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Abstract

Humans naturally perceive surrounding scenes by uni-
Sfying sound and sight from a first-person view. Likewise,
machines are advanced to approach human intelligence by
learning with multisensory inputs from an egocentric per-
spective. In this paper, we explore the challenging ego-
centric audio-visual object localization task and observe
that 1) egomotion commonly exists in first-person record-
ings, even within a short duration; 2) The out-of-view sound
components can be created when wearers shift their atten-
tion. To address the first problem, we propose a geometry-
aware temporal aggregation module that handles the ego-
motion explicitly. The effect of egomotion is mitigated by
estimating the temporal geometry transformation and ex-
ploiting it to update visual representations. Moreover, we
propose a cascaded feature enhancement module to over-
come the second issue. It improves cross-modal local-
ization robustness by disentangling visually-indicated au-
dio representation. During training, we take advantage
of the naturally occurring audio-visual temporal synchro-
nization as the “free” self-supervision to avoid costly la-
beling. We also annotate and create the Epic Sounding
Object dataset for evaluation purposes. Extensive experi-
ments show that our method achieves state-of-the-art local-
ization performance in egocentric videos and can be gener-
alized to diverse audio-visual scenes. Code is available at
https://github.com/WikiChao/Ego—-AV—-Loc.

1. Introduction

The emergence of wearable devices has drawn the at-
tention of the research community to egocentric videos, the
significance of which can be seen from egocentric research
in a variety of applications such as robotics [32,34,48], aug-
mented/virtual reality [31,61,75], and healthcare [53,66]. In
recent years, the computer vision community has made sub-
stantial efforts to build benchmarks [12, 13, 15,40, 57, 69],
establish new tasks [17,36,37,39,60], and develop frame-
works [33,41,54,82] for egocentric video understanding.

While existing works achieve promising results in the
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Figure 1. Sounding object localization in egocentric videos.
Due to the wearer’s egomotion, the viewpoint changes continu-
ously across time. Consequently, audio-visual relations are dy-
namically changing in egocentric videos. Our approach tackles
challenges in the egocentric audio-visual sounding object task and
learns audio-visual associations from first-person videos.

egocentric domain, it still remains an interesting but chal-
lenging topic to perform fine-grained egocentric video un-
derstanding. For instance, understanding which object is
emitting sound in a first-person recording is difficult for ma-
chines. As shown in Fig. 1, the wearer moves his/her head
to put down the bottle. The frying pot which emits sound
subsequently suffers deformation and occlusion due to the
wearer’s egomotion. Human speech outside the wearer’s
view also affects the machine’s understanding of the current
scene. This example reveals two significant challenges for
designing powerful and robust egocentric video understand-
ing systems: First, people with wearable devices usually
record videos in naturalistic surroundings, where a variety
of illumination conditions, object appearance, and motion
patterns are shown. The dynamic visual variations intro-
duce difficulties in accurate visual perception. Second, ego-
centric scenes are often perceived within a limited field of
view (FoV). The common body and head movements cause
frequent view changes (see Fig. 1), which brings object de-
formation and creates dynamic out-of-view content.
Although a visual-only system may struggle to fully de-
code the surrounding information and perceive scenes in
egocentric videos, audio provides stable and persistent sig-
nals associated with the depicted events. Instead of purely
visual perception, numerous psychological and cognitive



studies [6,29,67,73] show that integration of auditory and
visual signals is significant in human perception. Audio, as
an essential but less focused modality, often provides syn-
chronized and complementary information with the video
stream. In contrast to the variability of first-person visual
footage, sound describes the underlying scenes consistently.
These natural characteristics make audio another indispens-
able ingredient for egocentric video understanding.

