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ABSTRACT
We study the problem of an online advertising system that wants to

optimally spend an advertiser’s given budget for a campaign across

multiple platforms, without knowing the value for showing an ad

to the users on those platforms. We model this challenging practical

application as a Stochastic Bandits with Knapsacks problem over T
rounds of bidding with the set of arms given by the set of distinct

biddingm-tuples, wherem is the number of platforms. We modify

the algorithm proposed in Badanidiyuru et al., [11] to extend it to

the case of multiple platforms to obtain an algorithm for both the

discrete and continuous bid-spaces. Namely, for discrete bid spaces

we give an algorithmwith regretO
(
OPT

√
mn
B +

√
mnOPT

)
, where

OPT is the performance of the optimal algorithm that knows the

distributions. For continuous bid spaces the regret of our algorithm

is Õ
(
m1/3 ·min

{
B2/3, (mT )2/3

})
. When restricted to this special-

case, this bound improves over Sankararaman and Slivkins [34] in

the regimeOPT << T , as is the case in the particular application at

hand. Second, we show anΩ
(√

mOPT
)
lower bound for the discrete

case and an Ω
(
m1/3B2/3

)
lower bound for the continuous setting,

almost matching the upper bounds. Finally, we use a real-world

data set from a large internet online advertising company with

multiple ad platforms and show that our algorithms outperform

common benchmarks and satisfy the required properties warranted

in the real-world application.
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1 INTRODUCTION
As online advertising has proliferated, ad campaigns have moved

from ad-hoc bidding for individual users, to campaigns that try

to reach massive audiences while respecting marketing budgets.

In recent years this has led online advertising marketplaces to

offer budget management solutions that bid on advertiser’s behalf

to optimally spend a given budget. But, as the online advertising

ecosystem grows in size and complexity, those budget management

solutions have to take an increasing number of factors into account

when optimizing an advertiser’s spend.

One such problem that is becoming increasingly ubiquitous in

online advertising is designing a bidding strategy to spend an adver-

tiser’s budget optimally across a set of different products, where each
product may have a different user base, competition, and advertis-

ing dynamics. Large tech companies have platforms that allow the

advertisers to set-up campaigns that can be delivered to users across

different internal products (in this paper we will use the unified

terminology of platforms). The key challenge this leads to is that a

campaign with a single budget has to acquire impressions from a

variety of platforms that provide different value possibly due to a

different user-base and different prices owing to different competi-

tion. Further challenges arise from the reality that advertisers often

do not have a good understanding of their valuation of showing an

ad to users spread across different platforms. Consider, for example,

the case of an eCommerce business that advertises a specific good

on their website. While they may have a good understanding of how

much a conversion—i.e. the user purchases the good—is worth, they

may have to pay for a click without knowing how likely the user is

going to convert given a click on each of these platforms. Therefore,

there is a need for developing budget management solutions that

can optimize campaign delivery across multiple platforms in face

of this uncertainty and budget constraints.

In this paper, we provide a rigorous mathematical model to study

the aforementioned application and provide algorithms that are

https://doi.org/10.1145/3442381.3450074
https://doi.org/10.1145/3442381.3450074
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optimal. We also expect these algorithms to be extremely fast and

thus, can be deployed in real-world bidding engines where the

system has only a few milliseconds to set bids. First, we describe

some practical constraints that the bidding engines face before de-

scribing the various attempts at modeling this problem. In modern

bidding engines, a bid is composed of multiple components. Most

components of this bid is set for a batch of requests, before adding

a platform specific multiplier that depends on the request. Thus,

from the perspective of the central bidding engine, the goal is to

decide bids for each of the platforms and this bid will be applied to

the next batch of requests in the auction stage. After setting this

main bid, the engine only sees a feedback of the total value received

from each platform and the total budget that is consumed.

Motivated by the aforementioned example, in this work, we

consider the multi-platform placement optimization with unknown
valuations.More specifically, we study the problem of an advertiser

that wants to optimally spend a given budget B over a time horizon

T acrossm platforms. Those platforms select the winners via second

price auctions. The goal is to design a policy that submits, at each

time t ,m bids bt (1), ...,bt (m), one for each of them-platforms. The

bids are chosen such that the advertiser maximizes the cumulative

reward over all the platforms while ensuring that the aggregate pay-

ments across allm platforms and the time horizon T do not exceed

the allocated budget B. In other words, the objective of the adver-

tiser is to learn the valuation of bidding on each of those platforms

while simultaneously maximizing their cumulative rewards.

The academic community has worked actively to provide meth-

ods for doing this effectively when a campaign delivers only in a

single platform. The studied methods focused on solving the prob-

lem either by limiting the set of auctions that bidders are eligible

for, e.g. [1, 9, 22, 26, 30], or by adjusting the bids that enter the auc-

tion, e.g. [13, 16, 17, 19, 23, 33]. The latter are of particular interest,

because they can either be implemented by the online advertis-

ing platform (as is common), but also by an advertiser themselves.

However, the work on budget-management for online advertising

has so far not focused on two important concerns: firstly, the mar-

keting budget should be used over different platforms where users

on different platforms are valued differently and platforms have

different levels of competition, and secondly, advertisers may not

have a clear understanding of their valuation for showing an ad to

different users across these platforms.

The problem of learning to bid without knowing your value

naturally leads to a multi-armed bandit formulation of the prob-

lem, and for a single platform has been studied without a budget

constraint by Feng et al. [20], and with a budget constraint by

[6, 21, 36], though none of these approaches consider bidding on

multiple platforms. In this work, we formulate the problem as a

stochastic bandits with knapsacks problem (BwK), introduced in

the seminal work by Badanidiyuru et al. [10] and generalize the

approach to the multi-platform optimization problem ([34]). One

of the main contributions of the present paper is in highlighting

the salient features of BwK that need to be adapted to design a

computationally tractable algorithm that can compute the optimal

bid vector from a combinatorial feasible bid set and ensuring that

the performance (as measured by regret) of our algorithm scales

optimally in both the number of platforms and the optimal value in

hindsight. [34] consider a more general problemwhere the combina-

torial feasible set can be any general matroid. Thus, their algorithm

is much more complicated and their bounds in the regime when

OPT << T is weaker than the one in the present paper. In this

work, the feasible bid set is the special case of partition matroid

which our algorithm specifically exploits and thus, does not require

the rounding procedure required in [34].

