
A Microscopic View of Bursts, Buffer Contention, and Loss in
Data Centers

Ehab Ghabashneh‡ Yimeng Zhao★ Cristian Lumezanu★

Neil Spring★ Srikanth Sundaresan★ Sanjay Rao‡
‡Purdue University ★Meta

ABSTRACT
Managing data center networks with low loss requires understand-
ing traffic dynamics at short (millisecond) time-scales, especially the
burstiness of traffic, and to what extent bursts contend for switch
buffer resources. Yet, monitoring traffic over such intervals is a
challenge at scale.

We make two contributions. First, we present Millisampler, a
lightweight traffic characterization tool deployed across all Meta
hosts. Millisampler takes a host-centric perspective to data collec-
tion, which is scalable and allows for correlating traffic patterns
with transport layer statistics. Further, simultaneous collection of
Millisampler data across servers in a rack enables analysis of how
synchronized traffic interacts in rack buffers. In particular, we study
contention, which occurs when multiple bursts arrive simultane-
ously at the dynamically shared rack buffer.

Second, we present a data-center-scale analysis of contention,
including a unique joint analysis of burstiness, contention, and loss.

Our results show (i) contention characteristics varywidely across
and within a region and is influenced by service placement; (ii)
contention varies significantly over short time-scales; (iii) bursts
are likely to encounter some contention; and (iv) higher contention
need not lead to more loss, and the interplay with workload and
burst properties matters. We discuss implications for data center
design including service placement, buffer sharing algorithms and
congestion control.

1 INTRODUCTION
Modern data center networks support diverse services and com-
munication patterns. These patterns shape network design tasks
including capacity planning, fabric design, and tuning of trans-
port parameters, all to provision an efficient network that provides
low loss and latency to services. Of particular importance are the
dynamics of communication at millisecond-scale intervals: traf-
fic is typically bursty at these timescales, even when average link
utilization is low [39].

Data center switches typically use buffers that are dynamically
shared, to balance competing goals of avoiding loss—by allowing a

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
IMC ’22, October 25–27, 2022, Nice, France
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9259-4/22/10.
https://doi.org/10.1145/3517745.3561430

single queue to use a significant chunk of the buffer—and of provid-
ing fairness—by preserving space for new bursts. However, little is
known about the dynamics of the interaction between traffic char-
acteristics and buffer sharing. Contention for the buffer occurs when
multiple bursts destined to different queues arrive at the rack buffer
at the same time. Because of dynamic sharing, contention results in
varying amounts of buffer allocated per queue, and therefore has
a significant impact on loss, latency, and ultimately, performance.
Better buffer policies, and congestion control design, depend on
the characteristics of traffic bursts (e.g., volume, duration) as well
as the degree and variability of contention.

Existing data center traffic characterization studies focus on
coarse-grained traffic characteristics such as traffic locality, the dis-
tribution of flow sizes and durations, and the utilization of links and
buffers [13, 22, 25, 35, 46]. However, understanding burstiness and
contention, and how they relate to losses in data center networks,
requires characterizing traffic at both fine time scales and large
network scales.

In this paper, we make the following contributions.
First, we presentMillisampler, a lightweight network traffic

characterization tool for continual monitoring that we have devel-
oped which operates at fine, and configurable time scales. Using
Millisampler, we can characterize traffic across all servers within
a data center rack at the same time (§ 4). We have validated that
at the sampling rate of Millisampler, host clocks are sufficiently
synchronized to ensure packets processed by the rack switch at
the same time appear in simultaneous Millisampler runs collected
across hosts (§4.5). We have deployed Millisampler at Meta with
data collected at every host in our fleet, with the broader goal of
understanding workloads, identifying difficult traffic patterns, and
troubleshooting the interactions between application behavior and
the network.

With Millisampler, we characterize traffic data at hosts rather
than switches [46] for three reasons. First, it is easy to collect, store,
and serve data at hosts. Switches are less uniformly programmable
to safely collect high-frequency statistics at scale. Second, the bur-
den on switches to collect simultaneous information on all ports
is an order of magnitude or more higher. Third, instrumenting the
host gives us rich context such as service information.

As a second contribution, we analyzeMillisampler data from two
data center regions of Meta over an entire day which corresponds
to over 8 billion sample points.

Specifically, we present the first large-scale characterization
of data center rack buffer contention.

We measure the degree of contention—how many bursts con-
tend for the buffer simultaneously—across racks (§7.1) and how it

1

https://doi.org/10.1145/3517745.3561430

varies both over a day (§7.2) and over seconds (§7.3). We find that
contention characteristics vary widely across and within a region—
even during busy hours in one region, 75% of racks see low average
contention, while 20% see average contention higher by a factor
of 3.4x due to computation-near-storage placement constraints.
Further, the contention level of each rack is persistent throughout
the day. Contention varies over milliseconds, often resulting in
per-queue buffer reductions of 34-70% over short periods.

We also present a joint analysis of traffic burstiness, con-
tention and loss.We characterize how losses in Meta data centers
depend on the degree of contention (§8.1). We then characterize
which bursts are most likely to encounter packet losses with regard
to burst properties and the degree of contention (§8.2). Somewhat
surprisingly, higher contention does not necessarily correlate with
higher losses, potentially due to stable workloads and stable per-
queue buffers. Nearly 92% of bursts see contention, and losses are
most likely to occur with contended bursts that are a few millisec-
onds in duration.

Our results raise interesting questions on how service placement
algorithms should incorporate network workloads, and insights
on whether buffer sharing policies should vary across racks, and
across time. The results also motivate the need for joint explorations
into the interactions between congestion control algorithms and
buffer sharing policies. Overall, the results highlight the impor-
tance of a fine grained traffic analysis approach, and the promise
of Millisampler.

2 BACKGROUND AND MOTIVATION
We start by providing background on buffer contention in data
centers. We then motivate why monitoring traffic patterns, espe-
cially contention and burstiness, at short time-scales is important to
managing data centers with low loss. Finally, we present rationale
for Millisampler, and why existing traffic measurement approaches
are inadequate.

2.1 Background
2.1.1 Switch buffer. Data center networks typically use shared

memory switches with a common packet buffer shared across all
interfaces. To limit unfairness, the size of each queue of every
interface is usually limited by a dynamic sharing mechanism that
may vary across implementations. In this paper, we focus on a
sharing algorithm based on the number of active queues and the
amount of free space in the buffer [16] because it is deployed in all
the racks that we study. Concretely, let 𝐵 denote the total size of
the shared buffer, and 𝑄 (𝑡) the total occupancy of the buffer at a
given point in time 𝑡 (i.e., the sum of the total traffic in each queue).
The maximum limit 𝑇 (𝑡) of each queue at time 𝑡 is given by the
formula below where 𝛼 is a tunable parameter, which we discuss
later in the section.

𝑇 (𝑡) = 𝛼 ∗ (𝐵 −𝑄 (𝑡))

2.1.2 Buffer contention. A data center rack typically has several
servers that are actively sending and receiving traffic. Downlink
from the rack, each server is mapped to a single egress queue. A
queue is active when it has packets to transmit, and it uses a portion
of the shared buffer which is dynamically allocated. Now consider

a scenario with 𝑆 active queues contending for the shared buffer, all
of which exercise the buffer to their permitted limit at the same time
𝑡 . Let 𝑇 be the limit that each queue sees in this state. Substituting
in the above equation, we have 𝑇 = 𝛼 ∗ (𝐵 − 𝑆𝑇), which in turn
yields:

𝑇 =
𝛼 × 𝐵

1 + 𝛼 × 𝑆

Figure 1 shows how 𝑇 varies for different 𝛼 and 𝑆 . If 𝛼 = 1 (the
default value used in our fleet), then,𝑇 = 𝐵

1+𝑆 . This implies a single
active queue would see a maximum queue size of 𝐵/2, while if two
queues were active, each would see a maximum queue size of 𝐵/3.
A higher 𝛼 results in larger queue sizes for the same 𝑆 – e.g., for
𝛼 = 2, the limit is 2𝐵/3 for a single active queue, and 2𝐵/5 for each
of two simultaneously active queues. However, the impact of 𝛼 is
greatest when contention is low.