To effectively leverage audio and visual information in
egocentric videos, a pivotal problem is to analyze the fine-
grained audio-visual association, specifically identifying
which objects are emitting sounds in the scene. In this pa-
per, we explore a novel egocentric audio-visual object lo-
calization task, which aims to associate audio with dynamic
visual scenes and localize sounding objects in egocentric
videos. Given the dynamic nature of egocentric videos, it
is exceedingly challenging to link visual content from var-
ious viewpoints with audio captured from the entire space.
Hence, we develop a new framework to model the distinct
characteristics of egocentric videos by integrating audio.
In the framework, we propose a geometry-aware tempo-
ral module to handle egomotion explicitly. Our approach
mitigates the impact of egomotion by performing geometric
transformations in the embedding space and aligning visual
features from different frames. We further use the aligned
features to leverage temporal contexts across frames to learn
discriminative cues for localization. Additionally, we intro-
duce a cascaded feature enhancement module to handle out-
of-view sounds. The module helps mitigate audio noises
and improves cross-modal localization robustness.

Due to the dynamic nature of egocentric videos, it is hard
and costly to label sounding objects for supervised train-
ing. To avoid tedious labeling, we formulate this task in a
self-supervised manner, and our framework is trained with
audio-visual temporal synchronization. Since there are no
publicly available egocentric sounding object localization
datasets, we annotate an Epic Sounding dataset to facilitate
research in this field. Experimental results demonstrate that
modeling egomotion and mitigating out-of-view sound can
improve egocentric audio-visual localization performance.

In summary, our contributions are: (1) the first system-
atical study on egocentric audio-visual sounding object lo-
calization; (2) an effective geometry-aware temporal aggre-
gation approach to deal with unique egomotion; (3) a novel
cascaded feature enhancement module to progressively in-
ject localization cues; and (4) an Epic Sounding Object
dataset with sounding object annotations to benchmark the
localization performance in egocentric videos.

2. Related Work

Audio-visual learning in third-person view videos. Tak-
ing the natural audio-visual synchronization in videos, a
large number of studies in the past few years have proposed

to jointly learn from both auditory and visual modalities.
We have seen a spectrum of new audio-visual problems and
applications, including visually guided sound source sepa-

ration [16,20-23,63,76,87,88], audio-visual representation
learning [2, 3, 5,26, 35,58, 59], audio-visual event localiza-
tion [44,78,79,84], audio-visual video parsing [77,83], and

sounding object visual localization [4, | 1,27,28,38,51,52,

,65,71]. Most previous approaches learn audio-visual
correlations from third-person videos, while the distinct
challenges of audio-visual learning in egocentric videos are
underexplored. Different from existing works, we propose
an audio-visual learning framework to explicitly solve ego-
motion and out-of-view audio issues in egocentric videos.
Egocentric video understanding. In the last decade,
video scene understanding techniques thrived because of
the well-defined third-person video datasets [7, 9, 49, 72].
Nevertheless, most of the algorithms are developed to
tackle videos curated by human photographers. The nat-
ural characteristics of egocentric video data, e.g., view
changes, large motions, and visual deformation, are not
well-explored. To bridge this gap, multiple egocentric
datasets [12, 13,24, 36,69, 74] have been collected. These
datasets have significantly advanced investigations on ego-
centric video understanding problems, including activity
recognition [33,41,89], human(hand)-object interaction [8,

, 55, 68], anticipation [1, 19,45, 70], and human body
pose inferring [30, 56]. However, only a handful of audio-
visual works [10, 33, 50, 85] is presented for egocentric
video understanding. Among those, Kazakos et al. [33]
proposed an audio-visual fusion network for action recog-
nition, while Mittal er al. [50] used audible interactions as
cues to learn state-aware visual representations in egocen-
tric videos. There are limited studies in explicit egomotion
mitigation and fine-grained audio-visual association learn-
ing in egocentric videos. Unlike past works, we tackle chal-
lenges in egocentric audio-visual data and propose a robust
sounding object localization framework. To enable the re-
search, we propose Epic Sounding Object dataset based on
Epic-Kitchens [12, 13].

3. Method

Our goal is to localize sounding objects in egocentric
videos visually. We start by formulating our egocentric
audio-visual object localization task in Sec. 3.1. Our pro-
posed method includes a feature extraction process (de-
scribed in Sec. 3.2), a two-stage cascaded feature enhance-
ment pipeline (in Sec. 3.3), and a geometry-aware tempo-
ral aggregation module (explained in Sec. 3.4). Finally, we
summarize the overall training objective in Sec. 3.5.