Before we present our modeling of this problem with an expo-

nential set of biddingm-tuples, we like to discuss some alternative

formulations and their drawbacks. A first natural attempt at mod-

eling this problem is to set it up as a multi-armed bandit problem
where we have n ×m arms with a group of n arms denoting the set

of discrete bids that can be chosen for each of them platforms. The

game proceeds in T ×m rounds, where T corresponds to the total

number of steps for which the bidding engine has to decide the

main bid. We split theT ×m rounds intoT phases where within each

phase the algorithm plays form rounds and sets the bid for each of

them platforms sequentially. At the end of this phase, the algorithm

receives a feedback, i.e., the total value and the budget consumed

on each platform during this phase. The goal of the algorithm is

to maximize the total value while respecting the total budget con-

straint. We argue that this model has two major drawbacks and

thus, is not suitable for this application. First, at any given time-step

(t, i) ∈ ([T ], [m]), the algorithm cannot choose all the arms, but only

a subset of the arms (i.e., those that correspond to platform i). In a

typical multi-armed bandit problem, we assume that all arms are

available at all time-steps. We could model it as the more general

sleeping bandits [27] problem but note that even without budget

constraints this problem requires a change in benchmark (i.e., the
best ordering of arms) which does not translate to a meaningful

notion in our application. Second, in MAB problems, we assume

that the feedback received by the algorithm is immediate. However,

in this modeling approach we would only receive the feedback

at the end of the phase. Algorithms for delayed feedback models

compare against static policies, while with budget constraints it is

known that (e.g., [10]) optimal dynamic policies can obtain at least

twice more reward than the optimal static policy.

The second natural attempt to model this problem is to consider

the contextual bandit framework. We have n arms (corresponding

to each of the discrete bids) andT time-steps. At each time-step, the

algorithm first sees a context xt (in this case it corresponds to the

platform on which the bids need to be chosen on) and then chose an

arm that is a function of history and context. After everym rounds,

the algorithm receives the feedback for the last m rounds (note

even the bidding engine sets the bid for a platform, the feedback is

collected over the batch and given back to the engine at the end of

the phase). This modeling also has a two major drawbacks. First,

as before, we need to handle delayed rewards (now in the much

harder contextual bandit setup) for which to obtain algorithms with

provable guarantees we need to make further assumptions (that

may not hold in practice) such as linear rewards, static optimal

policy. Second, contextual bandit problems with budget constraints

are significantly harder (e.g., [4]) where the regret bounds require
the large budget assumption. In the context of online advertising

for any campaign the total budget is very small compared to the

number of auctions it participates in and thus, such large budget

assumption is not reasonable.
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Owing to the above difficulties, we model this problem as a

variant of the Bandits with Knapsacks problem with combinatorial

actions. We assume that we have n ×m arms, where a group of n
arms correspond to the possible bids for each of them platforms. At

each time-step, the algorithm chooses one bid per platform (a total

ofm arms) and sets this to be the bid for the next phase of auctions.

At the end of this phase, the algorithm receives the feedback (the

value and the budget consumed) and the algorithm can adapt its bid

for the next phase. If for any platform, the bidding engine chooses

not to bid for this phase, the algorithm simply chooses the 0-bid
which ensures that it will not win any auction. Moreover, in the

generalization later we show that the bids need not be discrete

and can be a continuous value in the range [0, r ] for some known

value r ≥ 1. This modeling removes the difficulties in the above

natural approaches: the benchmark for an optimal dynamic policy

is indeed a best possible algorithm the bidding engine can employ,

the feedback for each of the arms is obtained immediately at the

end of the phase and we do not need to make assumptions on the

ratio of budget to the total number of time-steps. Apriori, a new
challenge this modeling approach introduces is that the algorithm

needs to choose from an exponentially available set of choices at

each time-step. However, as [34] show, both the algorithm and the

regret bounds can overcome this and only depend on a polynomial

function of the total number of platforms.

1.1 Overview of Contributions
Wepresent algorithms for budget management in online advertising

across multiple bidding platforms. The paper presents five main

contributions:

• Tractablemathematicalmodel and algorithms.The first
contribution of this paper is to identify the correct mathe-

matical model to study this problem. As mentioned earlier

a number of natural choices fail since they lead to difficul-

ties in obtaining an algorithm with provable guarantees. We

study this problem in the framework of Stochastic bandits

with knapsacks (BwK) introduced by Badanidiyuru et al. [10].

The goal is to design online bidding strategies that use the

information available from the past rounds of ad auction

to achieve suboptimal regret with respect to the optimal

stochastic strategy that knows in advance the distributions

of price and valuation on each platform. Unlike [34] we

do not require the algorithm to invoke the rounding sub-

routine at each time-step. The rounding sub-routine runs

in O((mn)2) time-complexity per time-step and cannot be

amortized across rounds. Thus, this improves the running

time of our algorithm when the bid-space and the number

of platforms become very large. On the other hand, similar

to [34], our algorithm requires us to solve a linear program

at each time-step. In practice, this can be fast, since we can

cold-start the solution for each time-step with the solution

of the previous time-step and thus, the computations can be

amortized across theT time-steps to an average of a constant

number of steps per-round.

• Algorithm and regret analysis. In Section 3, we present

a bandit algorithm that achieves a regret bound

O
(
OPT

√
mn
B +

√
mnOPT

)
for discrete bid spaces, (wherem

is the number of platforms,n the size of the discrete bid space,
B the budget and OPT is the performance of the optimal al-

gorithm that knows the distributions). This improves over

the regret bound presented in [34] from O(
√
T ) to O(

√
OPT )

while keeping the dependence on the other parameters same.

