge [11, 13,
24, 28, 34, 43, 46]. Figure 1a illustrates an example of a tier-aware
optimization, where low-end devices train a smaller model with
fewer channels in its hidden layers.

3 REAL-WORLD OBSERVATIONS: DATA AND
SYSTEM HETEROGENEITY ARE
INTERTWINED

3.1 Inter-dependence Between Data and
System Heterogeneity

Section 2.2.2–2.2.3 discussed a stream of prior research that tackled
the data heterogeneity and system heterogeneity of FL. However,
most (if not all) prior studies tackled data and system heterogeneity
separately, assuming no inter-dependence exists between the two.
This assumption, however, is not reflective of the real world.

As a motivating example, assume that there are clients who like
apples and clients who like bananas in the world, and their fruit
preferences are an important feature of a recommender system
(e.g., the system recommends apple juice to apple-liking clients). If
the probability of liking apples or bananas is the same regardless
of the client’s device tier as in Figure 1a, we say there exists no
inter-dependence between data and system heterogeneity.

Alternatively, there can be cases where the probability of lik-
ing apples is higher for low-end devices, while the probability of
liking bananas is higher for high-end devices (Figure 1b). When
there is such data distribution difference between device tiers, inter-
dependence exists between data and system heterogeneity. We term
such an inter-dependence as system-induced data heterogene-
ity in this work. When system-induced data heterogeneity exists,
applying tier-aware optimizations may cause fairness issues. For
example, if we use fewer channels for low-end devices, and low-end
devices mostly hold apple-liking features, the final trained model
may not work as well for apple-liking clients as for banana-liking
clients, because most of the apple-liking data were trained through
a model with fewer channels (Figure 1b). We show in Section 3.2
that real-world recommender systems experience system-induced
data heterogeneity, and the fairness of the model can be impacted

RecSys ’22, September 18–23, 2022, Seattle, WA, USA Maeng, et al.

0 1 2 3 4 5 6 7 8 9
Sparse features

10−2

10−1

P
ro

ba
bi

lit
y

of
oc

cu
ra

nc
e

w
ith

in
 ti

er

low mid high

(a) Real-world statistics

0 1 2 3 4 5 6 7 8 9
Sparse features

10−1

P
ro

ba
bi

lit
y

of
oc

cu
ra

nc
e

w
ith

in
 ti

er

low mid high

(b) Random-mapping statistics

low mid high total
Device tiers

−15

−10

−5

0

E
va

lu
at

io
n

ac
cu

ra
cy

 c
ha

ng
e

(n
or

m
al

iz
ed

 to
 to

ta
l)

(c) Fairness implications

Figure 2: Real world experiences system induced data heterogeneity that can impact fairness. (a) plots the distribution of
feature values across tiers in the real world, and (b) plots what the distribution would look like instead with random tier
mapping. Comparing the two clearly shows that the real world experiences system-induced data heterogeneity. (c) shows
the accuracy change for each tier when excluding low-end devices from training, in the presence of system-induced data
heterogeneity. Low-end devices are disproportionately penalized compared to the overall population.

when tier-aware optimizations are applied without careful consid-
erations. Thus, it is important to simulate realistic system-induced
data heterogeneity when evaluating FL optimizations.

Unfortunately, no prior FL literature assumed the existence of
system-induced data heterogeneity to the best of our knowledge,
and hence no prior optimizations were evaluated in the presence
of realistic system-induced data heterogeneity. When simulating
data and system heterogeneity, even the advanced FL simulators
with real-world system traces [41, 74] synthesized or collected
client data that show data heterogeneity and randomly assigned
synthesized or collected system heterogeneity characteristics (i.e.,
device tiers) to each client [16, 28, 41, 74]. Such a random tier-client
mapping always produces a dataset with no system-induced data
heterogeneity, as in Figure 1a.

3.2 Does the Real World Experience
System-induced Data Heterogeneity?

To understand whether system-induced data heterogeneity exists
in the real world, we analyzed important sparse features of a recom-
mender system that serves billions of users worldwide. Figure 2a
presents the statistics of a sparse feature that is known to be impor-
tant in delivering high-quality recommendations (e.g., fruit prefer-
ences in Figure 1). We group the user devices into three tiers (low-,
mid-, and high-) based on their system capabilities and observe how
frequently each value in the feature (e.g., apple, banana, orange,
...) occurs within each tier. Figure 2a plots the result for the top-10
most frequently observed values. In Figure 2b, we plot the statistics
again, but this time, by mapping users to tiers randomly as in prior
work [16, 28, 41, 42, 74] instead of using the actual tiers.

Comparing Figure 2a and Figure 2b, it is clear that real-world
deployment environment experiences notable system-induced data
heterogeneity. When using random tier mapping (Figure 2b), the
probability of each sparse feature value occurring is the same across
tiers. In other words, the affinity to apples/bananas is the same
across device tiers (Figure 1a). However, real-world data (Figure 2a)
exhibits high data heterogeneity across tiers, resembling the sce-
nario in Figure 1b. For example, sparse feature value 3 is mostly
observed only in the low-end device tier, resembling the preferences
for apple in Figure 1b. Value 9, on the other hand, is mostly observed

in the mid/high-end device tiers but very scarcely in the low-end
device tier, resembling the preferences for bananas in Figure 1b.

We also demonstrate that popular tier-aware optimizations can
introduce fairness degradation in the presence of system-induced
data heterogeneity. We trained a recommendation model using real-
world data similar to Figure 2a, while (1) using all devices’ data,
and (2) not using low-end devices’ data. The second setup follows
Google’s Gboard FL optimization [23]. Figure 2c shows the result-
ing model accuracy change after excluding low-end devices’ data
for each tier, normalized by the overall average. Low-end devices
get disproportionately affected, suffering from 17.6× more accu-
racy degradation than the average population. Figure 2c motivates
the need to study tier-aware optimizations in a realistic system-
induced data heterogeneity setup. If not, model quality for certain
populations can be significantly degraded unintentionally.

4 STUDYING SYSTEM-INDUCED DATA
HETEROGENEITY FOR RECOMMENDER
SYSTEMS

RF2 is an FL simulation framework for recommender models that
enables agile modeling of system-induced data heterogeneity. RF2
supports (1) efficient FL training for popular recommender mod-
els and datasets (Section 4.1), (2) synthesizing varying degrees
of system-induced data heterogeneity onto existing datasets (Sec-
tion 4.2), (3) a family of tier-aware optimization strategies from
prior work (Section 4.3), and (4) fairness evaluation (Section 4.4)
that can guide programmers to refine and test their optimizations.
Figure 3 illustrates the design overview of RF2.

4.1 Simulating FL for Recommender Systems
RF2 supports FL simulation for state-of-the-art, commonly-used
recommender models and datasets. While FL for deep recommender
models has been studied in previous literature [53, 55], prior frame-
works were either confined to simplistic models that take only
user ID and item ID as inputs [55] or were built on proprietary
datasets [53]. RF2, on the other hand, is compatible with a large
body of popular recommender models, by being built on top of
DeepCTR-Torch [61], an open-source codebase that implements

Towards Fair Federated Recommendation Learning RecSys ’22, September 18–23, 2022, Seattle, WA, USA

Recommender Models

Open-source Datasets

System-induced Data
Heterogeneity Simulation (§4.2)

Tier-aware Optimizations (§4.3)

Recommender-specific FL
Designs (§4.1)

RF𝟐 Fairness Evaluation (§4.4)

Refine and test
optimizations

Observe fairness
outcome

Figure 3: Overview of RF2.