3.1. Problem Formulation and Method Overview

Given an egocentric video clip V = {I;}7_, in T frames
and its corresponding sound stream s, sounding object vi-
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Figure 2. An overview of our egocentric audio-visual object localization framework. In the beginning, our model extracts deep features
from the video and audio streams. Then, the audio and visual features are fed into the cascaded feature enhancement module to inject
localization cues for both branches. Such a module is additionally trained with “mix-and-separation” strategy. Next, our geometric-aware
temporal modeling block leverages the relative geometric information between visual frames and performs temporal context aggregation

to get the final visual features for localization.

sual localization aims at predicting location maps O =
{O,;}L_| that represent sounding objects in the egocentric
video. Specifically, O;(z,y) € {0,1} and positive visual
regions indicate locations of sounding objects. In real-world
scenarios, the captured sound can be a mixture of multiple
sound sources s = ZnNzl Sn, where s, is the n-th sound
source and it could be out of view. For the visual input, the
video frames may be captured from different viewpoints.
To design a robust and effective egocentric audio-visual
sounding object localization system, we should consider the
above issues in egocentric audio and visual data and answer
two key questions: (Q1) how to associate visual content
with audio representations while out-of-view sounds may
exist; (Q2) how to persistently associate audio features with
visual content that are captured under different viewpoints.

Due to the dynamic nature of egocentric videos, it is
difficult and costly to annotate sounding objects for super-
vised training. To bypass the tedious labeling, we solve the
egocentric audio-visual object localization task in a self-
supervised manner. The proposed framework is shown in
Fig. 2. Our model first extracts representations from the au-
dio s and video clip V. In order to handle Q1, we develop
a cascaded feature enhancement module to disentangle vi-
sually indicated sound sources and attend to visual regions
that correspond to the visible sound sources. To enable the
disentanglement, we use on-screen sound separation task
as the proxy and adopt a multi-task learning objective to
train our model where the localization task is solved along
with a sound-separation task. To deal with the egomotion in
egocentric videos (Q2), we design a geometry-aware tem-
poral modeling approach to mitigate the feature distortion

brought by viewpoint changes and aggregate the visual fea-
tures temporally. We take the audio-visual temporal syn-
chronization as the supervision signal and estimate the lo-
calization map O;.

3.2. Feature Extraction

Visual representation. We use a visual encoder network
E, to extract visual feature maps from each input frame I;.
In our implementation, a pre-trained Dilated ResNet [86]
model is adopted by removing the final fully-connected
layer. We can subsequently obtain a group of feature maps
v; = E,(I;), where v; € RO > Here c is the number
of channels, and h, x w, denotes the spatial size.

Audio representation. To extract audio representations
from the input raw waveform, we first transform audio
stream s into a magnitude spectrogram X with the short-
time Fourier transform (STFT). Then, we extract audio fea-
tures a = F,(X),a € Re*hax%a by means of a CNN en-
coder E, in the Time-Frequency (T-F) space.

3.3. Cascaded Feature Enhancement

As discussed in Sec. 3.1, a sound source s,, in the mix-
ture s could be out of view due to constant view changes
in egocentric videos and the limited FoV. This poses chal-
lenges in visually localizing sound sources and performance
can degrade when the audio-visual associations are not pre-
cise. To address this, we update the features in a cascaded
fashion. We first force the network to learn disentangled au-
dio representations from the mixture using visual guidance.
Then we utilize the disentangled audio representations to
inject the visual features with more localization cues.



Disentanglement through sound source separation.
Sound source localization objective can implicitly guide the
system to learn disentangled audio features as the network
will try to precisely localize the sound, and in turn, the on-
screen sound will get disentangled from the rest. However,
we formulate our problem in an unsupervised setting where
labels for such localization objective are not available.