Our approach follows very closely the Primal Dual algo-

rithm with knapsack constraints of [10]. However, we also

show how to reduce the problem of finding the optimal bid

vector to the problem of maximizing the ratio between a

linear function of the UCB of the valuations and a linear

function of the LCB of the costs, and this problem can be

solved in polynomial time for a set of totally unimodular

linear constraints [8]. In Section 4, we use the discretiza-

tion idea introduced in [11], to discretize the continuous

bid space in [p0, 1], with p0 being the minimum reserve

price across all platforms, by using an ϵ grid. The regret

bound Õ

(
(mv0)

1/3

p2/3
0

·min

{(
Bv0
p0

)2/3
, (mT )2/3

})
is obtained

by adding the discretization error
Bϵv0

p2
0

, with v0 being the

maximum expected valuation across all platforms, to the re-

gret for the discrete setting with n = 1/ϵ bid values. For the

special case of single platform we improve over the O(T 2/3)

bounds in [37] for the more challenging and realistic set-

ting of B = o(T ). Additionally, the algorithms in [37] require

the information on whether the algorithm won the auction

or not at each time-step; while our algorithms do not need

this information. Note, that ours is a more realistic assump-

tion, in general, since advertising systems have checks and
balances in place, after an auction phase and thus, impres-

sion/conversion information does not directly translate to

whether an ad won an auction or not.

• Lower bounds. In Section 5we complement our algorithmic

results with a Ω
(√

mOPT
)
lower bound for the discrete

case and an Ω
(
m1/3B2/3

)
lower bound for the continuous

case thus showing that our algorithmic results are close to

optimum despite the complexity of our setting.

• Experiments on real data. In Section 6 we evaluate our

online bidding strategies on real-world dataset with multiple

platforms and several budget limited advertisers obtained

from the logs of a large internet advertising company. We

compare our algorithms against the total reward of the op-

timal LP value computed on the mean valuation and prices

and on two different baselines. The first baseline is the naive

UCB algorithm that ignores the budget constraints and max-

imizes the rewards. The second algorithm is the LuekerLearn
algorithm from [37] adapted to multiple platforms and sto-

chastic valuations. Our experimental results show that we

outperform both the benchmarks in efficiency (total regret

accumulated). We show how the various algorithms compare

as a function of budget and number of platforms. Moreover,

we also observe that our proposed algorithm uniformly de-

pletes the budget and always runs till the specified time-limit,

while both the baselines exhaust budget very early. Uniform

budget spend is an expectation many advertisers have and
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thus, this behavior of our algorithm is extremely desirable

for practical deployment.

1.2 Additional Related Work
The problem of optimal bidding policies in second price auctions

from the perspective of bidders/advertisers can be broadly catego-

rized into four themes.

Budget management with known valuation. Early approaches

to budget management with known valuations (and a single plat-

form) have focused on shading an advertiser’s value by a multiplier

(often called the “pacing multiplier”). For example, the work of

[19, 23, 33] implement bid shading strategies to maximize the ad-

vertisers ROI. What makes this approach appealing, is that the static

problem (with known competitor bids) has an optimal solution with

a constant pacing multipier, so the dynamic approach aims to find

this constant. More recent work [13–17] have complemented this

bid-manipulation literature with equilibrium analysis under the

assumption that all advertisers use the same bid-shading approach.

An alternative to bid modification, is for a platform to restrict

the number of auctions that an advertiser participates in. Work

by Mehta et al. [30] give revenue guarantees for the online match-

ing problem of users showing up over time. Subsequently bidder

selection has been applied to multi-objective optimization for Gen-

eralized Second Price auctions in e.g. [1, 9, 22, 26]. While the work

on bidder selection yields allocations that respect the budget con-

straint, advertisers are not best-responding to the competition and

they can generally improve their allocation by lowering their bids.

Bidding with unknown valuations and no budget constraints. Feng
et al. [20] focus on the problem of bidding on a platform without

knowing the valuations for users. They model this as a stochastic

bandit setting with partial feedback (they only learn the value if the

ad won, and the action that the advertiser cares about was taken).

They give an online learning algorithm with regret that grows

logarithmically in the size of the action space. Their model considers

more complex auction environments such as position auctions

[18, 38], though it doesn’t take into account multiple platforms or

budget constraints.

Budget constrained bidding and unknown valuations. This line of
literature combines the problem settings of the above two themes.

More specifically, existing work consider the setting where the val-

uation as well as the distribution of the competing bids is unknown

and focus on optimal bidding strategies that satisfy the specified

budget, maximizes the cumulative rewards and learns the valuation

of the item. To the best of our knowledge, the problem of learn-

ing the optimal bid in second price auctions was first considered

by Amin et al. [6]. They focus on the discrete bids setting, where

the feasible bids belong to a discrete set of bids and formulate the

problem as Markov decision process with censored observations.

They propose a learning algorithm based on the popular product-

limit estimator and demonstrate empirically that their algorithm

converges to optimal solution. Tran-Tranh et al. [36] followed up

on the work of [6] and provided theoretical guarantees for the al-

gorithm proposed in the later work. More specifically, they assume

that the bids are sampled from a discrete distribution in {1, · · · ,C}

and establish O(
√
CB) regret bounds, where C is the number of

feasible bids and B is the total budget. The aforementioned regret

bounds depend on some parameters of the competing bids distri-

bution. Flajolet and Jailiet [21] consider a more general variant of

the aforementioned problem by relaxing the assumption that the

bids come from a discrete set and proposed an algorithm based on

the probabilistic bisection (see [32]) and upper confidence bounds

(UCB) family of algorithms. They establishO(
√
T ) regret bound for

the problem under the assumption that budget scales linearly with

time, i.e. B = Θ(T ). All three works ([6], [36] and [21]) in this theme

only focus on bidding strategies for a single platform and cannot

be easily generalized to the multi-platform setting. Finally, in [31]

it is studied the problem of joint bid/daily budget optimization of

pay-per-click advertising campaigns over multiple channels. The

authors formulate the problem with combinatorial semi-bandits,

which requires solving a special case of the Multiple-Choice Knap-

sack problem every day, and it obtains an O(
√
T ) regret bound.

Differently from our work that performs on online budget opti-

mization across multiple rounds, this last paper does static budget

optimization in each single round.