19 recommender models (in a non-FL context) and is easily exten-
sible to more. RF2 currently supports two commonly-used open-
source datasets, Taobao Ad Display/Click Data [58] and MovieLens-
20M [19] (Section 5.1), and can be extended to additional datasets.

RF2 makes some unique design decisions to improve convergence
and model a more realistic setup. Instead of using minibatch SGD
on the client [53, 55], RF2 implements an option to use a full-batch
SGD. Full-batch SGD is practical because recommender systems
tolerate a large batch size, 1 and clients usually do not have many
datapoints as user-item interaction is rare. For example, the Taobao
dataset [58] has only 26 datapoints on average per client. Using full-
batch SGD on the clients and advanced optimizers, e.g., AdaGrad,
on the server [66] improves the learning stability significantly. RF2
does not select a client again before every client is selected exactly
once, unlike prior work that models duplicated selection [9, 53, 55].
The non-duplicate selection is to simulate a more realistic large-
scale FL, where billions of clients participate [7, 32] and duplicated
selection is extremely rare.

4.2 Simulating System-aware Data
Heterogeneity

One of RF2’s main goals is to simulate realistic system-induced data
heterogeneity. There are many potentially viable ways to simulate
system-induced data heterogeneity. Across tiers, one can vary the
distribution of user features, click rates, number of samples, or
affinity to different items. We concentrate on making the affinity to
different items heterogeneous across tiers (e.g., make certain tiers
like certain items more, as in Figure 1b). Our approach is applicable
to any recommender datasets as they always have click information
that represents the user-item affinity.

Algorithm 1 shows how we assign tiers to each client to simulate
system-induced data heterogeneity. Here, we assume three tier
groups, tier0, tier1, and tier2. Starting from the most popular item
(Line 2), we draw three samples for the three tiers from a Dirichlet
distribution [30] with a given α (Line 3). p0, p1, and p2 represent
the probability for each user who clicked this item to be in each
tier. If α is small, the values are more skewed, leading to higher
system-induced data heterogeneity. If α is high, system-induced

1https://github.com/mlcommons/training_results_v1.1/blob/main/NVIDIA/benchmarks
uses a batch size of 70k

Algorithm 1 Dirichlet-based tier mapping.
1: seenUsers, tier0, tier1, tier2 ← ∅, ∅, ∅, ∅
2: for item ∈ items .sortedByDescendinдPopularity() do
3: p0,p1,p2 ← Dirichlet(α , 3)
4: pL ,pM ,pS ← sortDescendinд(p0,p1,p2)
5: tierL , tierM , tierS ← sortByDescendinдSize(tier0, tier1, tier2)
6: for user ∈ item.clickedUsers() do
7: if user < seenUsers then
8: r ← random()
9: if r < pL then
10: tierS ← tierS ∪ user
11: else if pL ≤ r < pL + pM then
12: tierM ← tierM ∪ user
13: else
14: tierL ← tierL ∪ user

15: seenUsers ← seenUsers ∪ user

data heterogeneity is reduced. We sort the three probabilities (Line
4) and also the number of already assigned users for each tier (Line
5), so that the tier with currently the smallest number of users (tierS)
gets the largest probability (pL) of the user being assigned. Lines
4–5 ensure that the final number of users is similar across tiers,
and can be omitted if balancing the number of users is undesired.
With the given probability, each user that clicked the item (Line
6) gets assigned to one of the three tiers (Line 9–11), unless it is
already assigned to a certain tier (Line 7). For users that never
clicked any items, we treat them as clicking a null item and apply
the same procedure. Our tier assignment procedure is inspired
by the approach used to simulate data heterogeneity in FL across
clients [30]. Our algorithm has a different goal, which is to simulate
system-induced data heterogeneity (data heterogeneity across tiers).

Figure 4 shows the generated system-induced data heterogene-
ity using different α for the MovieLens-20M dataset [19] (see Sec-
tion 5.1 for more details on the dataset). In the figure, the top-10
most clicked items and their occurrence on each (synthesized) tier
are plotted. We can see that for low α (Figure 4a), the dataset expe-
riences a severe system-induced data heterogeneity similar to that
of the real world (Figure 2a). As we increase α (Figure 4b– 4c), the
distribution becomes increasingly more similar to random mapping

RecSys ’22, September 18–23, 2022, Seattle, WA, USA Maeng, et al.

0 1 2 3 4 5 6 7 8 9
Clicked items

10−3

10−2

10−1

P
ro

ba
bi

lit
y

of
oc

cu
ra

nc
e

w
ith

in
 ti

er

low mid high

(a) α = 0.5

0 1 2 3 4 5 6 7 8 9
Clicked items

10−2

10−1

P
ro

ba
bi

lit
y

of
oc

cu
ra

nc
e

w
ith

in
 ti

er

low mid high

(b) α = 5

0 1 2 3 4 5 6 7 8 9
Clicked items

10−1

P
ro

ba
bi

lit
y

of
oc

cu
ra

nc
e

w
ith

in
 ti

er

low mid high

(c) α = 5000

Figure 4: Dirichlet distribution with different α can simulate different degrees of system-induced data heterogeneity.

(Figure 2b). The simulated system-induced data heterogeneity also
leads to different fairness implications. Figure 5 shows an accuracy
degradation of each tier when excluding low-end devices from FL
under different system-induced data heterogeneity (see Sections 5
and 6 for details on the evaluation setup and results). Figure 5a
shows that low-end devices experience disproportionate accuracy
loss when there is high system-induced data heterogeneity, similar
to what was observed in the real world (Figure 2c). The same level
of fairness issue cannot be observed with low system-induced data
heterogeneity (Figure 5b).

4.3 Supporting Popular Tier-Aware
Optimizations in FL

RF2 implements several commonly-used tier-aware optimizations
discussed in Section 2.2.3. Specifically, the current version imple-
ments (1) excluding low-end devices (Exclude Lo), (2) overselection
and drop (Overselect), (3) tier-aware gradient pruning (Prune),
(4) tier-aware gradient compression (Quant), and (5) tier-aware
channel width reduction (Channel). For simulation, a performance
model for each tier was obtained from [74], which models the
performance as a Gaussian distribution using real-world measure-
ments. For pruning (Prune), we explored random pruning that is
widely used in FL [39] and do not consider Top-K pruning [47] due
to privacy concerns (Section 2.2.3). For quantization (Quant), we
studied stochastic rounding [4, 39]. Given n bits, stochastic round-
ing uniformly splits the value range between the minimum and the
maximum with 2n uniformly separated points p0, ... p2n−1. If pk <
x < pk+1, then we round x into pk with a probability of x−pk

pk+1−pk
and pk+1 otherwise. We also explore a variant that uses 1 bit to en-
code the sign and n − 1 bits to encode the absolute value (QuantS).
The variant gives us a better representation of zero, which we will
show to have fairness improvement in Section 6. To reduce com-
putation, we focus on varying the channel dimensions (Channel)
without additionally using knowledge distillation [16, 28]. Knowl-
edge distillation-based approaches [11, 13, 24, 28, 34, 43, 46] require
a representative public dataset whichwe do not assume.We reduced
channels for all but the first hidden layer, as reducing channels for
the first hidden layer effectively ignores some input features. RF2
can be extended to support more optimizations.