2.2 Why study contention and burstiness?
In this paper, we characterize both the contention in data center
rack buffers and the interplay with burst properties and loss. In
doing so, we are motivated by several observations:

Contention levels impact data center losses in non-trivial
ways.Clearly, higher contention results in smaller per-queue buffers.
Interestingly, however, the buffer available per queue is more vari-
able at lower contention levels. This may be observed from Figure 1
where the slope (i.e., how much buffer available varies for a given
variation in contention) is significantly steeper at lower contention
levels across different 𝛼 values. At higher contention levels, buffer
share per queue is smaller, but is more stable across contention
levels. Smaller buffers have a reduced ability to absorb bursts which
typical congestion control algorithms that rely on RTT-timescale
feedback loops also cannot control well. Loss is particularly hard
on short bursty transactions because they can result in a higher
fraction of loss or even retransmission timeouts. However, certain
workloads may handle more stable buffers better, even if they are
smaller.

Burst properties and contention jointly impact losses.While
it is well known that data center traffic is bursty [46], it is less clear
what properties of bursts makes them most prone to loss, and how
this interacts with contention. Extremely small bursts can be ab-
sorbed by buffers, while long bursts that last several RTTs can be
handled by congestion control. Thus losses seen in a data center are
dictated by a combination of burst properties (e.g., lengths, volumes
and number of connections), and their interplay with contention
(which impacts buffer availability).

Contention and burst characteristics can guide buffer shar-
ing policies. Understanding contention and burstiness provides
important insights when tuning the dynamic buffer sharing algo-
rithm (in particular, the parameter 𝛼) to ensure low loss. As seen
from Figure 1, larger 𝛼 provides a larger share to each active queue,
but also results in more variability as the number of queues change.
The choice of 𝛼 is particularly important at lower contention levels.
If contention were consistently small, and showed less variation,
a larger 𝛼 might be appropriate to reduce losses related to traffic
bursts on the typically small number of active queues. However, sig-
nificant variation in contention may argue for smaller 𝛼 to ensure
fairness and more stability across queues.

2

0 2 4 6 8 10

of active queues (S)

0.00

0.25

0.50

0.75

1.00

Q
u
eu
e
sh
ar
e
(T

)
(f
ra
c.

of
b
u
ff
er
)

α =0.25

α =0.5

α =1

α =2

α =4

Figure 1: The maximum fraction of the buffer each queue
may get for different choices of 𝛼 .

2.3 Millisampler Rationale
In this paper, we study contention, and how the interplay with
burstiness impacts loss on a production fleet at region scale. We
achieve this through Millisampler, a tool that we have built and
deployed to collect fine grained network traffic information on hosts.
In designing Millisampler, we were motivated by the following
observations:

Existing production switch-based traffic monitoring is
coarse-grained. Conventionally, measuring data center network
traffic involves coarse-grained SNMP counters or relies on sam-
pling [13, 22, 25, 35, 46]. Unfortunately, polling counters is resource
intensive, and is hence typically done at coarse time-scales (min-
utes). Thus, many past studies have focused on coarse-grained
traffic characteristics such as locality, flow size duration and dis-
tribution, and link and buffer utilization [8, 13, 22, 25]. In contrast,
bursts occur at much smaller time scales, and coarse-grained link
utilization does not correlate well with loss rates [46]. It is tempting
to explain high loss and low utilization in coarse-grained statistics
by assuming short-duration bursts; Millisampler can confirm, and
in some cases, has pointed toward other causes of loss by measuring
smooth traffic.

Fine-grained switch-based traffic monitoring is resource
intensive to deploy at production scale Zhang et al. [46] collect
fine-grained ToR switch statistics at 10s to 100s of microseconds
granularity and characterize microbursts in Facebook production
data center networks. The approach involves modifying the switch
platform, which involves working with proprietary and vendor-
specific router ASIC SDKs. Further, heavy switch instrumentation is
computationally expensive. Indeed, the data from [46] is limited to
a few top-of-rack (ToR) switches collected on a one-time basis, and
samples only a single port at a time. Because the work only samples
a single port, it does not explore contention or how it relates to
bursts and loss.

3 THE META NETWORK
Meta operates a global data center network with “data center re-
gions” in multiple continents. Each region comprises multiple data
center buildings. Each building houses a fabric-based topology,
consisting of pods, which are a three-layer cluster with the top-
of-rack (ToR) switch at the bottom. Each rack consists of homo-
geneous servers; different racks will have servers of NIC speeds

typically ranging from 25 to 100 Gbps. The racks connect to up-
stream switches using 4 or 8 uplinks, each of 40 Gbps or 100 Gbps
capacity. The ToR switches in the Meta network have dynamically
shared buffers, as explained in § 2.1.

Most of the server-to-server traffic in the Meta network stays
within the region. This traffic uses DCTCP as the transport protocol,
while the smaller amount of inter-region traffic uses Cubic. For this
work, we focus on all of the buildings in a single representative
region. We focus on a single server type which uses a 50 Gbps NIC
that is shared across 4 servers. Each server is allocated 12.5 Gbps,
mapped to individual queues in the ToR (i.e., each server gets its own
queue). Such servers represent a large plurality of Meta’s network.
The ToR for these servers have a buffer of size 16MB, divided into
four quadrants of 4MB each. Of the 4MB, a small amount is made
available as dedicated buffer for each queue, and the rest, about
3.6MB, is shared across all queues. An egress queue maps to a single
quadrant as a function of the input and output port. The shared
buffer has an 𝛼 value of 1, which means that the maximum buffer
that a single queue can consume in an otherwise empty buffer is
50%. In practice, this is a roughly 1.8MBmaximum per queue; when
there is contention, the buffer may fill sooner.

We focus on in-region (DCTCP) traffic in this work, both because
it is dominant and because we can collect ECN marks to observe
congestion. We note that ECN does not prevent loss; because it is
still an end-to-end congestion signal, DCTCP struggles to react to
short bursts that span less than a few RTTs. The problem is exac-
erbated in heavy incast scenarios, where even a small congestion
window per sender can result in packet loss due to the large number
of senders overflowing the buffer. Small bursts and heavy incast
traffic patterns occur frequently in the Meta network.

The ToRs that we study have the smallest buffer in our fleet
and the slowest server-link speeds; other ToR models have larger
buffers and faster links (and different buffer sharing algorithms).
Our focus on the smaller buffers and slowest links is because they,
apart from constituting the plurality of our network fleet, also offer
the best opportunity for studying pathological buffer contention.
The smaller buffers lead to a higher probability of discards, and the
slower draining queues lead to a greater chance of traffic contending
in the buffer. The level of congestion and contention in other ToR’s
are comparatively less due to these reasons.

Operationally, we observe that most of the congestion in our
network happens in the server-link connecting the ToR to the
servers. Because of this, our ECN deployment is currently largely
operational only on the ToR, resulting in DCTCP not getting ECN
signals in the relatively less frequent event that congestion occurs in
the higher layers of the network. We have deployed a 120 KB static
ECN threshold for all our ToRs; we find that this value offers good
performance across our varied workloads, though we do not claim
that it is optimal. Per-service task placement is spread across racks,
and not localized to single services per rack; however placement
may still result in certain workloads being more predominant on
some racks than others.

4 MILLISAMPLER AND SYNCMILLISAMPLER
To characterize bursts and their impact on the network, conges-
tion control, and rack switch buffers, we measure timeseries of

3

Retransmit
Marking

Kernel TCP Stack
User

space/ms

NIC driver

Packet
Received

Packet
Sent

Network Interface Card (NIC)

Top of Rack Switch (TOR)

Packet
Classifier

Output

2000 samples

C
PU

 #
1

C
PU

 #
2

C
PU

 #
3

C
PU

 #
N

Counters array
In

In retx
Out

Out retx
In ecn
flow

Millisampler

Figure 2: Millisampler architecture, with packet flow and
counters.

network utilization, retransmissions, congestion-marked traffic vol-
ume, and connection counts at data center RTT granularities. To
collect representative measurements at data center scale, we impose
the following constraints on our measurement:
(1) Low per-packet processing, to run at line rate.
(2) Low storage overhead, to keep history of all server-links.
(3) Programmable, deployable, and maintainable for every server.