Stochastic bandits with knapsack constraints. Stochastic ban-

dits with knapsacks (BwK), introduced in the seminal work of

Badanidiyuru et al. [10] is a general framework that considers the

standard multi-armed bandit problem under the presence of addi-

tional budget/resource constraints in addition to the time horizon

constraint. The BwK problem encapsulates a large number of con-

strained bandit problems that naturally arise in many application

domains including dynamic pricing, auction bidding, routing and

scheduling. [10, 11] presents two algorithms based respectively on

balanced exploration and primal-dual also used in this work with

performances close to the information theoretical optimum. More

specifically, they establish a O(log(dT )(
√
X ¯OPT + ¯OPT

√
m/B)),

where X is the total number of arms, d is the number of constraints,

B is the binding budget constraint and
¯OPT is a “reasonable" upper

bound on the cumulative optimal reward. A naive generalization of

the BwK framework to our problem would result in a combinatorial

number of arms (nm possible bids). Recently, Sankarraman and

Slivkins [34] extended the BwK framework to combinatorial action

sets and established O(
√
XT ) regret bounds, which is only optimal

only when the cumulative reward is comparable to the length of

the time horizon, which is not the case in many online auctions.

In this work, we extend the BwK ([10]) framework to propose an

optimal bidding strategy with performances guarantees that are

near optimal even when the cumulative reward is much smaller in

comparison to length of the time horizon.

The BwK framework [10] also has been extended with near-

optimal regret bounds to contextual bandits (see [3, 5, 12]), settings

with concave reward functions and convex constraints (see [2]).

Adversarial bandits with knapsack are also extended in [24] to

the combinatorial semi-bandit, contextual, and convex optimiza-

tion settings. However, these problem settings are not immediately

applicable to our problem.
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2 AD PLATFORM OPTIMIZATIONWITH
UNKNOWN VALUATIONS

Wemodel multi-platform real-time bidding for budgeted advertisers

as a multi-armed bandit problem with knapsack constraints [11].

The advertiser has an available budget B for T rounds of the ad

auction. At each time step t ∈ T , the bidder chooses a bid bt ∈

[0, 1]m where bt (i) is the bid for platform i ∈ [m]. We also consider

the special case of discrete bid in section 3, each of the bid bt (j) is
chosen from the finite set B = {b1, . . . ,bn }, where bj ∈ [0, 1], j ∈
[n]. The set of arms X = {⟨b(1), . . . ,b(m)⟩,b(i) ∈ B, i ∈ [m]} is

therefore given by the set of distinct biddingm-tuples. Denote by

b = ⟨b(1), . . . ,b(m)⟩ the generic bid vector and by xb ∈ X the

corresponding arm.

At each phase t , each platform i runs many second price auctions

among the bids that are received for this phase. When at time t , the
bidder bids bt across the platforms, bid bt (i) is entered on platform

i . Let pt (i) ∼ P(i) be the critical bid1 for the bidder on platform i at
time t (where P(i) is a stationary distribution). If bt (i) ≥ pt (i) the
bidder wins the auction (we break ties in favor of the advertiser),

the price is equal to the critical bid pt (i) and at that point learns the
realized value vt (i) ∼ V (i) (where V (i) is a stationary distribution).

For ease of presentation, bids, critical bids and values are normalized

so that b(i), p(i), v(i) ∈ [0, 1] for all i ∈ [m], and we’ll use the terms

critical bid and price interchangeably where appropriate
2
.

We denote by

rx (b ) =
∑
i ∈[m]

v(i)I[b(i) ≥ p(i)] and

cx (b ) =
∑
i ∈[m]

p(i)I[b(i) ≥ p(i)]

the reward and the cost of arm xb with critical bid vector p and re-

ward vectorv . We denote by bt = ⟨bt (1), . . . ,bt (m)⟩ the bid vector

of the bidder at time t . We also use pt = ⟨pt (1), . . . ,pt (m)⟩ for the

critical bid vector that is realized at time t andvt = ⟨vt (1), . . . ,vt (m)⟩

for the vector of rewards that is realized at time t .
In the stochastic bandit setting, critical bid p(i) and reward val-

ues v(i) are drawn at any time t , respectively, from the stationary

independent distributions P(i),V (i) for i ∈ [m], unknown to the al-

gorithm. We also denote with r̄x (b ) = E[rx (b )] and c̄x (b ) = E[cx (b )]

the expected value of the reward and the cost of arm x(b), where
the expectation is taken over the critical bid p(i) ∼ P(i) and the

reward value v(i) ∼ V (i).
The bidder must decide on the bidding vector bt without the

knowledge of the critical bid vector pt and the reward vectorvt . If

bt (i) ≥ pt (i), the feedback provided to the advertiser upon bidding

bt (i) is price pt (i) and utility vt (i). If bt (i) < pt (i), the advertiser
only learned that bt (i) is lower than the critical bid. The goal is

to design an online bidding strategy that selects a bid vector bt at
each round t so that the time-averaged reward across the multiple

platforms is maximized and the total cost paid by the algorithm

does not exceed budget B.

1
The critical bid is either the highest bid of the other bidders or the reserve price,

whichever is higher.

2
Note this is without loss of generality, since we can scale the values and multiply this

scale in the regret bound.

Given that the advertiser is budget limited, we use random vari-

able τ to indicate the first time the budget of the advertiser is

exhausted, i.e.,

τ = min

(
T + 1,min

{
z ∈ [T ]|

z∑
t=1

cx (bt ) > B

})
We compare the reward obtained by the algorithm against the

reward OPT of an optimal bidding strategy that knows the distri-

butions P(i),V (i) for i ∈ [m], and it is allowed to submit a new bid

vector at each time. Our goal is to bound the regret of the bidding

strategy of the advertiser defined by

OPT − E

[ τ∑
t=1

rx (bt )

]
,

where the expectation is taken over the randomvariablesτ ,p(i),v(i), i ∈
[m].

3 DISCRETE BID SPACES
We adapt the Primal Dual algorithm for bandits with knapsack

constraints of [11]. We use two resources in our formulation. The

budget B is consumed at rate equal to the price paid for each ad

auction that is won by the advertiser. Furthermore, we have a second

resource with budget B that consumes deterministically a budget

B/T at each round of ad auction. The second resource ensures that

the system can bid at most T times on each platform.