4.4 Quantifying Fairness
To study whether an optimization strategy impacts each tier equally,
we use the relative accuracy change [26, 27] for each tier before and
after applying an optimization. Mathematically, if model accuracy
is βtp for tier t ∈ {low,mid,hiдh} and an optimization p (p = 0 is
no-optimization) is applied, the relative accuracy change for tier t is
defined as β tp−β

t
0

β t0
. To quantify the fairness impact of an optimization

p across tiers, we report the maximum difference in the accuracy
change (MDAC) between tiers. MDAC is higher if an optimization
is more unfair, and 0 if perfectly fair. It is defined as:

max(|
βtip − β

ti
0

βti0
−

β
tj
p − β

tj
0

β
tj
0

|), ti , tj ∈ {low,mid,hiдh} (1)

5 EVALUATION METHODOLOGY
5.1 Deep Learning Recommendation Models

and Datasets
Datasets. We study two commonly-used open-source recommen-
dation datasets, Taobao Ad Display/Click Data [58] (i.e., Taobao
dataset) and MovieLens-20M [19] (i.e., MovieLens dataset). The
Taobao dataset shows 26 million interactions (click/non-click) be-
tween 1.14 million users and 847 thousand item ads across an 8-day
period. Each user has 9 sparse features (e.g., gender or occupation),
each ad has one dense (price) and 5 sparse (e.g., category or brand)
features, and each event has one sparse feature that encodes the
"scenario" [58]. The MovieLens dataset provides 20 million movie
ratings for 27 thousand movies from 138 thousand users, along
with the genre information for each movie. To convert it into a
click/non-click dataset, we considered a 5-star rating as click and
others as non-click [79]. Following prior work [78, 79], we did not
use user ID as a user feature for privacy. Instead, we augmented
the user features with the user history of previously clicked items
(ads, categories, and brands for Taobao, movies for MovieLens). For
Taobao, we additionally used the day of the week information [79].
We applied logarithm to Taobao’s item price feature because the
range of the value is very large, from 0.01 to 100 million.

Models. We evaluated two state-of-the-art deep recommender
models, DLRM [51, 72] and DIN [79]. We did not study models
that directly use user IDs, e.g., NeuMF [25], for enhanced privacy.
DLRM [51] is a model developed by Meta. In DLRM, dense features
go through a bottom MLP and are mixed with the output of the

Towards Fair Federated Recommendation Learning RecSys ’22, September 18–23, 2022, Seattle, WA, USA

low mid high total
Device tiers

−10

−5

0

5

10

E
va

l A
U

C
 c

ha
ng

e
(n

or
m

al
iz

ed
 to

 to
ta

l)

(a) α = 0.5

low mid high total
Device tiers

−10

−5

0

5

10

E
va

l A
U

C
 c

ha
ng

e
(n

or
m

al
iz

ed
 to

 to
ta

l)
(b) α = 5000

Figure 5: Excluding low-end devices have a higher fairness
impact with a higher system-induced data heterogeneity for
the Taobao dataset.

embedding tables through a pairwise dot product. The output goes
through a top MLP to produce the final prediction. DIN [79] is
a model proposed by Alibaba. In DIN, the user history features
go through an attention layer after the embedding tables, which
predicts the importance of each history and gives a larger weight
to the history that is more relevant to the current item. After being
re-weighted, the features are concatenated with the dense features
and go through an MLP for prediction. For both models, we used
the top MLP with a single hidden layer of size 256, and embedding
tables with a dimension of 16. For DLRM, we used a bottom MLP
with a hidden layer size 16. For DIN’s attention layer, we used
two hidden layers of sizes 64 and 16 and used Dice activation [79]
without batch normalization. For clients, we used full-batch SGD
with lr=1.0 for both datasets. For the server, we used AdaGrad with
lr=0.01 for Taobao and lr=0.1 for MovieLens.

We used ROC-AUC [31], or AUC for short, as the accuracymetric.
AUCmeasures the model quality well when the labels are extremely
biased (e.g., when most of the ads are not clicked) [36, 51, 78, 79].
As a reference, the achieved test AUC after 1 epoch of non-FL
training was 0.6096/0.6049 for the Taobao dataset with DLRM/DIN
and 0.7995/0.7666 for the MovieLens dataset with DLRM/DIN, being
similar to prior work [79]. The achieved test AUC after FL training
with all clients exactly once was 0.5966/0.5941 (Taobao, DLRM/DIN)
and 0.7954/0.7538 (MovieLens, DLRM/DIN), which are the values
used as a baseline AUC for our fairness metric (MDAC) calculation.
It is hard to compare our FL results with prior work directly because
no prior work trained the exact same datasets and models in an FL
setup; however, the achieved AUC falls into a similar range as prior
work that used similar datasets [53, 79].

5.2 Tier-Aware Optimizations
We explored six classes of tier-aware optimization techniques ex-
plained in Section 4.3 (Exclude Lo, Overselect, Prune, Quant, QuantS,
Channel). For Prune, Quant, QuantS, and Channel, we explore three
different configurations each, which impose roughly 1:2:4, 1:2:8, or
1:4:16 communication/computation overheads to low-, mid-, and
high-end devices. Below list summarizes the 14 configurations we
studied.
• Exclude Lo excludes low-end devices.
• Overselect selects and drops 20% extra clients.
• Prune 1:2:4 prunes 75% (low), 50% (mid), and 0% (high) of
the gradients.

• Prune 1:2:8 prunes 87.5% (low), 75% (mid), and 0% (high) of
the gradients.
• Prune 1:4:16 prunes 93.75% (low), 75% (mid), and 0% (high)
of the gradients.
• Quant/QuantS 1:2:4 quantizes the gradients using 8 (low),
16 (mid), and 32bits (high).
• Quant/QuantS 1:2:8 quantizes the gradients using 4 (low),
8 (mid), and 32bits (high).
• Quant/QuantS 1:4:16 quantizes the gradients using 2 (low),
4 (mid), and 32bits (high).
• Channel 1:2:4 uses 25% (low), 50% (mid), and 100% (high)
of the original channel size.
• Channel 1:2:8 uses 12.5% (low), 25% (mid), and 100% (high)
of the original channel size.
• Channel 1:4:16 uses 6.25% (low), 25% (mid), and 100% (high)
of the original channel size.

5.3 System-Induced Data Heterogeneity
We evaluated the effect of varying levels of system-induced data
heterogeneity by evaluating all the configurations on (1) random
tier mapping (Random, no system-induced data heterogeneity),
and (2) Dirichlet-based tier mapping using five different α :Hetero-
vlow (α = 5000), Hetero-low (α = 5), Hetero-mid (α = 0.5),
Hetero-high (α = 0.05), and Hetero-vhigh (α = 0.005). The
configurations represent very low to very high system-induced
data heterogeneity.

6 EVALUATION RESULTS
Our evaluation aims to answer the following questions in the pres-
ence of realistic system-induced data heterogeneity:
• How do tier-aware optimization strategies from prior litera-
ture affect fairness?
• How does the degree of system-induced data heterogeneity
affect fairness?
• How do different models and datasets affect fairness?
• Is the best-performing optimization in terms of prediction
accuracy also the best in terms of fairness?