Audio-visual sound separation task [23, 87] uses vi-
sual information as guidance to learn to separate individ-
ual sounds from a mixture. Given the visual guidance, it is
expected that the learned representations primarily encode
information from visually indicated sound sources. Hence
we argue for a multi-task learning approach to solve our
primary task. Along with the audio-visual sounding object
localization task, the network also learns to disentangle visi-
ble audio representations from the mixture through a source
separation task.

e Training. We adopt the commonly used “mix-and-
separate” strategy [23,87] for audio-visual sound sepa-
ration. Given the current audio s!), we randomly sam-
ple another audio stream s(2) from a different video
and mix them together to generate input audio mixture
5 = s 4 5(2). We then obtain magnitude spectro-
grams X, XM, X® for 5, s() and s respectively.
The audio features is then modified as a = E,(X).

¢ Inference. During inference, we take the original au-
dio stream as input: s = s(") and X = X to extract
visually correlated audio representations. Note that the
audio features is a = E,(X).

We define the audio disentanglement network as a net-
work f(-), which produces the disentangled audio features
G € Rexhaxwa 1 this network, we want to associate the
visual content with the audio representations to perform dis-
entanglement in the embedding space. Concretely, we first
apply spatial average pooling on each v; and temporal max
pooling along the time axis to obtain a visual feature vec-
tor g, € R® Then we replicate the visual feature vector
ha X w, times and tile them to match the size of a. We con-
catenate the visual and audio feature maps along the channel
dimension and feed them into the network. Therefore, the
audio feature disentanglement can be formulated as:

G = f( CONCAT[a, TILE(gy)]). (D

In practice, we implement the disentanglement network f
using two 1x1 convolution layers. The audio feature a will
be used for both separation mask and sounding object local-
ization map generation.

To separate visible sounds, we add an audio decoder D,
following the disentanglement network to output a binary
mask Myr.q = Dgy(a) (at the bottom of Fig. 2). U-Net
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Figure 3. Overview of our proposed geometry-aware modeling
approach. The visual features ¥; are warped to viewpoint ¢ by
homography transformation.

architectures [23] are used in the audio encoder F, and de-
coder D,. We implement the F, and D, in five convolu-
tion and up-convolution layers, respectively. Details of the
network architectures are provided in the Appendix. The
ground truth separation mask Mg, can be calculated by de-
termining whether the original input sound is dominant at
locations (u, v) in the T-F space:

My (u,v) = [XD (u,v) > X (u,v)). (2)

To train the sound separator, we minimize the ¢ distance
between the predicted and ground-truth masks as the disen-
tanglement learning objective:

‘Cdis = ||Mpred - Mgt”%' 3)

Soft localization. Similar to the out-of-view sounds, the vi-
sual frames may contain sound-irrelevant regions. In order
to learn more precise audio-visual associations, we propose
to highlight the spatial regions that are more likely to be
correlated with the on-screen sounds by computing audio-
visual attention. The attention map will indicate the corre-
lation between audio and visual representations at different
spatial locations. Given the output G from disentanglement
network f(-), we apply max pooling on its time and fre-
quency dimensions, obtaining an audio feature vector g;.
Then at each spatial position (x,y) of visual feature v;, we
compute the cosine similarity between audio and visual fea-
ture vectors:

Si : Sl(ﬂf,y) = COSINESIM(vi(‘T,y)vgd)' (4)

SOFTMAX is then used on S; to generate a soft mask that
represents the audio-visual correspondence. Hence, each v,
can be attended with the calculated weights:

©; = SOFTMAX(S;) - v;. (5)
3.4. Geometry-Aware Temporal Modeling

Given the temporal nature of sounds and the persistence
of audio-visual associations, we incorporate temporal in-
formation from neighboring frames to learn sounding ob-
ject features. However, temporal modeling is a challenging



problem for egocentric videos due to widespread egomotion
and object-appearance deformations.