For the regret analysis of the algorithm, following the primal

dual approach of [11], we compare with an upper bound on OPT

given by the following LP formulation:

OPTLP = max
∑
x ∈X

ξx r̄x (1)∑
x ∈X

ξx c̄x ≤ B (2)∑
x ∈X

B

T
ξx ≤ B (3)

ξx ≥ 0,∀x ∈ X (4)

with ξx being the number of times arm x ∈ X is used during the

T rounds.

According to the following claim, we can use the optimal LP

solution in place of OPT for bounding the regret of the algorithm:

Claim 3.1. OPTLP is an upper bound on the value of the optimal
dynamic policy: OPTLP ≥ OPT .

In the algorithm, we denote by v̄i j and c̄i j the expected reward

and the expected cost, respectively, obtained by bidding value bj
on platform i . We also denote by vUCB

i j (t) the upper confidence

bound estimation of v̄i j and by cLCBi j the lower confidence bound

estimation of c̄i j . Concretely, they are defined as follows. Here

Ni j (t) denotes the number of times we bid i on platform j until
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time t and Crad = Θ(logmnT ).

vUCB
i j (t) :=

1

Ni j (t)

∑
t ′<t

vi j (t) · I[bid i on platform j]

+

√
Crad · v̄i j

Ni j (t)
+

Crad
Ni j (t)

cLCBi j (t) :=
1

Ni j (t)

∑
t ′<t

ci j (t) · I[bid i on platform j]

−

√
Crad · c̄i j

Ni j (t)
−

Crad
Ni j (t)

We denote by λt (1) and λt (2) the estimation of the dual variables

computed by the algorithm. We have d = 2 in our case but we leave

a generic term d for the purpose of an easy generalization to the

case of an individual budget Bi for each i ∈ [m].

Algorithm 1Multi-platform bidding with parameter ϵ ∈ (0, 1)

INITIALIZATION
Play arm xbj with bid bj = {b(i) = bj }i ∈[m], j ∈ n for an initial

UCB estimate of r̄i j and an initial LCB estimate of c̄i j
λ1(1) = 1, λ1(2) = 1 is the estimate for η1 and η2
set ϵ =

√
ln(d)/B

for t = n + 1, . . . , τ (i.e., until resource budget is exhausted) do
Obtain the maximizer to the following

αi , j∗i =

argmaxαi j ∈{0,1}

∑
i ∈[m]

∑
j ∈[n] r

UCB
i j αi j

λt (1)
∑
i ∈[m]

∑
j ∈[n] c

LCB
i j αi j + λt (2)

B
T

s.t.∑
j ∈n αi j = 1,∀i ∈ [m]

Play arm xbt with bid bt = {bi , j∗i }i ∈[m]

Update UCB estimate rUCB
i j and LCB estimate cLCBi j

Compute LCB estimate cost of arm xt : c
LCB
1xt

=
∑
i ∈m cLCBi , j∗i

,

c2xt = B/T
Update estimate of dual variables:

λt+1(1) = λt (1)(1 + ϵ)
cLCB1xt

λt+1(2) = λt (1)(1 + ϵ)
c2xt

end for

In the initial exploration phase, bid bi is submitted on all plat-

forms at time t = i . The cost of the initial phase is therefore bounded
by mn. At each round we compute the arm with bid vector that

maximizes the bang-per-buck ratio between the Upper Confidence

Bound of the reward and the Lower Confidence Bound of the nor-

malized cost. The number of different arms that is exponential can

be reduced in the analysis by pruning out suboptimal arms. The

optimal arm according to theUCB and LCB approximations can ac-

tually be computed in polynomial time since this is the problem of

optimizing a rational function subject to a set of linear constraints

described by a totally unimodular matrix [8]. After the feedback is

received, the UCB estimation of the rewards and the LCB estimation

of the costs are updated. Variables λ(1), λ(2) are estimated using

multiplicative weight update [29].

3.1 Analysis of the algorithm.
Once the problem of selecting the arm has been addressed through

a separate optimization step, the analysis of the algorithm follows

very closely the one of [11] with some care that allows to replace

the exponential number of arms withmn in the regret bound.

Let yt (i) = λt (i)/∥ λt ∥1, i = 1, . . . ,d be the normalized cost of

the resources. For a parameter ϵ ∈ [0, 1], for every vector y, for any

sequence of payoff vectors c1, . . . , cτ ∈ [0, 1]d , Hedge’s guarantee
gives [29]:

τ∑
t=1

yTt ct ≥ (1 − ϵ)
τ∑
t=1

yT ct −
lnd

ϵ
. (5)

In what follows, we denote by cxt =

[
c1xt
c2xt

]
, the cost vector

of arm xt .
Wemust consider in the analysis the error that derives from using

the UCB estimate for the rewards and LCB estimate for the costs.

First of all, given that themaximum reward ismT , if we fail to have a
clean execution, the loss isO(mT ). If we selectCrad = Θ(logdTm),

the probability of failure can be made much smaller than 1/(mT ).
Let us denote by lxt the LCB estimate of cxt and by uxt the UCB

estimate of rxt . Moreover, let Et = cxt − lxt be the error on the

cost and δt = uxt − rxt the error on the reward. We also denote by

REWUCB =
∑
t u

T
xt ξt the UCB reward of the algorithm. The proofs

of the following claim and theorem are given in the appendix.

Claim 3.2.

REW ≥ OPTLP

[
(1 − ϵ) − mn+1

B − 1
B | |

∑
1<t<τ E

T
t ξt | |∞ − 1

B
lnd
ϵ

]
−

��∑
1<t<τ δ

T
t ξt

�� .
Proof. The structure of this proof is similar to [11]. Let ȳ =
1

REW UCB

∑
n<t<τ (u

T
xt ξt )yt We prove the following inequalities:

B ≥ ȳT cξ ∗

= 1
REW UCB

∑
n<t<τ (u

T
xt ξt )(y

T
t cξ

∗)

≥ 1
REW UCB

∑
n<t<τ (u

T
xt ξt )(y

T
t lxt ξ

∗)

≥ 1
REW UCB

∑
n<t<τ (u

T
xt ξ

∗)(yTt lxt ξt )

≥ 1
REW UCB

∑
n<t<τ (r

T ξ ∗)(yTt lxt ξt )

≥
OPTLP

REW UCB

[
(1 − ϵ)yT

(∑
n<t<τ lxt ξt

)
− lnd

ϵ

]
≥ (1 − ϵ) OPTLP

REW UCB[
yT

(∑
n<t<τ cxt ξt

)
− yT

(∑
n<t<τ E

T
t ξt

)
− lnd

ϵ

]
≥

OPTLP
REW UCB[
(1 − ϵ)(B −mn − 1) − (1 − ϵ)yT

(∑
n<t<τ E

T
t ξt

)
− lnd

ϵ

]
,

The first inequality follows from primal feasibility, the second

inequality by the definition of ȳ, the third inequality by clean execu-

tion, the forth inequality by the rule of selection of the arm, the fifth
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inequality follows from clean execution, and the sixth inequality

from the guarantee of Hedge of equation 5.