6.1 Fairness Impacts of Different
Optimizations Under System-Induced Data
Heterogeneity

Figure 6–7 shows the results of training each model and dataset
under the 14 optimization configurations and the 6 different system-
induced data heterogeneity settings. The y-axis shows the fairness
degradation (MDAC, defined in Section 4.4). A larger MDAC means
the optimization strategy is more unfair.

Takeaway 1: Optimizations cause fairness degradation. In
the presence of system-induced data heterogeneity (e.g., Hetero-
vhigh/high), tier-aware optimizations may introduce significant
fairness degradation. For example, Exclude Lo, which is an optimiza-
tion used by Google [23], caused 29–44% MDAC with DLRM/DIN
and Taobao dataset (Figure 6). The result means that low-end de-
vices can suffer 29–44% more accuracy degradation than high-end
devices in the presence of high system-induced data heterogeneity.
Figure 6–7 also shows that more skewed tier-aware optimizations

RecSys ’22, September 18–23, 2022, Seattle, WA, USA Maeng, et al.

1:2:4 1:2:8 1:4:16 1:2:4 1:2:8 1:4:16 1:2:4 1:2:8 1:4:16 1:2:4 1:2:8 1:4:16
0

10

20

30

Fa
irn

es
s

de
gr

ad
at

io
n

(M
D

A
C

, %
)

Exclude Lo Overselect Prune Quant QuantS Channel

Random
Hetero-vlow
Hetero-low
Hetero-mid
Hetero-high
Hetero-vhigh

(a) Taobao dataset w/ DLRM

1:2:4 1:2:8 1:4:16 1:2:4 1:2:8 1:4:16 1:2:4 1:2:8 1:4:16 1:2:4 1:2:8 1:4:16
0

10

20

30

40

50

Fa
irn

es
s

de
gr

ad
at

io
n

(M
D

A
C

, %
)

Exclude Lo Overselect Prune Quant QuantS Channel

Random
Hetero-vlow
Hetero-low
Hetero-mid
Hetero-high
Hetero-vhigh

(b) Taobao dataset w/ DIN

Figure 6: Different optimizations and different system-induced data heterogeneity have different fairness impacts. The figure
plots the fairness implications of 14 different optimizations on 6 different heterogeneity levels on the Taobao dataset.

generally lead to a higher fairness degradation. For each optimiza-
tion, the bar heights generally increase as we move from a less
skewed optimization (1:2:4) to a more skewed optimization (1:4:16)
in each optimization group.

Takeaway 2: Fairness impacts change depending on the
degree of system-induced data heterogeneity. Figure 6–7 shows
that more fairness is hampered when the degree of system-induced
data heterogeneity is higher (Hetero-vhigh/high). Exclude Lo, for ex-
ample, see more than 15.8× fairness degradation for DLRM/Taobao
(MDAC 1.84% vs. 29%, Figure 6a), and 41× for DIN/Taobao (MDAC
1.06% vs. 43.7%, Figure 6b). The results imply that when study-
ing tier-aware optimizations, simulating realistic system-induced
data heterogeneity is crucial; otherwise, one might downplay the
fairness implication of an optimization by up to 41×.

Takeaway 3: Different optimizations have different fair-
ness impacts. Figure 6–7 also shows that some optimizations are
fairer than the others in the presence of system-induced data het-
erogeneity. Take a look at Figure 6a, for example. By only look-
ing at random mapping (Random), it may seem like Channel 1:2:4
brings similar fairness concerns with QuantS 1:2:8 (MDAC 0.045%
vs. 0.044%). However, in the presence of system-induced data hetero-
geneity, QuantS 1:2:8 is much more fair than Channel 1:2:4 (MDAC
0.78% versus 24.62% for Hetero-vhigh, 1.41% versus 8.13% for Hetero-
high, 0.73% versus 5.63% for Hetero-mid). This result again warns
that only looking at random or low system-induced data hetero-
geneity cases might send a misguided message when assessing the
fairness of optimizations. Among the methods we studied, Exclude
Lo had the most unfair impact, while Quant/QuantS was the fairest.

Takeaway 4: Fairness impacts dependon the dataset/model
architecture. Comparing Figure 6 and Figure 7, we can see that
fairness also depends significantly on the characteristics of the
dataset itself. The fairness impact of the optimizations is an order

of magnitude larger for Taobao, compared to MovieLens (average
MDAC 6.67% vs. 0.64% for DLRM + Hetero-vhigh, 6.45% vs. 0.55%
for DLRM + Hetero-high). One hypothesis is that the rating of a
movie is universal and easier to predict (i.e., a good movie is con-
sidered good by everybody) compared to Ads-clicks and, therefore,
can be learned better even under a high degree of system-induced
data heterogeneity. Similarly, comparing Figure 6 and Figure 7 re-
veals that DIN experiences slightly higher fairness degradation
compared to DLRM (e.g., average MDAC 6.67% vs. 8.96% for DLRM
+ Hetero-vhigh). We can conclude that the fairness impact of differ-
ent tier-aware optimizations heavily depends on both datasets and
model architectures.

Takeaway 5:Quantizationwith separate sign encoding im-
proves fairness.ComparingQuantwithQuantS shows that QuantS
impacts fairness much less. When comparing across all the con-
figurations for high system-induced data heterogeneity scenarios
(Hetero-vhigh/high/mid), QuantS 1:2:4 improves the fairness by 1.4
– 1.7× compared to Quant 1:2:4, QuantS 1:2:8 by 2.8–4× compared
to Quant 1:2:8, and QuantS 1:4:16 by 4.9–5.9× compared to Quant
1:4:16. The reason is that while optimizations like pruning only
lose gradient information within the tier if applied to a certain tier,
quantization actually introduces noise in the gradient that can affect
the model quality of other tiers. Particularly for embedding tables,
gradients for the table entries that were not accessed by a certain
client must be close to zero for that client. However, quantization
may make these gradients non-zero as it will round zero into a
nearby quantized value, introducing noise to un-accessed embed-
ding entries. Because quantization with a separate sign encoding
can better encode zero, it shows significantly better fairness results.
The finding demonstrates a scenario where researchers can eval-
uate the fairness implications of their optimization proposals and
modify their optimizations using RF2.

Towards Fair Federated Recommendation Learning RecSys ’22, September 18–23, 2022, Seattle, WA, USA

1:2:4 1:2:8 1:4:16 1:2:4 1:2:8 1:4:16 1:2:4 1:2:8 1:4:16 1:2:4 1:2:8 1:4:16
0

1

2

3

4

Fa
irn

es
s

de
gr

ad
at

io
n

(M
D

A
C

, %
)

Exclude Lo Overselect Prune Quant QuantS Channel

Random
Hetero-vlow
Hetero-low
Hetero-mid
Hetero-high
Hetero-vhigh

(a) MovieLens-20 dataset w/ DLRM

1:2:4 1:2:8 1:4:16 1:2:4 1:2:8 1:4:16 1:2:4 1:2:8 1:4:16 1:2:4 1:2:8 1:4:16
0

1

2

3

4

Fa
irn

es
s

de
gr

ad
at

io
n

(M
D

A
C

, %
)

Exclude Lo Overselect Prune Quant QuantS Channel

Random
Hetero-vlow
Hetero-low
Hetero-mid
Hetero-high
Hetero-vhigh

(b) MovieLens-20 dataset w/ DIN

Figure 7: Different optimizations and different system-induced data heterogeneity have different fairness impacts. The figure
plots the fairness implications of 14 different optimizations on 6 different heterogeneity levels on the MovieLens dataset.