No existing approach fits all our requirements. End host packet
capture tools, such as tcpdump, face performance costs in shipping
packet headers from kernel to user space and potential data loss at
peak traffic should the kernel-to-user buffer overrun. Conversely,
switch-based monitoring is intensive on switches with limited re-
sources, so difficult to deploy at scale, as we discussed in Section 2.3.

In this section, we describe Millisampler, a tool to collects net-
work utilization at fine time scales with low storage and processing
overhead, and SyncMillisampler that extends this to run simultane-
ously across all hosts in a rack.

4.1 Millisampler
Millisampler comprises user-space code to schedule runs, store
data, and serve data, and an eBPF-based [1, 42] tc (“traffic clas-
sification”) filter that runs in the kernel to collect fine-timescale
data. The user code attaches the tc filter and enables data collection
periodically. Occasional execution minimizes overhead. Because it
is implemented in eBPF, it operates as compiled machine code in
the kernel with direct access to kernel data. A tc filter is among the
first1 programmable steps on the receipt of a packet and near the
last step on transmission. On ingress, this means that the eBPF code
executes on the CPU core that is processing the soft irq (bottom
half) as the packet is directed toward the owning socket. Because
processing happens on many CPU cores, to avoid locks, we use
per-cpu variables, which increases the memory requirement to
eliminate risk of contention.

1One could attach kprobes to the driver or use XDP [2] programs to process inbound
packets earlier; these have other issues (portability).

There are two important parameters in Millisampler: the sam-
pling interval and the number of time buckets. The choice of sam-
pling interval allows us to observe traffic at a wide range of granu-
larities: we schedule runs with three values: 10ms, 1ms, and 100`s.
The number of time buckets controls the memory footprint. Seek-
ing to limit memory and storage use, we fix the number of buckets
to 2000, regardless of sampling interval. This means that our ob-
servation periods range from 200ms (100`s sampling rate) to 20s
(10ms sampling rate). The memory footprint of each run consists
of 2000 64-bit counters per CPU core for each value we measure.

To construct timeseries, the tc filter takes as input the sampling
interval and an “enabled” flag. It records as the start time of a
run the timestamp of the first packet2 when enabled. Millisampler
determines the time bucket for the packet by determining how
long it has been since the start, then dividing that interval by the
sampling interval. It can then increment the relevant counters. If the
computed time bucket is beyond the number of buckets, the filter
will clear the enabled flag as a signal of completion to user-space and
to save future processing. User code waits until the expected run
time has passed and for the “enabled” flag to clear, then detaches the
tc filter from the processing path and reads the counters. Detaching
the tc filter ensures that no CPU time is used by the Millisampler
while it is disabled. User code then stores this data in the local disk
to be available on demand, and schedules another run.

4.2 Millisampler measurements
For each CPU and in each time bucket, Millisampler tallies the
ingress and egress total and retransmitted bytes, ECN-marked
ingress bytes, and the number of active connections.

Collecting ingress and egress total and ingress ECN-marked
bytes is straightforward: the lengths and CE bits are in the packets.
Existing Meta tools instrument the TCP stack and label packets as
retransmissions. These tools detect when TCP processes a timeout
or fast retransmission (not a tail loss probe [20]) and set an unused
bit in the header of the next outgoing packet in the connection.
Millisampler uses the bit to count retransmitted bytes.

Millisampler uses a 128-bit sketch [19] to estimate the number
of active (incoming and outgoing) connections. This means that
the connection count is an approximation that is precise up to a
dozen connections and saturates at around 500 connections per
sampling interval. Although there is space for additional precision,
in practice, more than the actual number of connections, the qualita-
tive variation between a few connections to dozens or hundreds of
connections has been helpful toward identifying patterns of traffic
with more connections (heavy incast) as opposed to more traffic
on fewer connections. Because it is stateless, we lack information
about whether an active flow in one interval was also active in
subsequent intervals.

Multiple counters may be incremented per packet; e.g., if the
ingress packet was ECN marked or retransmitted. Typically, to
store all counters yields a footprint between 4–12 MB, up to 60 MB
on larger machines with many cores, which is acceptably small as
such larger machines tend to have more memory available. The

2More precisely, the filter operates not necessarily on packets, but on a socket buffer,
which may be translated to or from many MTU-sized packets by the NIC’s segment-
reassembly features; here we use “packet” for simplicity.

4

storage footprint then comprises the aggregated counters from
periodically executed runs, compressed and stored on the host for
about a week, typically a few hundred megabytes. This week-long
history permits diagnostic analysis of atypical events, including
firmware bugs, kernel locking errors, and large congestion events.
For instance, Millisampler helped uncover a NIC firmware bug by
isolating examples of packet loss although utilization was low at
fine time-scales.

4.3 Performance
We confirm that Millisampler is efficient enough to both run on
everymachine and to have aminimal impact on packet transmission
time when active.

The in-kernel memory footprint of Millisampler is, on average,
3.6MB including counters of each type (e.g., ingress bytes), for each
of 2000 samples, for each CPU core. The CPU use of Millisampler,
on average, reaches 0.003%, likely because Millisampler only runs
some of the time. Both in memory and CPU, Millisampler is smaller
than other widely-deployed monitoring processes at Meta.

In microbenchmarks enabled by the BPF testing framework [42]
on an Intel Skylake generation processor at 1.60GHz, the time to
inspect and count all features of a single packet is 88 ns. The time
to process does not seem to depend on how many counters are set
(i.e., whether the packet has ECN) but on how many features of the
packet are inspected. For example, omitting flow counting reduces
the time per packet to 84ns. When the tc filter is installed (in the
packet processing path) but disabled (because it is not yet enabled
to run or has finished 2000 samples), the time to near-immediately
return from processing is 7ns. The 88ns we observe per processed
packet is substantially smaller than our best-case estimate of the
time required for running tcpdump to capture the same information
on the same machine. On this machine, tcpdump consumes 271ns
of CPU time per packet, based on time tcpdump -npi eth0 -s 100

-c 1000000 -w /dev/null. In these benchmarks, the time to read the
counter bpf map is a fixed 4.3ms, regardless of how many packets
are counted. A fixed amount of time per run and designing for the
worst, most heavily loaded case, is important for this design. With
these per-packet and per-run estimates, Millisampler comes out
ahead of tcpdump after just 33,000 packets. For context, we note
that even in the 0.2 second duration of a 100`s sampling rate run,
33,000 packets are possible.

4.4 SyncMillisampler
Millisampler provides visibility into bursts on a single host at mil-
lisecond scale. To understand whether bursts have synchronized
patterns across servers within a rack, we develop SyncMillisampler
to schedule concurrent Millisampler runs. SyncMillisampler has
a centralized control plane which sends data collection requests
to all servers across a rack and schedules them to start collecting
data at a specific time. To ensure that SyncMillisampler does not
conflict with a periodic Millisampler run, we schedule SyncMil-
lisampler data collection far enough in advance that no run will
be active, then prioritize scheduled SyncMillisampler runs over
periodic collection.

After all servers finish the run, the centralized control fetches
and processes the compressed data from all servers. Recall that each

0 250 500 750 1000 1250 1500 1750
0

1

2

Server1

Server2

Server3

Server4

Server5

Server6

Server7

Server8

256 258 260 262 264 266 268 270

Time (ms)

0

1

2

L
in
k
ra
te

(G
b
p
s)

Figure 3: Validation: A SyncMillisampler capture ofmulticast
bursts received by eight servers in one rack shows synchro-
nization of collection across receivers.

Millisampler run will start when it observes the first packet after
being enabled; collectively, each may start at a slightly different
time. Each start time is recorded, so to combine these runs into a
single one with uniform timestamps, we use linear interpolation to
construct data points for those series that are not already aligned.

4.5 Validation
We validate SyncMillisampler using two experiments:

Time synchronization. SyncMillisampler relies on multiple
hosts starting Millisampler at the same time. Aligning these con-
current Millisampler runs requires that the host clocks be synchro-
nized, at least to the timescale of the precision of the sampling rate
of Millisampler. Such synchronization should be achievable since
these hosts synchronize via one level of NTP servers to dedicated
appliances with stable clocks, using interleaved NTP to achieve
sub-millisecond precision [29].