For bounding the regret of the algorithm we finally use:

REW ≥ REWUCB−
∑

n<t<τ
(uxt−rxt )

T ξt = REWUCB−

����� ∑
1<t<τ

δTt ξt

����� .
□

We combine this claim with the following two bounds which

can again be derived using the approach in [10].����� ∑
n<t<τ

δTt ξt

����� = O (√
CradmnREW +Cradmn lnT

)
,�����

����� ∑
1<t<τ

Et ξt

�����
�����
∞

= O
(√

CradmnB +Cradmn lnT
)
.

By assumingmn < B and ϵ =
√

lnd
B , we conclude with the follow-

ing theorem:.

Theorem 3.3. The regret of the algorithm is bounded by

O

(
OPTLP

√
mn

B
+
√
mnOPT

)
.

Proof. We use for the proof the following two claims on the

UCB estimate of the reward and the LCB estimate of the cost are

proved in [11]

Claim 3.4.

��∑n<t<τ δ
T
t ξt

�� = O (√
CradmnREW +Cradmn lnT

)
.

Claim 3.5. | |
∑

1<t<τ Et ξt | |∞ = O
(√

CradmnB +Cradmn lnT
)

We start from the claim of Claim 3.2:

REW ≥ OPTLP

[
(1 − ϵ) − mn+1

B − 1
B | |

∑
1<t<τ Et ξt | |∞ − lnd

ϵB

]
−

��∑
1<t<τ δ

T
t ξt

��
By assuming mn < B/lndT and by choosing ϵ =

√
lnd
B , we

bound the following three terms of the regret:

OPTLP

[
mn + 1

B
+
lnd

ϵB

]
= O

(
OPTLP

[
mn

B
+

√
lnd

B

])
;

OPTLP
B

| |
∑

1<t<τ
Et ξt | |∞

= O

(
OPTLP

B

[√
CradmnB +Cradmn lnT

] )
= O

(
OPTLP
√
B

√
Cradmn

)
and��∑

1<t<τ δ
T
t ξt

�� = O (√
CradmnREW +Cradmn(lnT )

)
thus proving the claim. □

4 CONTINUOUS BID SPACES
In the previous section we considered the discrete setting with n
different bid values available on each platform for the advertiser.

In this section we consider the continuous setting, with prices

and valuations being real values in [0, 1]. Our approach will be

to discretize the continuous bidding space to consider bid values

that are multiple of some small value ϵ . The discretization of the

bidding space will result into an additional regret loss. Most of the

following analysis is therefore concerned with bounding the error

of the discretization process.

Let the support of the critical bid distribution be in the interval

[p0, 1], with p0 being a small constant that can be considered as

the reserve price for the ad auction. Let rb (i) and cb (i) the expected
reward and the expected cost of bid b on platform i ∈ [m], where

the expectation is taken over the critical bid p(i) ∼ P(i) and the

reward values v(i) ∼ V (i). We also denote by v0 the maximum

expected reward over all platforms if the auction is won.

The following Lemma shows that the discretization of the con-

tinuous bidding space is performed at the expense of a limited

additive loss in the buck-per-bang ratio. The proofs are given in

the appendix.

Lemma 4.1. For each bid b ≥ p0, and for each platform i ∈ [m], it
holds:

(1) cb+ϵ (i) ≥ cb (i)

(2)
rb+ϵ (i)
cb+ϵ (i)

−
rb (i)
cb (i)

≥
ϵv0

p2
0

Proof. The first part of the claim is straightforward since the

expected cost can only increase with the value of the bid. We omit

i for the proof of the second part of the claim.

Let f (p) be the continuous density function of the cumulative

distribution P . For the expected cost of bid b, it holds

cb =

∫ b

po
p f (p)dp ≥ rbp0/v,

since the ratio between cost and reward of bid b is at least the

minimum cost p0 divided by the reward v that is obtained if the

bid is accepted.

Denote a =
∫ b+ϵ
b f (p)dp. We obtain the following expressions

for the cost and the reward at bid b + ϵ :

rb+ϵ = rb +v

∫ b+ϵ

b
f (p)dp = rb + a · v

cb+ϵ = cb +

∫ b+ϵ

b
p f (p)dp ≤ cb + (b + ϵ)a

We therefore have:
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rb
cb

−
rb+ϵ
cb+ϵ

≤
rb
cb

−
rb + a · v

cb + (b + ϵ)a

=
rb (b + ϵ)a − acbv

cb (cb + (b + ϵ)a)

≤
rb (b + ϵ)a − ap0rb

rbp0/v(p0 + (b + ϵ)a)

=
a((b + ϵ) − p0)

p0/v(p0 + (b + ϵ)a)

≤
av0

p20
,

with the previous inequalities that follow from cb ≥ rbp0/v ,

cb ≥ p0, and v ≤ v0. By continuity of f (b), a =
∫ b+ϵ
b f (p)dp ≤ ϵ

proves the result. □

The total loss in the regret due to the discretization error of

the buck-per-bang ratio is therefore upper-bounded by
Bϵv0

p2
0

to be

added to the regret bound of Theorem 3.3. The set of distinct bid

values is bj = jϵ, j ∈ [n], and therefore n can be replaced by 1/ϵ in

the claim of Theorem 3.3.