Although visual objects are dynamically changing, the

surrounding physical environment is persistent. Hence,
temporal variations in egocentric videos reveal rich 3D ge-
ometric cues that can recover the surrounding scene from
changing viewpoints. Prior works have shown that given a
sequence of frames, one can reconstruct the underlying 3D
scene from the 2D observations [64,81]. In our work, rather
than reconstructing the 3D structures, we estimate the rel-
ative geometric transformation between frames to alleviate
egomotion. Specifically, we apply the transformation at the
feature level to perform geometry-aware temporal aggrega-
tion. Given {I;}_, and their features {%;}7_,, we take 9; as
a query at a time and use the other features from neighbor-
ing frames as support features to aggregate temporal con-
texts. For clarity, we decompose the geometry-aware tem-
poral aggregation into two parts: geometry modeling and
temporal aggregation.
Geometry modeling. This step aims to compute the ge-
ometric transformation that represents the egomotion be-
tween frames (see Fig. 3). We found that homography es-
timation, which can align images taken from different per-
spectives, can serve as a way to measure geometric trans-
formation. We adopt SIFT [46] + RANSAC [18] to solve
homography. To be specific, a homography is a 3 x 3 ma-
trix that consists of 8 degree of freedom (DOF) for scale,
translation, rotation, and perspective respectively. Given the
query frame I; and a supporting frame I;, we use h(-) to de-
note the computation process:

Hji = h(I;, 1;) j—i, (6)

where H ;; represents the homography transformation from
frame I; to I;. With the computed homography transforma-
tion, we can then apply it at the feature level to transform
visual features 9; to 9,;. The 9;; is egomotion-free under
the viewpoint of ;. Since the resolution of feature maps is
scaled down compared to the raw frame size, the homogra-
phy matrix H should also be downsampled using the same
scaling factor. The feature transformation can be written as:

0ji = Hji @ vy, (N
where ® represents the warping operation.
Temporal aggregation. For the query feature v;, we end up
with set of aligned features {ﬁji}le corresponding to each
frame viewpoint. To aggregate the temporal contexts, we
propose to compute the correlation between features from
different frames at the same locations (see Fig. 4). The ag-
gregation process can be formulated as:

@l($>y)'a(x’y) ~
T)v(%y),
3)

zi(z,y) = vi(z, y)+SOFTMAX(
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Figure 4. Illustration on the temporal context aggregation process
for query feature ©; and neighboring frame features 0;—1 and ¥;1,
which is performed independently at each spatial location.
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where © = [01;; ...; O7y] is the concatenation of frame fea-
tures; the scaling factor d is equal to the feature dimension;
and ()T represents the transpose operation [80]. The ag-
gregation operation is applied at all spatial locations (z, y)
to generate the updated visual features z;.

3.5. Training Objective

We take audio-visual synchronization as the “free” su-
pervision and solve the task in a self-supervised manner us-
ing contrastive learning [2,4, 1 |,65].

With the audio feature vector g; and the visual features
{zi}L,, we can compute an audio-visual attention map S;
in Eq. 4 for each frame ;. The training objective should
optimize the network such that only the sounding regions
have a high response in ;. Since the ground-truth sound-
ing map is unknown, we apply differential thresholding on
S; to predict sounding objectness map O; = sigmoid((S;—
€)/7) [11], where € is the threshold, and 7 denotes the tem-
perature that controls the sharpness.

In an egocentric video clip, a visual scene is usually
temporally dynamic. Sometimes a single audio-visual pair
(I;,s) may not be audio-visually correlated. To this end, we
solve the localization task in the Multiple-Instance Learn-
ing (MIL) [47] setting to improve robustness. Concretely,
we use a soft MIL pooling function to aggregate the con-
catenated attention maps S = [St; ...; St| by assigning dif-
ferent weights to S; at different time steps:

§:

t

T
(Wt'S)[:vzvt]v (9)
=1
where W[z, y,:] = SOFTMAX(S|z,y,:]), « and y are the
indices on spatial dimensions. Subsequently, an aggregated
sounding objectness map O is calculated from S. In this
way, for each video clip V' in the batch, we can define its
positive and negative training signals as:

1 — - 1
GO8): N=p LS (0
where (-, ) is the Frobenius inner product.
We obtain negative audio-visual attention maps S,y by
associating the current visual inputs I with audio from other
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Figure 5. Illustration of the Epic Sounding Object dataset statistics. (a) Example of our video frames and sounding object annotations.
Class diversity (squeeze packaging, close trash can, put the pot, etc.) (b): The distribution of untrimmed video duration. (c¢): The number
of videos that are annotated as containing out-of-view sounds. (d): Distribution of bounding box areas in Epic Sounding Object dataset,
the majority of boxes cover less than 20% of the image area, demonstrating the difficulty of this task.