To validate that packets processed by the rack switch at the same
time appear in simultaneous Millisampler runs at the same time,
we wrote a tool that sends periodic bursts to a rack-local multicast
address. The rack switch replicates packets in the bursts, and when
links are idle, these packets should arrive at subscribing hosts at
the same time.

We chose a production rack where most servers are idle, sub-
scribed eight servers to the multicast address, and run our tool to
send bursts every 100ms. We collect data using SyncMillisampler
at a 1ms sampling frequency since all the analysis we report in this
paper are based on this sampling rate. Figure 3(top) shows the link
rate per sample (1ms) for each of the subscribed servers. Figure
3(bottom) zooms into one of the synchronized periods, showing
how each server received the beginning of the burst in the same
sample. The lines for all servers overlap indicating the collection
across hosts is synchronized. Note that the bursts do not reach the
network interface line rate as multicast traffic is rate limited.

Identifying simultaneously bursty servers. We perform an
additional validation experiment to show that SyncMillisampler can
accurately identify the number of simultaneously bursty servers in
a rack, an important component of our analysis in later sections.

The experiment is performed using a burst generator tool which
we developed. The tool involves a client periodically requesting a
server to transmit a burst of a specified volume. Each request is

5

0 250 500 750 1000 1250 1500 1750
0

5

10

L
in
k
ra
te

(G
b
p
s)

Server1

Server2

Server3

Server4

Server5

848 850 852 854 856 858
0

5

10

L
in
k
ra
te

(G
b
p
s)

848 850 852 854 856 858

Time (ms)

0

2

4

#
of

b
u
rs
ty

se
rv
er
s

Figure 4: Validation: SyncMillisampler correctly identifies
the number of concurrent bursty servers.

sent at the specified frequency based on client’s local clock. We ran
the tool with five clients in the same rack receiving periodic bursty
traffic from five servers spread across five racks. Each burst had a
volume of 1.8 MBytes, resulting in approximately 3 ms duration
bursts, sufficiently long to be detected at a 1 ms granularity. Figure 4
(top) shows the link rate per sample for each client from SyncMil-
lisampler logs when a 1ms sampling rate is used. Figure 4 (middle)
zooms into one of the bursts, showing the burst volume that each
client receives during the burst samples. Again, the lines overlap
indicating SyncMillisampler correctly identifies that the bursts are
received near simultaneously. We next ran a post-analysis on the
SyncMillisampler logs to identify the number of simultaneously
bursty servers. Figure 4 (bottom) shows the number of simulta-
neously bursty servers identified by our post analysis. The graph
shows that SyncMillisampler correctly identifies that there are 5
bursty clients over the same 3 ms interval.

4.6 Discussion
Retransmissions observed by Millisampler indicate when losses
are repaired, not when they occur. In contrast, ECN marks indicate
congestion in real-time. To identify the bursts that lead to loss, our
analysis must look for retransmissions that occur an RTT later.

The tc layer sees segments before the sending NIC’s segmen-
tation offload and after the receiver’s offloaded reassembly. Thus,
the filter may see 64KB segments, potentially inflating burstiness at
very fine timescales (e.g., 100`s buckets). At such rates, we often see
periods of data rates in excess of line speed. We focus on collecting
data with 1ms sampling intervals, avoiding this issue.

The kernel must process packets. Rarely, we have observed
locking bugs in the kernel that prevent any handling of network
interrupts; in these cases, Millisampler will see no data even though
the network interface card is receiving, which can lead to additional
apparent bursts.

The kernel must process packets. Rarely, we have observed
locking bugs in the kernel that prevent any handling of network
interrupts; in these cases, Millisampler will see no data even though
the network interface card is receiving, which can lead to additional
apparent bursts.

0

5

Q
u
eu
e
id

0 250 500 750 1000 1250 1500 1750

Sample (ms)

0

2

C
on

te
n
ti
on

(a) Example run with low contention, varying between 0 (idle) and 3.

0

20

Q
u
eu
e
id

0 100 200 300 400 500

Sample (ms)

4

8

12

C
on

te
n
ti
on

(b) Example run with high contention, varying between 3 and 12.

Figure 5: Deep dive into two runs with SyncMillisampler.

5 DATASET
In this paper, we primarily report results collected using SyncMil-
lisampler over an entire weekday in 2022 from two different Meta
regions (which we refer to as RegA and RegB), each comprising mul-
tiple data centers. We focus our presentation on RegA, and present
results from RegB when the trends differ substantially. Each region
consists of thousands racks of the type we study, with the average
rack connected to 92 servers. We have validated our results by col-
lecting data from each region for three additional weekdays—our
results are similar, so we do not report them in the paper.

For each region, we randomly select 1000 racks to perform
SyncMillisampler (§4.4) runs every hour. While Millisampler it-
self can sample data at different time granularities, the results in
this paper use sampling rate of 1ms (over a 2s duration). This sam-
pling rate is ideal due to several reasons. It balances duration and
precision: a higher sampling rate would restrict observations to
a smaller duration potentially missing information about longer
bursts, while a lower sampling rate would provide less detail about
short flows. Further, our switch buffers are capable of queuing about
1ms worth of packets per queue, therefore much shorter bursts are
unlikely to result in loss, and therefore not interesting to us. Finally,
we found in §4.5 that our clocks are sufficiently synchronized to

6

Region # of # of # of bursty # of #
runs server runs server runs bursts of racks

RegA 22.4K 1.98M 0.67M 19.5M 1000’s
RegB 22.4K 2.1M 0.58M 23.9M 1000’s

Table 1: Summary of dataset for 1 day, and we validated with
3 more days.

align at this rate. Since the collection at each server may start and
end at slightly different times, we trim data to only consider the
common time region. After selecting only the overlapping inter-
val, the average length of a SyncMillisampler run is 1.85 seconds.
Our primary dataset (see Table 1) includes 44.8K runs in the day,
comprising 4.08M per-server runs, and in turn 8.16B sample points.

Bursts and contention. Our goal in this paper is to understand
the extent to which traffic in data centers contend for shared buffer
resources, and to explore the relationship between traffic patterns,
buffer dynamics, and loss. Since loss is typically caused by bursty
traffic patterns, we focus our analysis on traffic bursts. We define a
burst as any consecutive set of one or more sample data points that
exceeds 50% of line rate, following previous work [46]. Traffic less
than this rate does not typically result in buffering. We find that 34%
of server runs have bursty ingress traffic (we use ingress henceforth
to refer to traffic entering a host for consistency with our earlier
discussion) on server-links; 49.7% of the ingress traffic on server-
links is transferred in bursts. We focus only the ingress, in-region
traffic on server-links. Ingress traffic constitute the major source
of packet discards in our network, and in-region traffic comprises
of the vast majority of traffic. In-region traffic use DCTCP as the
congestion control mechanism.

Figure 5(a) presents the time series of an example run with
SyncMillisampler. The X-Axis is the 1ms sample obtained during
the run, and the Y-Axis corresponds to a server queue (only servers
that exhibited a burst during that run are shown). A dot indicates
that a particular server was bursty in that sample. Many servers
show multiple well-separated bursts, and bursts vary in length §6.

We define contention as the number of servers that are simulta-
neously bursty during each 1ms data point of the run. In Figure 5(a),
vertically aligned dots correspond to simultaneously active servers.
Clearly, over an entire run, the contention values obtained may vary
from data point to point. Figure 5(a) shows how the contention level
varies over the run. Notice that the contention level varies between
0 and 3. A contention level 0 indicates no bursts, while a contention
level 1 indicates a single burst (which effectively sees no buffer
contention). Recall from §2.1 that even seemingly small changes
in contention level can significantly impact buffer availability to
queues – for instance, in this figure, the buffer available to each
server queue would vary between 0.5 and 0.25 of the total shared
buffer depending on contention level. We look at different statistics
of contention, such as average, or 90𝑡ℎ percentile, in our analysis as
appropriate. Figure 5(b) presents an example of another sync-run
where the contention levels are much higher. These graphs illus-
trate SyncMillisampler’s ability to analyze traffic dynamics at fine
granularities (§2.3).