We therefore conclude with the following theorem:

Theorem 4.2. The regret of the algorithm with discretized bids is
bounded by

Õ

(
(mv0)

1/3

p2/3
0

·min

{(
Bv0
p0

)2/3
, (mT )2/3

})
Proof. By substituting n = 1/ϵ in the regret bound of the pre-

vious section, and by adding the additional loss in revenue given to

the discretization, the bound on the regret is:

Õ

(
OPTLP

√
m

Bϵ
+

√
mOPT

ϵ
+
Bϵv0

p20

)
.

Note that OPT ≤ OPTLP ≤ min
{
Bv0
p0 ,mT

}
. We have two cases.

Whenmin
{
Bv0
p0 ,mT

}
=

Bv0
p0 the regret is bounded by:

Õ

(
v0
p0

√
Bm

ϵ
+

√
mBv0
p0ϵ

+
Bϵv0

p20

)
.

Substituting ϵ =
p2/3
0 ·m1/3

B1/3 we obtain that the regret is upper-

bounded by Õ

(
m1/3B2/3v0

p4/3
0

)
.

Likewise, when min
{
B
p0 ,mT

}
= mT , given thatmT < B if the

problem is budget constrained, by setting ϵ =
mp4/3

0 T 2/3

Bv2/3
0

we get

the regret to be upper-bounded by Õ

(
mT 2/3v1/3

0

p2/3
0

)
thus proving the

theorem. □

5 LOWER BOUNDS
In this section, we show that the algorithms for discrete and contin-

uous bid spaces are near-optimal. We start with a lower bound for

discrete bid space as a function ofm and OPT . The proofs appear
in the appendix.

Theorem 5.1. For discrete bid-spaces, there exists an instance I

such that any algorithm will incur a regret of at least Ω
(√

mOPT
)
.

Proof Sketch. The lower bound follows by adapting the classi-

cal lower bound for stochastic bandits [7]. We consider one arm for

each platform and a time horizonT = 2B. Each platform i ∈ [m] dif-

ferent from j has expected reward ri = 1/2 and fixed cost ci = 1/2,
while platform j has expected reward r j = 1/2(1 + ϵ) with fixed

cost c j = 1/2. Each platform needs to be executed 1/ϵ2 times in

order to find out the best arm. The total budget needed in order to

find the best arm is therefore equal to B. The regret for all arms is

Ω(m/ϵ). By setting ϵ =
√
m/B we obtain the lower bound since the

optimal stochastic policy will play arm j for all the 2B rounds with

cost B and optimal reward OPT = (1 + ϵ)B. □

Theorem 5.2. For continuous bid spaces, there exists an instance I

such that any algorithm will incur a regret of at least Ω
(
m1/3B2/3

)
.

Proof Sketch. We start with the simple case of m = 1. The
proof of this theorem is derived by using the lower-bound construc-

tion for for Lipshitz bandits (see Chapter 4 in [35]). In particular,

we consider the simplest setting of 1-platform with no restrictions

on the budget constraint (i.e., B = T ). The objective function of the

algorithm thus, is to maximize the function f (p), where f is the

continuous density function of the cumulative distribution of the

critical bids P . Since, this is continuous this also implies that this

function is 1-Lipshitz and thus, the setting reduces to that of Lip-

shitz bandits. From Theorem 4.2 in [35] we have that any algorithm

incurs a regret of at-least Ω(T 2/3).

Consider the case ofm platforms. The proof uses a similar strat-

egy as in the lower bound for Lipshitz bandits (see Chapter 4 in [35])

combined with the lower-bound strategy used for semi-bandits (e.g.,
section 6 in [28]). We will closely follow the notations used in [35].

Define the instance I(x∗, ϵ) by the following. µ(x, i) denotes the
mean reward for arm x ∈ [0, 1] for platform i ∈ [m]. In a given

instance all the platforms have the same mean reward function.

µ(x, i) =

{
1
2 all arms x such that |x − x∗ | ≥ ϵ
1
2 + ϵ − |x − x∗ | otherwise

Similar to [35], we will now construct instances J(a∗, ϵ) which is

a semi-bandit problem on finite number of arms. More precisely, fix

K ∈ N to be fixed in the analysis. We define a semi-bandit problem

on K ∗m atoms indexed as (ki ,mj ) for i ∈ [K] and j ∈ [m]. At each

time-step the algorithm can choose exactly one of the atoms from

the subset of atoms {(ki ,mj )}i ∈[K ] for each j ∈ [m]. Thus, at each

time-step the algorithm chooses atmostm atoms. For any fixed ki
for i ∈ [K], the reward assigned for the atoms {(ki ,mj )}j ∈[m] is the

same and set as in the lower-bound proof for Lipshitz bandits [35].

We now use the observation made in [28]; an instance withm
copies of a K-armed bandit problem (i.e., each arm is copied m
times) is equivalent to a single K-armed bandit problem where

the reward is scaled by a factorm. Thus, the instance J(a∗, ϵ) can
be replaced by another instance J ′(a∗, ϵ) on K arms, such that
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the reward is scaled by a factorm. This leads us to the following

equivalent version of Theorem 4.2 in [35].

Theorem 5.3 (Theorem 4.2 from [35]). For a stochastic multi-
armed bandit problem with K arms and time-horizon, with rewards
in the range [0,m]. LetALG be any algorithm for this problem. Pick a

positive constant ϵ ≤

√
cmK
T where c is some absolute constant. Then

there exists an instant J ′ = J ′(a∗, ϵ) for a∗ ∈ [K] such that

E[R(T ) | J ′] ≥ Ω(ϵT ).

Thus, choosing ϵ = 1
2K and K =

(
T
cm

)1/3
and proceeding as in

[35] we obtain a regret lower-bound of Ω(m1/3T 2/3) as claimed in

the theorem. □

6 EXPERIMENTS
6.1 Setup
We construct a real-world dataset obtained from the logs of a large

internet advertising company. In this dataset, we have 10 platforms

and 3 budget constrained advertisers. For each advertiser, we nor-

malize the dataset and obtain the relevant distributions for the

critical bid P and the valuation V . Our final dataset is obtained by

sampling the critical bids from P and the valuations fromV at each

time-step. Due to the nature of the bidding system, we have a good

approximation to the true valuations for each advertiser on each

platform. Outside of the larger advertisers, most advertisers have

much smaller budgets compared to their total potential audience

and thus, the most interesting regime is when B ≪ T .
We run the various algorithms for T = 105 time-steps with a

pre-determined discretization of the bid space. Due to the nature of

the price distributions for the various platforms (see Figure 1 for

representative distributions), we choose the ϵ-hyperbolic mesh as

the discretization, where the bid is of the form
1

1+ϵ ·ℓ where ℓ ∈ N.
This is similar to the discretization used for dynamic procurement in

[11]. We vary the budget B and compare the total reward obtained

by the different algorithms against the optimal LP value computed

on themean valuation and prices. For each setting of the parameters,

we run 5 independent runs and compute the average as the reward.