6.2 Zooming into Each Optimization’s Impact
on Each Tier

Figure 8 illustrates the AUC change for each tier separately for one
representative configuration — training DLRM with the Taobao
dataset under Hetero-high. The results for the other setups showed
similar trends and were omitted for space reasons. Zooming into
the effect on each tier separately highlights additional observations.

Takeaway 6: Quantization benefits low-end devices, while
all other optimizations punish low-end devices. As expected,
most of the tier-aware optimization strategies degrade the model
accuracy of the low-end devices disproportionately, because opti-
mizations are more aggressively applied to resource-constrained,
low-end devices. However, quantization degrades the model accu-
racy of mid/high-end devices more. The reason for the unexpected
suffering of mid/high-end devices is again because quantized gradi-
ents of the low-end devices pollute the model updates of mid/high-
end devices, especially from the embedding tables.

Takeaway 7: The best-accuracy optimization is not always
the best-fairness optimization. When comparing the overall
AUC degradation (the total bar group in Figure 8) with the fair-
ness impact of each optimization (Figure 6), we can see that the
optimizations that lead to minimal overall AUC degradation do not
always coincide with optimizations that are the fairest. For example,
Exclude Lo, which is one of the most unfair optimizations, shows
reasonable AUC degradation (-1.26%) that is better than Quant 1:2:8
(-2.64%) and Quant 1:4:16 (-5.79%). However, Quant 1:2:8 and Quant
1:4:16 are much fairer (MDAC 4.59% and 9.3%, Figure 6a) than Ex-
clude Lo (MDAC 22.4%, Figure 6a). This result indicates that only
evaluating the overall accuracy after applying an optimization, as in
the prior work [16, 28], may present an incomplete picture. Both the

model accuracy and per-tier fairness (MDAC) must be considered
to understand the overall design and optimization space better.

Overall, the key insights shared in this paper demonstrate that
RF2 can improve the fairness of real-world FL recommender systems
by allowing optimizations to be tested under amore realistic system-
induced data heterogeneity. Using RF2, FL system designers can
correctly understand the potential fairness implications of each tier-
aware FL optimization and correctly choose or properly redesign
optimizations that meet their accuracy/fairness goals.

7 ADDITIONAL RELATEDWORK
Fairness in ML. Remotely related, many studies showed that

applying optimizations on a trained model can disproportionately
harm minorities in the dataset [26, 27]. A recent public study also
showed that using smartphone data to train MLmodels can produce
a model unfair towards groups without smartphones [3]. Our work
shows how applying tier-aware optimizations during FL can impact
groups with low-tier devices, studying distinguished aspects from
these studies. Whether prior debiasing solutions [48, 60, 70] can be
applied to our setup is an interesting future work.
FL simulation frameworks. Several simulation frameworks exist
for FL [5, 9, 18, 41, 49, 56, 57, 74, 80]. Unlike RF2, none of the prior
simulators that we are aware of support simulating system-induced
data heterogeneity, even the frameworks that focus on realistic
system-heterogeneity simulation [41, 74]. These other simulators
can adopt the core idea of RF2’s system-induced data heterogeneity
simulation and implement it in their framework.
Other FL optimizations for system heterogeneity. In addition
to the tier-aware optimizations we discuss in Section 2.2.3, other
work proposed complementary solutions to tackle the system het-
erogeneity problem in FL. AutoFL [38] andOORT [42] useML-based

RecSys ’22, September 18–23, 2022, Seattle, WA, USA Maeng, et al.

low mid high total

−15

−10

−5

0

5

10

A
U

C
 c

ha
ng

e
(%

)
Exclude Lo
Overselect

Prune 1:2:4
Prune 1:2:8
Prune 1:4:16

Quant 1:2:4
Quant 1:2:8
Quant 1:4:16

QuantS 1:2:4
QuantS 1:2:8
QuantS 1:4:16

Channel 1:2:4
Channel 1:2:8
Channel 1:4:16

Figure 8: Different tiers are impacted differently for each optimization. The figure shows the case of training the Taobao
dataset with DLRM with Hetero-high (alpha = 0.05) in more detail, plotting the AUC change for each tier separately.

client selection taking into account clients’ system heterogeneity.
FedBuff [52] and Papaya [32] implement asynchronous FL to miti-
gate the stragglers’ effect. FedBuff still down-weighs slower clients’
updates [52]. These systems were evaluated assuming no data-
system inter-dependence, and studying the effect of system-induced
data heterogeneity for these proposals will be an interesting future
work.
Memory-efficient recommender systems.Training recommender
systems on-device requires the models to be memory-efficient. Re-
ducing MLP layers can be done by reducing the channel dimen-
sion [10, 16, 28], which was studied in this paper. Additionally,
techniques were proposed to reduce memory usage of embedding
tables on the server-side [29, 36, 62, 76]. Recent work [63] also
proposed reconstructing embedding layers on-device during FL
to reduce the memory footprint. These techniques have not been
evaluated in the presence of system-induced data heterogeneity.

8 CONCLUSION
To enhance data privacy in recommender systems, federated learn-
ing has emerged as an effective mechanism. Despite a plethora of
prior works on FL, an important characteristic of the real-world
environment has not yet been considered. In this work, we shed
light on the under-explored aspect of the inter-dependence between
system and data heterogeneity — that has been considered individ-
ually but not in conjunction by most (if not all) prior work in the
FL space. Based on the statistical observations from the real-world
environment, we design a new statistical framework to model and
evaluate the impact of system-induced data heterogeneity for feder-
ated recommendation learning. Our evaluation demonstrates that
fairness can be severely affected under realistic system-induced
data heterogeneity, and modeling the inter-dependence is essential
to understanding the true fairness impacts.

ACKNOWLEDGMENTS
Wewould like to thank Kamalika Chaudhuri and Edward Suh for the
invaluable discussion regarding the paper’s direction.We thank Ilias

Leontiadis, Shripad Gade, Mani Malek, Fangzhou Xu, Vlad Grytsun,
and Shuaiwen Wang for their help in conducting the experiments.
We also thank Ashkan Yousefpour, Sayan Ghosh, Hongyuan Zhan,
Kaikai Wang, Dzmitry Huba, and Meisam Hejazi nia, who helped us
understand the operation of federated learning system. We thank
Pegah T. Afshar, Milan Shen, and Kim Hazelwood for supporting
the work.

REFERENCES
[1] Durmus Alp Emre Acar, Yue Zhao, Ramon Matas Navarro, Matthew Mattina,

Paul N. Whatmough, and Venkatesh Saligrama. 2021. Federated Learning Based
on Dynamic Regularization. In 9th International Conference on Learning Rep-
resentations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net.
https://openreview.net/forum?id=B7v4QMR6Z9w

[2] Bilge Acun, Matthew Murphy, Xiaodong Wang, Jade Nie, Carole-Jean Wu, and
Kim Hazelwood. 2021. Understanding Training Efficiency of Deep Learning Rec-
ommendation Models at Scale. In Proceedings of the IEEE International Symposium
on High Performance Computer Architecture.

[3] Alexis Stephens. 2014. Big Data Has Potential to Both Hurt and Help Disad-
vantaged Communities. https://nextcity.org/urbanist-news/big-data-good-bad-
help-disadvantaged-communities.