6 A QUICK VIEW OF BURSTS
Before we delve into the effect of bursts, we present a high-level
characterization of bursts in Meta’s data center. Our definition of
bursts excludes traffic with smooth utilization that never reaches
50%. This is deliberate: such traffic is “easy” for congestion control
to handle, and unlikely to result in buffering. We focus this section
on RegA, which has 19.5M bursts total. Bursts for RegB show similar
trends.

Server-links are largely idle. For each bursty server run, we
compute the average utilization across the run (Figure not shown).
The median run average utilization is 6.4%, while the 95𝑡ℎ percentile
is less than 45%. Furthermore, within bursty runs, we separate out
the bursty period from the non-bursty period. Outside the bursts,
the median average utilization is 5.5%. In comparison, inside bursts,
the median average server-link utilization is 65.5% indicating that
bursty periods only occupy a fraction of the total run.

Bursts are frequent, but short. Figure 6 shows the normalized
number of bursts per second. The median run sees 7.5 bursts per
second, while the 90𝑡ℎ percentile is significantly higher (39.8). Fig-
ure 7 shows the distribution of burst lengths (blue). The median
burst length is 2ms, while the 90𝑡ℎ percentile length is 8ms. We will
discuss the implication of bursts of this length in §8.1.

Non-contended bursts are shorter and smaller volume.
We classify bursts that see contention at any point in their life-
time as contended bursts, and those that do not see contention
at any point as non-contended bursts. 84.8% of bursts in RegA
experience contention. Figure 7 also show the burst length for con-
tended (red) and non-contended bursts (green). The non-contended
bursts are shorter with 88% less than 3ms. We have also analyzed
burst volumes and observed similar trends. Across all bursts, the
median (p90) burst volume is 1.8MB (9MB). In contrast, among non-
contended bursts, the median (p90) burst volume is 1MB (2.9MB).
These trends are expected as longer bursts have greater volume
and are more likely to encounter contention.

More connections are active inside a burst than outside.
Figure 8 shows the average number of connections per sample
in a run inside and outside of bursts. As expected, the number of
connections during a burst is higher than the number of connections
outside a burst, with a median difference of 2.7x the number of
connections.

7 CHARACTERIZING CONTENTION
In this section, we characterize contention in the Meta network,
motivated by the following questions:

• What is the typical degree of contention in data center racks? Is it
similar across racks, or do we see variation?

• How does contention within a rack vary across timescales ranging
from milliseconds to an entire day?

Typical contention levels and their short term variation help us
to understand the buffer available to deal with traffic bursts and the
variability of these buffers. This is in turn help us understand losses
in data centers and inform the design of buffer sharing policies
(§2.2). Significant differences in contention across racks indicates
that buffer parameters need to be configured differently across racks,
or that task placement across racks needs to be revisited. Likewise,

7

0 20 40 60 80

Frequency of bursts (per sec)

0

25

50

75

100

%
of

se
rv
er

ru
n
s

Figure 6: Frequency of bursts in a run.

0 10 20 30 40

Burst length (ms)

0

25

50

75

100

%
of

b
u
rs
ts

all

non-contended

contended

Figure 7: Bursts length distribution.

0 50 100 150 200

Average number of connections

0

25

50

75

100

%
of

se
rv
er

ru
n
s

outside-burst

inside-burst

Figure 8: Connection counts.

0.0 2.5 5.0 7.5 10.0 12.5 15.0

Avg. contention

0

25

50

75

100

%
of

ra
ck
s

RegA

RegB

Figure 9: The average contention across racks for each of
RegA and RegB during busy hour

significant variation across time (e.g., over a day) is an indication
that buffer parameters may need to be modified dynamically.

7.1 How does contention vary across racks?
We start by measuring average contention on Meta racks. The
overall load in a data center region depends on the local time, and
we first present contention results for an hour that was relatively
busy for both regions (6am-7am local time). We explore diurnal
contention variation later. Figure 9 shows a CDF of the average
contention across racks for each of RegA and RegB over this one
hour period. We make two observations. First, both regions show a
similar spread of average contention, however RegB shows higher
contention than RegA. Second, the distribution of contention across
racks of RegB is fairly uniform. Somewhat surprisingly, RegA shows
a bimodal trend: 75% of the racks show relatively low average
contention (less than 2.2), while the top 20% jump above 7.5. We
categorize the 20% of racks in RegA with highest contention as
RegA-High, and the remaining 80% as RegA-Typical (which consists
primarily of low contention racks and a few with intermediate
contention).

Interplay with task placement.We further investigate this un-
expected bimodal trend next by better understanding the interplay
with the placement of tasks on racks. In Meta, each server typically
runs a single task – however, each rack may run a diverse set of
tasks across the servers in the rack. Figure 10 presents a distribution
of the number of tasks running on the racks in each region. The
figure shows that the racks in RegA-High run significantly fewer
tasks. For instance, the median rack in RegA-High only runs 8 tasks,
while the median rack in RegA-Typical and RegB run 14 and 15
tasks respectively. We next consider to what extent racks are dom-
inated by a single task. For each rack, we compute the percentage
of servers in that rack which run the dominant task for that rack
(i.e., the task running on the most number of servers in that rack).

Figure 11 (left) presents the percentage across all the racks. The
X-axis is sorted by the contention value to obtain a rack ID. The
left portion of the graph corresponds to RegA-Typical racks, while
the right portion corresponds to RegA-High racks. For the racks
in RegA-High, the top task runs on a much larger percentage of
servers (for the vast majority of these racks the percentage ranges
from 60% to 100). In contrast, for most racks in RegA-Typical the
top task runs on a smaller percentage of servers (the median across
RegA-Typical racks is 25% , and the 90𝑡ℎ percentile is 38%). Figure 11
(right) shows RegB has a similar trend as RegA. Further analysis
showed the top task in each of the RegA-High racks was the same
(a machine learning task), and the results were a result of task place-
ment that favored co-locating machine learning workloads densely
in a single data center.

7.2 How does contention vary over a day?
Next, we look at how contention varies across the day, both in
individual racks and across racks.

How does the contention of individual racks vary across
the day? Figure 12 (top) analyzes variation across the day for RegA
racks consolidating all hours (in contrast to Figure 9 which shows
a single hour). Each rack is typically associated with 10 runs spread
throughout the day. For each rack, we (i) determine the average
contention for every run; and (ii) compute the mean, minimum and
maximum of the average contention values across the runs. We sort
racks by this mean to compute a rack ID, used for the 𝑥-axis. We
then plot the mean (the solid line) and interval between minimum
and maximum (gray interval). Figure 12 (top) shows the same
qualitative bimodal distribution as Figure 9 but with 75% of racks
with contention less than 1.4 and 20% with over 6.4. Further, the
variation in contention for the less contended racks is small (average
variation is 0.8). The highly contended racks are always highly
contended; although they have higher variation (average variation
is 5.3), it is not the case that they are typically low-contended with
occasional outliers that draw up the average. The two categories
are well separated with generally non-overlapping ranges. Overall,
Figure 12 (top) shows that racks consistently experience similar
average contention throughout the day. i.e., some racks persistently
show significantly lower contention levels than others. Figure 12
(bottom) analyzes variation of average contention across hours
for RegB. The variation is fairly pronounced, and the range of
contentions for racks show far more overlap.

What diurnal trends does contention exhibit? Figure 13
shows the variation of contention by hour for racks in RegA-High
(top) and RegB (bottom). We do not show RegA-Typical since the
variation during the day is small, as seen earlier, and the diurnal
trends mirror RegA-High.

8

0 10 20 30

Number of distinct tasks

0

20

40

60

80

100

%
of

ra
ck
s

RegA-Typical

RegA-High

RegB

Figure 10: Tasks diversity across racks

0 200 400 600 800 1000 1200

Rack Ids

0

25

50

75

100

%
of

d
om

in
an

t
ta
sk

in
st
an

ce
s RegA

Typical
RegA
High

0 250 500 750 1000 1250 1500

Rack Ids

0

25

50

75

100

%
of

d
om

in
an

t
ta
sk

in
st
an

ce
s RegB

Figure 11: Dominant task density across racks.