video clips. 1 denotes an all ones tensor with shape h x w.
Therefore, the localization optimization objective is:

al exp(Py,)

L oc — T 7
e = =3y 2098 Lo B T ospn)

B Y

where k is the video sample index in a training batch. The
overall objective is £ = Lj,.+AL4;s, Where we empirically
set A = 5 in our experiments.

4. The Epic Sounding Object Dataset

Existing sound source visual localization evaluation

datasets, such as SoundNet-Flickr [65], VGG-Sound
Source [11], only contain third-person recordings. To the
best of our knowledge, there is no existing dataset that is
suitable for evaluating our model. Thus, we introduce an
Epic Sounding Object Dataset for egocentric audio-visual
sounding object localization. Built upon the well-known
Epic-Kitchens [13] dataset, we collect sounding object an-
notations on its action recognition test set.
Data preparation. We select 13k test videos from the Epic-
Kitchens action recognition benchmark as our source data.
Since these videos are not originally collected for audio-
visual analysis, they vary in length, and not all of them con-
tain meaningful sounds. To verify the videos for annota-
tions, we conduct a two-step process: We first determine if
a video is silent by checking its sound-level in decibels rel-
ative to full scale. Consequently, silent videos are filtered
out to provide a meaningful data source. Second, we bin the
videos by their duration and show the statistics in Fig. 5 (b).
The majority last less than 2 seconds, and hence we choose
to trim the center 1-second clip from each video.

After pre-processing, we obtain 5,089 videos in total
for annotation. For each video, we uniformly select three
frames and annotate sounding objects in the frames. We
follow previous works [ 1,76] to use bounding boxes to an-
notate the objects that emit sounds. To obtain proposals of
potential sounding objects automatically, we follow Epic-
Kitchens [13] to use a Mask R-CNN object detector [25]

Before voting | After voting
Video Frames | Video Frames Classes
5,089 15,267 | 3,172 9,196 30

Table 1. Statistics of the Epic Sounding Object dataset.

trained on MS-COCO [43] and a hand-objects detector [68]
that is pretrained with 42K egocentric images [13,42,69].
Annotation collection. Given the pre-processed data, we
then annotate the sounding objects manually. Unlike third-
person view videos, the object-sound associations in the
egocentric domain are more complicated. There are two
main challenges: (i) Numerous egocentric videos record
wearer-environment interaction (e.g., a human places a dish
on the table). The object-sound associations could be dy-
namic, and sometimes it is hard to determine what objects
are emitting sounds; and (ii) the objects in egocentric videos
are often missing from the screen, resulting in variations in
scale (see Fig. 5 (c)). We address the above issues by tak-
ing advantage of human commonsense knowledge. We ask
three or more annotators from the Amazon Mechanic Turk
to annotate the same video (frames). Concretely, they do
this by first watching the 1-second video with three anno-
tated frames to confirm what objects make sounds in the
video. During the annotation course, they are asked to
answer two questions: (1) Does the video contain out-of-
view sounds? (2) Which bounding boxes correspond to the
sounding objects? We collect the annotations in multiple
rounds until each video has at least three or more valid an-
notations from the Amazon annotators. Finally, we conduct
an annotation verification by voting on all videos. If at least
two annotators agree on the same answer, it will be con-
sidered as a correct annotation; If not, we will simply omit
the video. The annotation statistics after voting are shown
in Tab. 1. We obtain 30 classes of sounds by counting the
noun (object) classes. The annotations are evenly split into
two sets for validation and testing. The examples and statis-
tics in Fig. 5 illustrate the diverse and complicated nature of
egocentric audio-visual scenes.



Figure 6. Qualitative comparison on Epic Sounding Object
dataset. We show diverse sounding objects in the kitchen scenes in
the first column, sounding objects are annotated in red boxes. Our
method outperforms all the compared works.