[4] Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. 2017.
QSGD: Communication-efficient SGD via gradient quantization and encoding.
Advances in Neural Information Processing Systems 30 (2017).

[5] Daniel J Beutel, Taner Topal, Akhil Mathur, Xinchi Qiu, Titouan Parcollet, Pe-
dro PB de Gusmão, and Nicholas D Lane. 2020. Flower: A friendly federated
learning research framework. arXiv preprint arXiv:2007.14390 (2020).

[6] Ilai Bistritz, Ariana Mann, and Nicholas Bambos. 2020. Distributed distillation
for on-device learning. Advances in Neural Information Processing Systems 33
(2020), 22593–22604.

[7] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex
Ingerman, Vladimir Ivanov, Chloe Kiddon, Jakub Konečnỳ, Stefano Mazzocchi,
Brendan McMahan, et al. 2019. Towards federated learning at scale: System
design. Proceedings of Machine Learning and Systems 1 (2019), 374–388.

[8] Nader Bouacida, Jiahui Hou, Hui Zang, and Xin Liu. 2020. Adaptive Federated
Dropout: Improving Communication Efficiency and Generalization for Federated
Learning. CoRR abs/2011.04050 (2020). arXiv:2011.04050 https://arxiv.org/abs/
2011.04050

[9] Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Konečnỳ,
H Brendan McMahan, Virginia Smith, and Ameet Talwalkar. 2018. Leaf: A
benchmark for federated settings. arXiv preprint arXiv:1812.01097 (2018).

[10] Sebastian Caldas, Jakub Konečny, H Brendan McMahan, and Ameet Talwalkar.
2018. Expanding the reach of federated learning by reducing client resource
requirements. arXiv preprint arXiv:1812.07210 (2018).

[11] Hongyan Chang, Virat Shejwalkar, Reza Shokri, and Amir Houmansadr. 2019.
Cronus: Robust and heterogeneous collaborative learning with black-box knowl-
edge transfer. arXiv preprint arXiv:1912.11279 (2019).

https://openreview.net/forum?id=B7v4QMR6Z9w
https://nextcity.org/urbanist-news/big-data-good-bad-help-disadvantaged-communities
https://nextcity.org/urbanist-news/big-data-good-bad-help-disadvantaged-communities
https://arxiv.org/abs/2011.04050
https://arxiv.org/abs/2011.04050
https://arxiv.org/abs/2011.04050

Towards Fair Federated Recommendation Learning RecSys ’22, September 18–23, 2022, Seattle, WA, USA

[12] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,
Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al.
2016. Wide & deep learning for recommender systems. In Proceedings of the 1st
workshop on deep learning for recommender systems. 7–10.

[13] Yae Jee Cho, Jianyu Wang, Tarun Chiruvolu, and Gauri Joshi. 2021. Personal-
ized Federated Learning for Heterogeneous Clients with Clustered Knowledge
Transfer. arXiv preprint arXiv:2109.08119 (2021).

[14] Michael Chui, James Manyika, Mehdi Miremadi, N Henke, R Chung, P Nel, and S
Malhotra. 2018. Notes from the AI frontier: Insights from hundreds of use cases.
McKinsey Global Institute (2018).

[15] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep neural networks
for youtube recommendations. In Proceedings of the 10th ACM conference on
recommender systems. 191–198.

[16] Enmao Diao, Jie Ding, and Vahid Tarokh. 2021. HeteroFL: Computation and
Communication Efficient Federated Learning for Heterogeneous Clients. In 9th
International Conference on Learning Representations, ICLR 2021, Virtual Event,
Austria, May 3-7, 2021. OpenReview.net. https://openreview.net/forum?id=
TNkPBBYFkXg

[17] Carlos A Gomez-Uribe and Neil Hunt. 2015. The netflix recommender system:
Algorithms, business value, and innovation. ACM Transactions on Management
Information Systems (TMIS) 6, 4 (2015), 1–19.

[18] Google. 2022. TensorFlow Federated: Machine Learning on Decentralized Data.
https://www.tensorflow.org/federated.

[19] Grouplens. 2016. MovieLens 20M Dataset. https://grouplens.org/datasets/
movielens/20m/

[20] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. 2017.
DeepFM: a factorization-machine based neural network for CTR prediction. arXiv
preprint arXiv:1703.04247 (2017).

[21] Udit Gupta, Carole-Jean Wu, Xiaodong Wang, Maxim Naumov, Brandon Reagen,
David Brooks, Bradford Cottel, Kim Hazelwood, Mark Hempstead, Bill Jia, et al.
2020. The architectural implications of facebook’s DNN-based personalized
recommendation. In 2020 IEEE International Symposium on High Performance
Computer Architecture (HPCA). IEEE, 488–501.

[22] Ian Hamilton. 2021. Oculus Quest Keyboard Option Sends ‘Aggregate Modeling
Data’ To Facebook. https://uploadvr.com/facebook-quest-keyboard-data/

[23] Andrew Hard, Kanishka Rao, Rajiv Mathews, Swaroop Ramaswamy, Françoise
Beaufays, Sean Augenstein, Hubert Eichner, Chloé Kiddon, and Daniel Ram-
age. 2018. Federated learning for mobile keyboard prediction. arXiv preprint
arXiv:1811.03604 (2018).

[24] Chaoyang He, Murali Annavaram, and Salman Avestimehr. 2020. Group knowl-
edge transfer: Federated learning of large cnns at the edge. Advances in Neural
Information Processing Systems 33 (2020), 14068–14080.

[25] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural collaborative filtering. In Proceedings of the 26th international
conference on world wide web. 173–182.

[26] Sara Hooker, Aaron Courville, Gregory Clark, Yann Dauphin, and Andrea Frome.
2019. What do compressed deep neural networks forget? arXiv preprint
arXiv:1911.05248 (2019).

[27] Sara Hooker, Nyalleng Moorosi, Gregory Clark, Samy Bengio, and Emily Denton.
2020. Characterising bias in compressed models. arXiv preprint arXiv:2010.03058
(2020).

[28] Samuel Horvath, Stefanos Laskaridis, Mario Almeida, Ilias Leontiadis, Stylianos
Venieris, and Nicholas Lane. 2021. Fjord: Fair and accurate federated learning un-
der heterogeneous targets with ordered dropout. Advances in Neural Information
Processing Systems 34 (2021).

[29] Oleksii Hrinchuk, Valentin Khrulkov, Leyla Mirvakhabova, Elena Orlova, and
Ivan Oseledets. 2020. Tensorized embedding layers. In Findings of the Association
for Computational Linguistics: EMNLP 2020. 4847–4860.

[30] Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. 2019. Measuring the effects
of non-identical data distribution for federated visual classification. arXiv preprint
arXiv:1909.06335 (2019).

[31] Jin Huang and Charles X Ling. 2005. Using AUC and accuracy in evaluating
learning algorithms. IEEE Transactions on knowledge and Data Engineering 17, 3
(2005), 299–310.

[32] Dzmitry Huba, John Nguyen, Kshitiz Malik, Ruiyu Zhu, Mike Rabbat, Ashkan
Yousefpour, Carole-Jean Wu, Hongyuan Zhan, Pavel Ustinov, Harish Srinivas,
et al. 2022. Papaya: Practical, private, and scalable federated learning. Proceedings
of Machine Learning and Systems 4 (2022).