0 500 1000 1500 2000

Rack id

0

10

A
v
g.

co
n
te
n
ti
on RegAmean

0 1000 2000 3000

Rack id

0

10

20

A
v
g.

co
n
te
n
ti
on RegBmean

Figure 12: The variation of average contention across racks
for different regions.

For each hour, we consider all runs corresponding to racks in
each group, and present a box-plot that shows the variation of
average contention across the runs. The diurnal pattern is strong
for RegA-High: there is a clear increase in contention (27.6% on
average) between hours 4 and 10. RegB also exhibits clear diurnal
patterns, and the increase is particularly pronounced at higher
percentiles.

To validate the results, we also looked at diurnal trends in traf-
fic volumes; they show similar behavior. Figure 14 examines this
further for RegA by showing the correlation between average con-
tention in a rack with its ingress traffic. The figure groups the runs
into buckets based on the total ingress bytes each rack receives
over 1-minute interval at which the run was collected (note that
production switches at Meta only support collecting traffic volume
statistics at 1 minute time granularity). The figure then plots the
average contention distribution across runs in each bucket. The
results show that ingress volumes do show a clear correlation with
average contention. While we cannot definitively explain why the
peak in traffic volumes occurred between hours 4 and 10, we note
that the diurnal patterns in data center traffic depend on several
factors such as background service tasks, user activity and where
users are physically located, and thus may vary relative to Internet
traffic.

0 2 4 6 8 10 12 14 16 18 20 22

Hour

0

5

10

15

A
v
g.

co
n
te
n
ti
on RegA-High

0 2 4 6 8 10 12 14 16 18 20 22

Hour

0

5

10

A
v
g.

co
n
te
n
ti
on RegB

Figure 13: Diurnal trends in contention.

Figure 14: The correlation between average contention in a
rack with total traffic entering a rack for RegA.

7.3 Does contention vary over a run?
Next, we look at how contention varies within each run. This short-
term variation is important as it captures the dynamics of howmuch
buffer is available to each queue to handle a burst. We take each run
and consider the minimum contention (across points with at least
one active server) and the 90𝑡ℎ percentile (p90) contention. Note
that we exclude 6.2% of the runs where the p90 contention is zero.
Figure 15(a) shows the runs sorted by their minimum contention,
followed by the p90. Figure 15(b) studies how this variation in
contention impacts the per queue buffer during each run. The top
curve shows the maximum buffer each queue would get during the
run, while the bottom curve shows the buffer a queue would get
when the p90 contention is experienced. The difference between

9

0 5000 10000 15000 20000

Run id

0

10

20

C
on

te
n
ti
on

min contention

p90 contention

(a) The min and 90𝑡ℎ percentile of contention for each run from RegA.

0 5000 10000 15000 20000

Run id

0

20

40

Q
u
eu
e
sh
ar
e

(%
of

b
u
ff
er
)

min contention

p90 contention

(b) The corresponding queue buffer variation for runs on top.

Figure 15: The contention variation within RegA runs, and
its impact on per queue buffer share.

the curves captures the drop in buffer share during the run. For
example, runs with id between [3400-12500] experience buffer share
drop from 50% to 33.3% which is a 33.4% drop from its peak. The
median run encounters a drop of 33.3%, and for 15% of the runs,
the drop is ≥ 70%. Note that for runs with low contention, even a
small change in contention leads to significant drop in buffer share.

7.4 Takeaways
• Contention characteristics vary widely across and within a
region.While the average contention for most racks is quite low
(≤ 5), the spread of contention across racks is broad in both regions:
the inter-quartile range is about 5. However, the distribution across
regions is starkly different, with RegA exhibiting bimodal prop-
erty with 20% of racks exhibiting high contention, owing to task
placement that favored co-locating machine learning workloads in
a single data center. Diurnal effects exist, but are not as dominant.
• Contention and hence available buffer is highly variable
over short time-scales. The median run encounters a 33.3% drop
in buffer share, while for 15% of the runs, the reduction exceeds
70%.

8 CONTENTION, BURSTS, AND LOSS
In the previous sections, we characterized the properties of bursts,
and characterized contention in Meta. In this section, we explore
how these factors together impact losses. Specifically, we are moti-
vated by the following questions:
• How do contention levels impact losses?While larger contention
results in smaller buffers, available buffer is more variable at lower
contention levels, and may interact with congestion control in
subtle ways.
• How do burst properties and their interplay with contention impact
losses?While contention dictates the buffer available, the likelihood

Region # of bursts % contended % lossy
RegA-Typical 10.2M 70.9% 1.05%
RegA-High 9.3M 100% 0.36%
RegB 23.9M 96.8% 0.78%

Table 2: Summary of the bursts in the three classes of rack.

0 5 10 15 20

Contention

0

2

4

%
of

b
u
rs
ts

w
it
h
lo
ss

RegA-Typical

RegA-High

RegB

Figure 16: The correlation between contention and loss.

of loss depends on intrinsic nature of bursts (e.g., burst length, and
the number of connections).

Methodology. In addition to classifying bursts based onwhether
they experience contention (§6), we also associate bursts with loss.
Recall that retransmitted packets in our network have a bit set in
the IP header (§4.2), thus making this classification straightforward.
We further associate each burst with a contention level, i.e., how
much contention the burst experiences during its lifetime. Specif-
ically, we consider the contention level at each sample point of
the burst, and take the maximum. We have also considered an al-
ternate approach, where we associate each burst that experienced
loss with the contention level it experienced at the time of its first
loss. While bursts tend to see slightly lower contention levels at
the time of their first loss compared to the maximum contention
they experience, the trends are similar and we do not present these
results.

8.1 How does contention level impact loss?
Table 2 presents a high level summary of the bursts in the three
classes of racks; RegA-Typical, with low or moderate average con-
tention, and RegA-High with higher average contention, both in
RegA, and all racks in RegB.

First, we see that RegA-High racks are more bursty. Although
this category only accounts for 20% of racks, it contributes 47.8% of
all bursts. Second, across a rack, a burst is very likely to encounter
contention—in fact all bursts in RegA-High, and 96.8% of bursts
in RegB are classified as contended. Even in RegA-Typical, nearly
71% of bursts see contention. Third, and most surprisingly, a much
larger percentage of bursts in RegA-Typical (1.05%) experience loss
compared to RegA-High (0.36%), 2.9x higher. This goes against our
initial hypothesis that larger contention levels should increase the
likelihood of loss.

To understand this further, we associate each burst with its
maximum contention level as discussed earlier. For all bursts with
a given maximum contention level, we identify the fraction which
experience loss, and present results in Figure 16. First, for each
class of racks, the fraction of lossy bursts increases with contention
levels. This is intuitive since the per queue buffer share is lower with
larger contention. Second, RegA-Typical sees significantly higher
loss for a given contention level. In fact, bursts are more likely to

10

Figure 17: RegA-High racks also see fewer discards per byte
in corresponding switch counters.

be lossy with RegA-Typical at contention levels under 5 relative to
RegA-High at much higher contention levels.

We have also looked at congestion discards in the rack switch
counters for RegA-High relative to RegA-Typical to confirm this
lower loss rate despite higher contention. For each rack, we obtain
the sum of per-queue congestion discards at a minute granularity,
and normalize the sum to traffic volume. Figure 17 plots a CDF of
the normalized congestion discards for the two classes of racks.
RegA-High sees lower normalized congestion discards, consistent
with Figure 16. One explanation for this result could be that since
RegA-High sees more persistent contention, the end points are
able to adapt better. However, RegA-High racks also correlated
with congestion discards in the fabric—we believe this is due to a
combination of several factors: contention occurs in the fabric due to
the high density of placement of the machine learning tasks(§7.1).
ASICs are more diverse, with a variety of buffer sizes, and link
speeds are significantly higher (100Gbps) in the fabric. Therefore,
similar contention levels could result in less loss, and also result in
somewhat smoother bursts arriving downstream at the racks.