5. Experiment

Datasets. In our experiments, we use two egocentric
datasets. (1) Epic-Kitchens [13]: The dataset consists of
100 hours of egocentric recordings from 45 kitchen scenes.
Thus, diverse kitchen-relevant events and sounds are in the
dataset. We follow the same data split released in their
action recognition benchmark and select 62,413 training
videos. We then filter out the silent videos by measuring
the Decibels relative to full scale. This results in 47,214
training videos in total. For evaluation, we use our anno-
tated Epic Sounding Object dataset to report the results; (2)
Ego4D [24]: Ego4D is the most recent large-scale egocen-
tric video dataset. Besides kitchen scenes, it includes di-
verse daily life scenarios. Specifically, it consists of dif-
ferent subsets serving different benchmarks. We select the
“Bristol” subset as it contains diverse scenarios (e.g., enter-
tainment, sports, commuting, and more) to test our method.
We randomly sample and trim 50,000 1-second videos from
this subset and use 90%/10% as the train/test split. A similar
filtering strategy is applied to obtain 26,858 videos for train-
ing. We conduct experiments in Sec. 5.1.3 on this dataset to
showcase the generalization ability of our method.
Evaluation metric. We follow the prior works [ 11,28, 38]
and adopt the pixel-level measurement for evaluating lo-
calization performance. Given the ground truth sounding
object bounding boxes, we compute the Consensus Inter-
section over Union (CloU) and Area Under Curve (AUC)
between the predicted localization map and ground truth
boxes. We report CloU over a range of thresholds to ex-
pose the finer aspects of comparison.

Implementation details. To facilitate the training, we cut

CloU

@0.2 @03 @04 AUC
Attention [65] 7.12 - - 6.42
STM [38] 12.10 7.64 4.01 8.87
Hardway [11] || 24.51 13.55 6.10 | 13.38
SSPL [71] 13.62  8.10 4.45 9.56
Mix [28] 26.01 15.25 9.90 | 15.39
Our 3871 1942 10.51 | 18.38

Table 2. Quantitative comparison of localization results on Epic
Sounding Object dataset. All methods are re-trained on Epic-
Kitchen. The results of metrics CloU@4{0.2, 0.3, 0.4} and AUC
are reported. The top-1 results are highlighted.

a 1-second long video around the center of each raw video.
We select the middle frame from the video clip and its four
neighboring frames with an interval of 2 between frames.
Consequently, we get T = 5 frames as visual input. During
training, the frames are first resized to 256x256 and then
randomly cropped to 224 x 224. During inference, all the
frames are directly resized to the desired size without crop-
ping. For the audio stream, we extract the corresponding 1-
second audio clip to create the audio-visual pairs. The audio
waveform is sub-sampled at 11kHz and transformed into a
spectrogram with a Hann window of size 254 and a hop
length of 64. The obtained spectrogram is subsequently re-
sampled to 128 x 128 to feed into the audio network. We set
the number of audio and visual feature channels as 512 and
choose € = 0.5 and 7 = 0.03. All models are trained with
the Adam optimizer, with a learning rate of 10~—* on the vi-
sual encoder and temporal network, while using a learning
rate of 10~2 for updating the audio encoder.

5.1. Results
5.1.1 Experimental Comparison

To validate the effectiveness of our framework, we com-
pare it with recent audio-visual localization methods: At-
tention [65], STM [38], Hardway [11], SSPL [71] and
Mix [28]. Among all the comparative methods, STM [38]
utilizes weak labels for the training, while the other meth-
ods are trained with self-supervision. We hence adjust
STM [38] with our self-supervised localization loss. As all
the methods are developed for third-person view videos, we
retrain their methods on our training data for a fair com-
parison. The quantitative results are shown in Tab. 2. We
can find that our method outperforms all the compared ap-
proaches by a large margin in all metrics, indicating the ben-
efits of mitigating out-of-view sounds and explicitly mod-
eling egomotion in learning egocentric audio-visual local-
ization. Moreover, we provide a qualitative comparison to
visually showcase our localization results. In Fig. 6, we
can see that our model produces localization results that are
tight around the ground truth sounding objects.