[33] Kurt Jacobson, Vidhya Murali, Edward Newett, Brian Whitman, and Romain Yon.
2016. Music personalization at Spotify. In Proceedings of the 10th ACM Conference
on Recommender Systems. 373–373.

[34] Eunjeong Jeong, Seungeun Oh, Hyesung Kim, Jihong Park, Mehdi Bennis, and
Seong-Lyun Kim. 2018. Communication-efficient on-device machine learning:
Federated distillation and augmentation under non-iid private data. arXiv preprint
arXiv:1811.11479 (2018).

[35] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Ben-
nis, Arjun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode,
Rachel Cummings, et al. 2021. Advances and open problems in federated learning.

Foundations and Trends® in Machine Learning 14, 1–2 (2021), 1–210.
[36] Wang-Cheng Kang, Derek Zhiyuan Cheng, Tiansheng Yao, Xinyang Yi, Ting

Chen, Lichan Hong, and Ed H Chi. 2020. Learning to embed categorical features
without embedding tables for recommendation. arXiv preprint arXiv:2010.10784
(2020).

[37] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebas-
tian Stich, and Ananda Theertha Suresh. 2020. Scaffold: Stochastic controlled
averaging for federated learning. In International Conference on Machine Learning.
PMLR, 5132–5143.

[38] Young Geun Kim and Carole-Jean Wu. 2021. Autofl: Enabling heterogeneity-
aware energy efficient federated learning. In MICRO-54: 54th Annual IEEE/ACM
International Symposium on Microarchitecture. 183–198.

[39] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik,
Ananda Theertha Suresh, and Dave Bacon. 2016. Federated learning: Strategies
for improving communication efficiency. arXiv preprint arXiv:1610.05492 (2016).

[40] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization tech-
niques for recommender systems. Computer 42, 8 (2009), 30–37.

[41] Fan Lai, Yinwei Dai, Xiangfeng Zhu, Harsha VMadhyastha, andMosharaf Chowd-
hury. 2021. FedScale: Benchmarking model and system performance of federated
learning. In Proceedings of the First Workshop on Systems Challenges in Reliable
and Secure Federated Learning. 1–3.

[42] Fan Lai, Xiangfeng Zhu, Harsha V Madhyastha, and Mosharaf Chowdhury.
2021. Oort: Efficient federated learning via guided participant selection. In
15th {USENIX} Symposium on Operating Systems Design and Implementation
({OSDI} 21). 19–35.

[43] Daliang Li and Junpu Wang. 2019. Fedmd: Heterogenous federated learning via
model distillation. arXiv preprint arXiv:1910.03581 (2019).

[44] Liang Li, Dian Shi, Ronghui Hou, Hui Li, Miao Pan, and Zhu Han. 2021. To talk
or to work: Flexible communication compression for energy efficient federated
learning over heterogeneous mobile edge devices. In IEEE INFOCOM 2021-IEEE
Conference on Computer Communications. IEEE, 1–10.

[45] Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr Ahmed, Vanja
Josifovski, James Long, Eugene J Shekita, and Bor-Yiing Su. 2014. Scaling dis-
tributed machine learning with the parameter server. In 11th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 14). 583–598.

[46] Tao Lin, Lingjing Kong, Sebastian U Stich, and Martin Jaggi. 2020. Ensemble
distillation for robust model fusion in federated learning. Advances in Neural
Information Processing Systems 33 (2020), 2351–2363.

[47] Yujun Lin, Song Han, Huizi Mao, Yu Wang, and William J Dally. 2017. Deep
gradient compression: Reducing the communication bandwidth for distributed
training. arXiv preprint arXiv:1712.01887 (2017).

[48] Dugang Liu, Pengxiang Cheng, Hong Zhu, Zhenhua Dong, Xiuqiang He, Weike
Pan, and Zhong Ming. 2021. Mitigating Confounding Bias in Recommendation
via Information Bottleneck. In Fifteenth ACMConference on Recommender Systems.
351–360.

[49] Heiko Ludwig, Nathalie Baracaldo, Gegi Thomas, Yi Zhou, Ali Anwar, Shashank
Rajamoni, Yuya Ong, Jayaram Radhakrishnan, Ashish Verma, Mathieu Sinn, et al.
2020. Ibm federated learning: an enterprise framework white paper v0. 1. arXiv
preprint arXiv:2007.10987 (2020).

[50] Ivan Medvedev, Haotian Wu, and Taylor Gordon. 2019. Powered by AI: Insta-
gram’s Explore recommender system. https://ai.facebook.com/blog/powered-by-
ai-instagrams-explore-recommender-system/.

[51] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu Huang,
Narayanan Sundaraman, Jongsoo Park, Xiaodong Wang, Udit Gupta, Carole-
Jean Wu, Alisson G Azzolini, et al. 2019. Deep learning recommendation model
for personalization and recommendation systems. arXiv preprint arXiv:1906.00091
(2019).

[52] John Nguyen, Kshitiz Malik, Hongyuan Zhan, Ashkan Yousefpour, Michael Rab-
bat, Mani Malek, and Dzmitry Huba. 2021. Federated learning with buffered
asynchronous aggregation. arXiv preprint arXiv:2106.06639 (2021).

[53] Chaoyue Niu, FanWu, Shaojie Tang, Lifeng Hua, Rongfei Jia, Chengfei Lv, Zhihua
Wu, and Guihai Chen. 2020. Billion-scale federated learning on mobile clients: A
submodel design with tunable privacy. In Proceedings of the 26th Annual Interna-
tional Conference on Mobile Computing and Networking. 1–14.

[54] Matthias Paulik, Matt Seigel, Henry Mason, Dominic Telaar, Joris Kluivers, Rogier
van Dalen, Chi Wai Lau, Luke Carlson, Filip Granqvist, Chris Vandevelde, et al.
2021. Federated evaluation and tuning for on-device personalization: System
design & applications. arXiv preprint arXiv:2102.08503 (2021).

[55] Vasileios Perifanis and Pavlos S Efraimidis. 2022. Federated Neural Collaborative
Filtering. Knowledge-Based Systems 242 (2022), 108441.

[56] Facebook Research. 2022. Federated Learning Simulator (FLSim). https://github.
com/facebookresearch/FLSim.

[57] Jae Hun Ro, Ananda Theertha Suresh, and Ke Wu. 2021. FedJAX: Federated
learning simulation with JAX. arXiv preprint arXiv:2108.02117 (2021).

[58] Pavan Sabnagapati. 2020. Ad Display/Click Data on Taobao.com. https://www.
kaggle.com/datasets/pavansanagapati/ad-displayclick-data-on-taobaocom

[59] Anit Kumar Sahu, Tian Li, Maziar Sanjabi, Manzil Zaheer, Ameet Talwalkar,
and Virginia Smith. 2018. On the convergence of federated optimization in

https://openreview.net/forum?id=TNkPBBYFkXg
https://openreview.net/forum?id=TNkPBBYFkXg
https://www.tensorflow.org/federated
https://grouplens.org/datasets/movielens/20m/
https://grouplens.org/datasets/movielens/20m/
https://uploadvr.com/facebook-quest-keyboard-data/
https://ai.facebook.com/blog/powered-by-ai-instagrams-explore-recommender-system/
https://ai.facebook.com/blog/powered-by-ai-instagrams-explore-recommender-system/
https://github.com/facebookresearch/FLSim
https://github.com/facebookresearch/FLSim
https://www.kaggle.com/datasets/pavansanagapati/ad-displayclick-data-on-taobaocom
https://www.kaggle.com/datasets/pavansanagapati/ad-displayclick-data-on-taobaocom

RecSys ’22, September 18–23, 2022, Seattle, WA, USA Maeng, et al.

heterogeneous networks. arXiv preprint arXiv:1812.06127 3 (2018), 3.
[60] Yuta Saito, Suguru Yaginuma, Yuta Nishino, Hayato Sakata, and Kazuhide Nakata.