This suggests that while higher contention does lead to more
loss, the relationship is more nuanced, and other factors such as
workloads, location of contention, and burst properties play a role.
Further, it is possible that smaller stable buffers suffice for some
workloads, while other workloads may experience losses related to
larger yet more variable buffers.

8.2 How do burst properties impact loss?
We now look at other burst properties (volume and number of con-
nections) and their relation to loss and contention. We primarily
focus on RegA-Typical racks: this is because it offers a good mix
of contended and non-contended bursts. Second, even though con-
tention in general is low in these racks, we saw that they suffer
higher loss. We have also repeated our analysis for RegB. Although
it has a much smaller percentage of non-contended bursts, the
trends are similar and we do not report further.

Loss variation over bursts length.We group bursts into buck-
ets based on their length, and find the percentage of lossy bursts
per bucket. Figure 18 shows loss is initially low; this is because
buffers are big enough to easily absorb them. As the burst length
increases, loss increases sharply, and then stabilizes or even de-
creases. This is true for both contended and non-contented bursts;
however, we see that beyond about a burst length of 8ms, loss is
higher for contented bursts. The initial increase in loss rates for
both sets of bursts can be explained because as a burst is longer,

0.0 2.5 5.0 7.5 10.0 12.5 15.0

Burst Length (ms)

0

2.5

5

7.5

10

%
of

b
u
rs
ts

w
it
h
lo
ss

non-contended

contended

Figure 18: The correlation between burst length and loss.

it has a higher likelihood of overflowing a buffer. However, this is
true only until the burst is long enough for congestion control to
adapt to feedback. Contended bursts see more loss and stabilize
later potentially because of higher variability in the buffers making
it harder for congestion control to react before the queue overflows.

0 20 40 60 80

Avg. number of connections

0.0

2.5

5.0

7.5

%
of

b
u
rs
ts

w
it
h
lo
ss

non-contended

contended

Figure 19: The correlation between incast and loss.

Loss and incast. We next look into the impact of number of
connections in each burst along with contention on loss. Recall
from §4.2 that connection count is based on a per-sample- point
sketch and is therefore an estimate, and not the total connections
for the entire burst. Figure 19 shows that the number of connections
causes loss rates to increase, and then stabilize. However, we see
that loss for contended bursts can be 3-4x the loss for not contended
bursts. While contention considers simultaneous bursty traffic to
multiple servers, and incast captures the number of simultaneous
connections to the same server. Incast traffic is more likely to ex-
perience loss during contention because it will have smaller buffer
available.

8.3 Takeaways
Bursts are highly likely to experience contention, and hence
variable buffers. From Table 2, 91.4% of bursts experience con-
tention, which implies lower buffer share Combinedwith the 8.6% of
bursts that don’t see contention, available buffers vary significantly.

Higher contention need not lead tomore loss; burst proper-
ties matter. While loss generally increases with contention, RegA-
Typical which had much less contention surprisingly experienced
muchmore loss. We hypothesize that this stems from a combination
of workloads, and burst properties such as burst length and number
of connections. 4 to 6% of contended bursts of intermediate length
(6-10 ms) and high connection counts (50-60) experienced loss, the
regime where losses were most prevalent.

9 IMPLICATIONS FOR DATA CENTERS
Placement algorithms: Server placement algorithms in produc-
tion settings do not extensively consider the impact of network

11

traffic patterns [33]. However, while placement can affect buffer
contention (§7), and hence network performance, incorporating
such patterns appears non-trivial. While the degree of contention
is a potential metric to consider (which we show only loosely corre-
lates with traffic volumes), the fact that higher contention does not
translate to more loss across workloads indicates the need for more
detailed metrics that combine burst properties and contention.

Buffer sharing algorithms: Since placement algorithms cannot
guarantee homogeneous characteristics, our results suggest there is
a strong case to tailoring buffer sharing policies to groups of racks,
and to distinct workloads. A relatively small set of configurations—
say one each for low contention and high contention regimes, and
for certain large workloads—appear sufficient. While our results do
show diurnal effects, it is less clear whether changing policies for
a rack over time-scales of a day is worthwhile (as the same racks
continue to have similar contention trends). However, this may
need further investigation with more data.

Interplay of buffer sharing algorithms with congestion
control: The variation of available buffer over RTT timescales ar-
gues for congestion control mechanisms that can explicitly handle
variability in buffer, and the need for models to understand the
trade-offs between smaller stable buffers, and larger but more vari-
able buffers. The results also call for new buffer sharing algorithms
designed to reduce this variability at low contention levels. Implica-
tions for newer ASICs that support larger buffers [45] but may need
to deal with larger traffic volumes is another interesting direction.

10 RELATEDWORK
We discussed data center traffic measurements work in §2.3 [13, 22,
25, 35, 46]. We discuss other related work:

Buffer sharing algorithms.Our study was motivated by recent
advances in buffer sharing algorithms. Shan et al. [38] modified
the dynamic threshold algorithm (DT) [16] by relaxing the fairness
constraint allowing microbursts to fully use the buffer in order to
avoid loss. Apostolaki et al. [7] generalize DT and use different 𝛼
for the same queue based on flow class (i.e. higher 𝛼 for mice, and
lower 𝛼 for elephant flows). and subsequently [6] design a new
algorithm that provides better isolation for high priority traffic
while sustaining link utilization. Huang et al. [23] dynamically
assign 𝛼 (per port) to control the fraction of buffer that each port
can get. Other works [6, 7, 23, 38] seek to absorb bursts contending
for the buffer and avoid loss. However, all proposed algorithms are
designed oblivious to how contention looks inside a data center, and
how contention characteristics correlate with loss. Our work can
inform the design of such buffer sharing algorithms. Several works
have explored buffer sizing in wide area networks [9, 12, 18, 30]
but do not consider buffer contention, an important focus of this
paper.

Burst characterization and microburst detection. Tradi-
tional sampling-based techniques [17, 34] are too coarse-grained
to detect microbursts. Several works [14, 24, 32, 40, 41] leverage
advances in programmable dataplanes to detect and measure mi-
crobursts in switches. In contrast, we focus on understanding how
burst properties and contention impact loss. While we focus on data
center traffic, much work (notably [27]) has analyzed the burstiness
of Internet traffic.

Data center congestion control and loss diagnosis. There
has been much work on data center congestion control [3–5, 15, 21,
26, 31, 37, 44, 47]. Recent work [28] has explored more responsive
congestion control at short timescales, important given bursts of
intermediate length are particularly challenging to tackle. Wei et
al. [11] explore the interplay between buffer sharing and congestion
control, an area that may need more attention. Others [10, 36, 43]
combine end host instrumentation with probing to identify prob-
lematic links in a data center that result in loss. For instance, [10]
detects TCP retransmissions at end hosts which triggers active
probes to aid diagnosis. In contrast, SyncMillisampler does not cre-
ate additional probes, and allows us to understand how workloads
across servers in a rack lead to contention losses in router buffers.

11 CONCLUSION
We have made two contributions. First, we have presented Millisam-
pler, a lightweight network traffic characterization tool, that takes
a unique host-centric perspective to data collection. Millisampler
allows for analyzing traffic at the time-scales of milliseconds at
data center scale and has been operationally deployed across all
hosts in the Meta network. Second, we present a data-center-scale
analysis of contention in racks, including a unique joint analysis
of contention, traffic burstiness, and loss. Our results highlight the
importance of characterizing traffic dynamics at short time-scales,
the effectiveness of Millisampler in doing so, and sheds important
insights that can guide the design of buffer sharing, congestion
control, and server placement algorithms.

12 ACKNOWLEDGEMENTS
We thank our shepherd, Phillipa Gill, and the anonymous reviewers
for their feedback which greatly helped improve the paper. We
also thank colleagues whose feedback greatly improved the work,
including Rob Sherwood, Jakub Kicinski, Balasubramanian Madha-
van, Chris Canel, Prashanth Kannan, Nicolaas Viljoen, and Raghu
Nallamothu. This work was funded in part by the National Science
Foundation (NSF) Award 1910234.