Additionally, we also measure the run-time of our algorithm and

compare that against the baseline LuekerLearn algorithm.

6.2 Algorithms
We compare our algorithm against three different baselines. The

first baseline is the SemiBwK-RRS algorithm proposed in [34]. As

mentioned in the introduction, on the theoretical front, our algo-

rithm improves over this algorithm in worst-case scenario when

OPT << T and when B <<
√
T . Thus, we expect to improve over

this algorithm in this regime, while having similar performance

in the large budget regime. The second baseline is the naiveUCB
algorithm that ignores the budget constraints and maximizes the

rewards. The third algorithm is the The LuekerLearn Algorithm from

[37] adapted to multiple resources and valuation function in the

objective. In particular, we runm different copies of this algorithm,

one for each platform. At each time-step, we divide the total re-

maining budget uniformly across them different platforms. In other

words, if the remaining budget at time t is Bt , each instance of the

LuekerLearn algorithm will receive the remaining budget as Bt /m.

Thus, after each time-step, each instance of the algorithm has a

synchronization where unused budget from one platform can be

transferred to the other platforms. The full algorithm is described

in the Appendix. We would like to emphasize that the baselines

perform almost as good as the algorithm proposed in this paper

when m is small (see Fig. 3), thus, suggesting that the modified

LuekerLearn algorithm is a non-trivial baseline.

6.3 Results
Fig. 2 shows the variation of the total reward collected by each of

the three algorithms as a function of budget B for a given advertiser

with T = 105 steps. We see that when the total budget becomes

larger and a constant fraction of T , all algorithms perform nearly

well. When the budget becomes smaller, both theUCB algorithm

and the modified LuekerLearn algorithm collects lower total reward

since they run out of budget very early. Moreover, we see that our

algorithm performs better than SemiBwK-RRS in this regime and

matches the theory. When the budget increases, both our algorithm

and SemiBwK-RRS have comparable performance. In Fig. 3, we

study the effect of the number of platforms on the total reward. We

randomly choose a subsetm ⊆ [10] and run the three algorithms

(with B = 103 and T = 105). We see that with fewer platforms, the

difference between the modified LuekerLearn algorithm and our

algorithm vanishes. Addtionally, we also see that our algorithm

performs slightly better than SemiBwK-RRS when the number of

platforms are large. This is unexplained by theory but seems to hold

empirically. In Fig. 4, we look at the average stopping time of the

various algorithms. We can see that our algorithm (also SemiBwK-

RRS which we omit for clarity) depletes the budget uniformly and

runs till the end (i.e.,T = 105) while both the baselines deplete their
budget within a small fraction of the total time-steps. In advertising

platforms, advertisers expect the budget to be used up uniformly

over a large period (e.g., a day). Thus, algorithms that deplete the

budget very quickly are not desirable, even if they end up collecting

larger reward. This is another feature of our algorithm that makes

it useful for practice.

7 CONCLUSION
In this paper we presented algorithms for budget management in

online advertising acrossm bidding platforms.Wemodeled the prob-

lem as Stochastic Bandits with Knapsack with anm-dimensional

bidding vector.We designed an algorithm for bidding in discrete and

continuous actions spaces and proved a mathematical bound on it

regret. We also sketched a lower-bound to show that this is optimal.

Finally, we used real-world datasets to show extensive empirical

evaluation and compared against other competitive heuristics. From

a practical stand-point, we believe our work can open directions

in modeling for bidding in auctions. First, it is a challenging task

to extend to settings where the auction results have correlations

across different time-steps. Second, we expect the study of pacing

strategies for multi platform advertisement to provide challenging

problems for practical and theoretical investigations even beyond

the multi-armed bandit setting.
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Figure 1: Representative price distribution for three platforms and one advertiser

Figure 2: Total reward obtained as a function of budget

Figure 3: Total reward obtained as a function of number of platforms

Figure 4: Average stopping time of the three algorithms as a function of budget
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A MODIFIED LUEKERLEARN ALGORITHM
In this section, we formally describe the modified LuekerLearn

algorithm we employ as a baseline in the experimental section. The

unbiased maximum likelihood estimate for censored data is given

by the Zeng’s estimator in Steps 1-5 of [39], which was first used

in [37]. A simpler estimate, which is not unbiased, is the famous

Kaplan-Meier estimator [25] which was used in [6]. After imple-

menting both, we found that the performance was similar and thus,

throughout the experimental section we use the simpler Kaplan-

Meier estimator. For our purposes, the Kaplan-Meier estimator is

defined as follows. Let D(t ′,b,p) denote the number of time-steps

until t ′ such that bidding b on platform p did not result in a click

(i.e., b < p) and let N (t ′,b,p) denote the number of times until t ′

we bid b on platform p. Then, the estimate p̂t (b,p) is defined as

1 −
t−1∏
t ′=1

(
1 −

D(t ′,b,p)

N (t ′,b,p)

)
.
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Algorithm 2Modified LuekerLearn algorithm

Initialize B1 = B, p̂1(i,b) = 1 for all platforms i ∈ [m] and all bids b ∈ [0, 1].
for t = 1, . . . , τ (i.e., until resource budget is exhausted) do
For each platform p ∈ [m] play the bid that maximizes the following

j∗p = argmax
b ∈[0,1]

b (6)

s.t.
∑

0≤σ ≤b p̂t (p,σ )σ ≤
Bt

m(T−t+1) (7)

Play arm xbt with bid bt = {bp, j∗p }p∈[m]

Update Bt to be the residual budget

Update p̂ for each bid and platform using the unbiased maximum likelihood estimate for censored data.

end for
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