Modelw&%SL Lgis ||CloU@0.2 AUC
a 27.41 15.36
b v 31.84  15.79
c v 33.29  16.10
d v 37.38  16.59
f v v 38.21 17.92
g v v Y 38.71 18.38

Table 3. Ablations on GATM, SL, and audio disentanglement
module. The top-1 result in each column is highlighted.

5.1.2 Ablation Study

We conduct an ablation study to illustrate how each module
affects localization performance. As shown in Tab. 3, we
compare our full model with different baselines — model
a: we remove all the modules and only use the features
from the visual and audio encoders to compute the local-
ization map; model b-d: we insert Average, Max, and
Geometry-Aware Temporal modeling approaches separately
in the framework; in model f, we incorporate the soft local-
ization (SL) into the pipeline; and in model g, we employ
the audio disentanglement module and train the model with
Lg;s. By comparing a and b-¢, we found that it’s crucial to
aggregate temporal context, while d emphasizes the impor-
tance of GATM in mitigating the egomotion in egocentric
videos. model d vs. f shows that SL slightly enhances the
performance since some of the unrelated visual content can
be reweighted. The comparison between f and g demon-
strates that by incorporating audio feature disentanglement,
the localization performance can be further boosted because
it can handle the out-of-view sounds in videos.

Naive baseline. To assess the difficulty of the task, we pro-
vide a center box method that predicts a gaussian heatmap
around the center. This results in a naive baseline of 16.51
compared to 27.41 (model a) from Tab. 3, showing that
there are various challenging scenarios apart from the object
being in the center that this naive baseline cannot capture.

5.1.3 Generalization to More Scenarios

The experiments on Epic Sounding Obejct dataset demon-
strate the effectiveness of our method in localizing sound-
ing objects in the egocentric videos. To further validate the
generalization ability of our method, we train our audio-
visual sounding object localization network on Ego4D [24]
and qualitatively showcase the localization results in Fig. 7.
The examples are all selected from the Ego4D test set. We
can see that our model can learn audio-visual associations
and localize the sounding objects in diverse scenes.

6. Discussions and Conclusions

In this work, we tackle a fundamental task: egocentric
audio-visual localization to promote the field of study in

Figure 7. Localization results on diverse scenarios in Ego4D [24].
Ref.: Sounding objects; Pred.: predicted localization results.

egocentric audio-visual video understanding. The unique-
ness of egocentric videos, such as egomotions and out-of-
view sounds pose significant challenges to learning fine-
grained audio-visual associations. To address these prob-
lems, we propose a new framework with a cascaded feature
enhancement module to disentangle visually indicated au-
dio representations and a geometry-aware temporal model-
ing module to mitigate egomotion. Extensive experiments
on our annotated Epic Sounding Object dataset underpin the
findings that explicitly mitigating out-of-view sounds and
egomotion can boost localization performance and learn the
better audio-visual association for egocentric videos.

Limitations. The proposed geometry-aware temporal mod-
eling approach requires geometric transformation compu-
tation. For certain visual scenes with severe illumination
changes or drastic motions, the homography estimation may
fail. Then, our GATM will degrade to a vanilla temporal
modeling approach. To mitigate the issue, we can consider
designing a more robust geometric estimation approach.

Potential Applications. Our work offers potential for sev-
eral applications: (a) Audio-visual episodic memory. As
egocentric video records what and where of an individual’s
daily life experience, it would be interesting to build an in-
telligent AR assistant to localize the object (“where did I
use it?”’) by processing an audio query, e.g., an audio clip
of “vacuum cleaner”; (b) Audio-visual object state recog-
nition. In egocentric research, it is important to know the
state of objects that human is interacting with, while the
human-object interaction often makes a sound. Therefore,
localizing objects by sounds provides a new angle in recog-
nizing an object state; (c) Audio-visual future anticipation:
following the audio-visual object state recognition task, it’s
natural to predict the trajectory of a sounding object by an-
alyzing the most recent audio-visual clips.
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