2020. Unbiased recommender learning from missing-not-at-random implicit
feedback. In Proceedings of the 13th International Conference on Web Search and
Data Mining. 501–509.

[61] shenweichen. 2022. DeepCTR-Torch. https://github.com/shenweichen/
DeepCTR-Torch

[62] Hao-Jun Michael Shi, Dheevatsa Mudigere, Maxim Naumov, and Jiyan Yang. 2020.
Compositional embeddings using complementary partitions for memory-efficient
recommendation systems. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 165–175.

[63] Karan Singhal, Hakim Sidahmed, Zachary Garrett, Shanshan Wu, John Rush,
and Sushant Prakash. 2021. Federated reconstruction: Partially local federated
learning. Advances in Neural Information Processing Systems 34 (2021).

[64] SpeedTest. 2022. Global Median Speeds March 2022. https://www.speedtest.net/
global-index.

[65] C Underwood. 2019. Use cases of recommendation systems in business–current
applications and methods.

[66] Jianyu Wang, Zachary Charles, Zheng Xu, Gauri Joshi, H Brendan McMa-
han, Maruan Al-Shedivat, Galen Andrew, Salman Avestimehr, Katharine Daly,
Deepesh Data, et al. 2021. A field guide to federated optimization. arXiv preprint
arXiv:2107.06917 (2021).

[67] Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H Vincent Poor. 2020.
Tackling the objective inconsistency problem in heterogeneous federated opti-
mization. Advances in neural information processing systems 33 (2020), 7611–7623.

[68] Ruoxi Wang, Bin Fu, Gang Fu, and Mingliang Wang. 2017. Deep & cross network
for ad click predictions. In Proceedings of the ADKDD’17. 1–7.

[69] Ruoxi Wang, Rakesh Shivanna, Derek Cheng, Sagar Jain, Dong Lin, Lichan Hong,
and Ed Chi. 2021. DCN V2: Improved deep & cross network and practical lessons
for web-scale learning to rank systems. In Proceedings of the Web Conference 2021.
1785–1797.

[70] Tianxin Wei, Fuli Feng, Jiawei Chen, Ziwei Wu, Jinfeng Yi, and Xiangnan He.
2021. Model-agnostic counterfactual reasoning for eliminating popularity bias
in recommender system. In Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery & Data Mining. 1791–1800.

[71] Carole-JeanWu, David Brooks, Kevin Chen, Douglas Chen, Sy Choudhury, Marat
Dukhan, Kim Hazelwood, Eldad Isaac, Yangqing Jia, Bill Jia, Tommer Leyvand,

Hao Lu, Yang Lu, Lin Qiao, Brandon Reagen, Joe Spisak, Fei Sun, Andrew Tulloch,
Peter Vajda, Xiaodong Wang, Yanghan Wang, Bram Wasti, Yiming Wu, Ran
Xian, Sungjoo Yoo, and Peizhao Zhang. 2019. Machine Learning at Facebook:
Understanding Inference at the Edge. In 2019 IEEE International Symposium on
High Performance Computer Architecture (HPCA).

[72] Carole-Jean Wu, Robin Burke, Ed H. Chi, Joseph Konstan, Julian McAuley, Yves
Raimond, and Hao Zhang. 2020. Developing a Recommendation Benchmark for
MLPerf Training and Inference.

[73] X Xie, J Lian, Z Liu, X Wang, F Wu, H Wang, and Z Chen. 2018. Personalized
recommendation systems: Five hot research topics you must know. Microsoft
Research Lab-Asia (2018).

[74] Chengxu Yang, QipengWang, Mengwei Xu, Zhenpeng Chen, Kaigui Bian, Yunxin
Liu, and Xuanzhe Liu. 2021. Characterizing impacts of heterogeneity in federated
learning upon large-scale smartphone data. In Proceedings of the Web Conference
2021. 935–946.

[75] Timothy Yang, Galen Andrew, Hubert Eichner, Haicheng Sun, Wei Li, Nicholas
Kong, Daniel Ramage, and Françoise Beaufays. 2018. Applied federated learning:
Improving google keyboard query suggestions. arXiv preprint arXiv:1812.02903
(2018).

[76] Chunxing Yin, Bilge Acun, Carole-Jean Wu, and Xing Liu. 2021. Tt-rec: Tensor
train compression for deep learning recommendation models. Proceedings of
Machine Learning and Systems 3 (2021), 448–462.

[77] Sixing Yu, Phuong Nguyen, Ali Anwar, and Ali Jannesari. 2021. Adaptive dynamic
pruning for non-iid federated learning. arXiv preprint arXiv:2106.06921 (2021).

[78] Wei Zhang, Wei Wei, Lingjie Xu, Lingling Jin, and Cheng Li. 2019. AI Ma-
trix: A Deep Learning Benchmark for Alibaba Data Centers. arXiv preprint
arXiv:1909.10562 (2019).

[79] Guorui Zhou, Xiaoqiang Zhu, Chenru Song, Ying Fan, Han Zhu, XiaoMa, Yanghui
Yan, Junqi Jin, Han Li, and Kun Gai. 2018. Deep interest network for click-through
rate prediction. In Proceedings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining. 1059–1068.

[80] Alexander Ziller, Andrew Trask, Antonio Lopardo, Benjamin Szymkow, Bobby
Wagner, Emma Bluemke, Jean-Mickael Nounahon, Jonathan Passerat-Palmbach,
Kritika Prakash, Nick Rose, et al. 2021. Pysyft: A library for easy federated
learning. In Federated Learning Systems. Springer, 111–139.

https://github.com/shenweichen/DeepCTR-Torch
https://github.com/shenweichen/DeepCTR-Torch
https://www.speedtest.net/global-index
https://www.speedtest.net/global-index

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Deep Learning Recommender Systems
	2.2 Federated Learning

	3 Real-world Observations: Data and System Heterogeneity are Intertwined
	3.1 Inter-dependence Between Data and System Heterogeneity
	3.2 Does the Real World Experience System-induced Data Heterogeneity?

	4 Studying System-induced Data Heterogeneity for Recommender Systems
	4.1 Simulating FL for Recommender Systems
	4.2 Simulating System-aware Data Heterogeneity
	4.3 Supporting Popular Tier-Aware Optimizations in FL
	4.4 Quantifying Fairness

	5 Evaluation Methodology
	5.1 Deep Learning Recommendation Models and Datasets
	5.2 Tier-Aware Optimizations
	5.3 System-Induced Data Heterogeneity

	6 Evaluation Results
	6.1 Fairness Impacts of Different Optimizations Under System-Induced Data Heterogeneity
	6.2 Zooming into Each Optimization's Impact on Each Tier

	7 Additional Related Work
	8 Conclusion
	Acknowledgments
	References