REFERENCES
[1] [n. d.]. tc-bpf(8) manual page. ([n. d.]). https://man7.org/linux/man-pages/man8/

tc-bpf.8.html.
[2] Paolo Abeni. 2018. Achieving high-performance, low-latency networking

with XDP. (Dec. 2018). https://developers.redhat.com/blog/2018/12/06/
achieving-high-performance-low-latency-networking-with-xdp-part-1/.

[3] MohammadAlizadeh, Albert Greenberg, David AMaltz, Jitendra Padhye, Parveen
Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. 2010. Data
center TCP (DCTCP). In Proceedings of the ACM SIGCOMM Conference. 63–74.

[4] Mohammad Alizadeh, Abdul Kabbani, Tom Edsall, Balaji Prabhakar, Amin Vahdat,
and Masato Yasuda. 2012. Less is more: Trading a little bandwidth for ultra-low
latency in the data center. In USENIX Symposium on Networked Systems Design
and Implementation (NSDI). 253–266.

[5] Mohammad Alizadeh, Shuang Yang, Milad Sharif, Sachin Katti, Nick McKeown,
Balaji Prabhakar, and Scott Shenker. 2013. pfabric: Minimal near-optimal data-
center transport. ACM SIGCOMM Computer Communication Review 43, 4 (2013),
435–446.

[6] Maria Apostolaki, Vamsi Addanki, Manya Ghobadi, and Laurent Vanbever. 2021.
FB: A Flexible Buffer Management Scheme for Data Center Switches. CoRR
abs/2105.10553 (2021). arXiv:2105.10553 https://arxiv.org/abs/2105.10553

[7] Maria Apostolaki, Laurent Vanbever, and Manya Ghobadi. 2019. FAB: Toward
Flow-Aware Buffer Sharing on Programmable Switches. In Proceedings of the
2019 Workshop on Buffer Sizing (BS ’19). Association for Computing Machinery,
New York, NY, USA, Article 2, 6 pages. https://doi.org/10.1145/3375235.3375237

[8] Guido Appenzeller, Isaac Keslassy, and Nick McKeown. 2004. Sizing Router
Buffers. In Proceedings of the ACM SIGCOMM Conference. 281–292. https://doi.
org/10.1145/1015467.1015499

12

https://man7.org/linux/man-pages/man8/tc-bpf.8.html
https://man7.org/linux/man-pages/man8/tc-bpf.8.html
https://developers.redhat.com/blog/2018/12/06/achieving-high-performance-low-latency-networking-with-xdp-part-1/
https://developers.redhat.com/blog/2018/12/06/achieving-high-performance-low-latency-networking-with-xdp-part-1/
http://arxiv.org/abs/2105.10553
https://arxiv.org/abs/2105.10553
https://doi.org/10.1145/3375235.3375237
https://doi.org/10.1145/1015467.1015499
https://doi.org/10.1145/1015467.1015499

[9] Guido Appenzeller, Isaac Keslassy, and Nick McKeown. 2004. Sizing Router
Buffers. In Proceedings of the 2004 Conference on Applications, Technologies, Ar-
chitectures, and Protocols for Computer Communications (SIGCOMM ’04). As-
sociation for Computing Machinery, New York, NY, USA, 281–292. https:
//doi.org/10.1145/1015467.1015499

[10] Behnaz Arzani, Selim Ciraci, Luiz Chamon, Yibo Zhu, Hongqiang (Harry) Liu, Jitu
Padhye, Boon Thau Loo, and Geoff Outhred. 2018. 007: Democratically Finding
the Cause of Packet Drops. In 15th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 18). USENIX Association, Renton, WA, 419–435.
https://www.usenix.org/conference/nsdi18/presentation/arzani

[11] Wei Bai, Shuihai Hu, Kai Chen, Kun Tan, and Yongqiang Xiong. 2021. One
More Config is Enough: Saving (DC)TCP for High-Speed Extremely Shallow-
Buffered Datacenters. IEEE/ACM Transactions on Networking 29, 2 (2021), 489–502.
https://doi.org/10.1109/TNET.2020.3032999

[12] Neda Beheshti, Yashar Ganjali, Monia Ghobadi, NickMcKeown, andGeoff Salmon.
2008. Experimental Study of Router Buffer Sizing. In Proceedings of the 8th
ACM SIGCOMM Conference on Internet Measurement (IMC ’08). Association for
Computing Machinery, New York, NY, USA, 197–210. https://doi.org/10.1145/
1452520.1452545

[13] Theophilus Benson, Aditya Akella, and David A Maltz. 2010. Network traffic
characteristics of data centers in the wild. In Proceedings of the ACM SIGCOMM
Conference on Internet Measurement. Association for Computing Machinery, 267–
280.

[14] Xiaoqi Chen, Shir Landau Feibish, Yaron Koral, Jennifer Rexford, and Ori Rotten-
streich. 2018. Catching the microburst culprits with snappy. In Proceedings of the
Afternoon Workshop on Self-Driving Networks. 22–28.

[15] Inho Cho, Keon Jang, and Dongsu Han. 2017. Credit-Scheduled Delay-Bounded
Congestion Control for Datacenters. In Proceedings of the Conference of the ACM
Special Interest Group on Data Communication (SIGCOMM ’17). Association for
Computing Machinery, New York, NY, USA, 239–252. https://doi.org/10.1145/
3098822.3098840

[16] A.K. Choudhury and E.L. Hahne. 1998. Dynamic queue length thresholds for
shared-memory packet switches. IEEE/ACM Transactions on Networking 6, 2
(1998), 130–140. https://doi.org/10.1109/90.664262

[17] Benoit Claise, Ganesh Sadasivan, Vamsi Valluri, and Martin Djernaes. 2004. Cisco
systems netflow services export version 9. (2004).

[18] A. Dhamdhere, H. Jiang, and C. Dovrolis. 2005. Buffer sizing for congested Internet
links. In Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer
and Communications Societies., Vol. 2. 1072–1083 vol. 2. https://doi.org/10.1109/
INFCOM.2005.1498335

[19] Cristian Estan, George Varghese, and Mike Fisk. 2003. Bitmap Algorithms for
Counting Active Flows on High Speed Links. In Proceedings of the ACM SIGCOMM
Conference on Internet Measurement. 153–166. https://doi.org/10.1145/948205.
948225

[20] Tobias Flach, Nandita Dukkipati, Andreas Terzis, Barath Raghavan, Neal Card-
well, Yuchung Cheng, Ankur Jain, Shuai Hao, Ethan Katz-Bassett, and Ramesh
Govindan. 2013. Reducing Web Latency: The Virtue of Gentle Aggression. In
Proceedings of the ACM SIGCOMM Conference. 159–170. https://doi.org/10.1145/
2486001.2486014

[21] Keqiang He, Eric Rozner, Kanak Agarwal, Yu (Jason) Gu, Wes Felter, John Carter,
and Aditya Akella. 2016. AC/DC TCP: Virtual Congestion Control Enforcement
for Datacenter Networks. In Proceedings of the 2016 ACM SIGCOMM Conference
(SIGCOMM ’16). Association for Computing Machinery, New York, NY, USA,
244–257. https://doi.org/10.1145/2934872.2934903

[22] Yihua He, Nitin Batta, and Igor Gashinsky. 2019. Understanding switch buffer
utilization in CLOS data center fabric. (2019). http://buffer-workshop.stanford.
edu/papers/paper25.pdf

[23] Sijiang Huang, Mowei Wang, and Yong Cui. 2021. Traffic-aware Buffer Manage-
ment in Shared Memory Switches. In IEEE INFOCOM 2021 - IEEE Conference on
Computer Communications. 1–10. https://doi.org/10.1109/INFOCOM42981.2021.
9488849

[24] Raj Joshi, Ting Qu, Mun Choon Chan, Ben Leong, and Boon Thau Loo. 2018.
BurstRadar: Practical real-time microburst monitoring for datacenter networks.
In Proceedings of the 9th Asia-Pacific Workshop on Systems. 1–8.

[25] Srikanth Kandula, Sudipta Sengupta, Albert Greenberg, Parveen Patel, and Ronnie
Chaiken. 2009. The nature of data center traffic: measurements & analysis. In Pro-
ceedings of the ACM SIGCOMM Conference on Internet Measurement. Association
for Computing Machinery, 202–208.

[26] Gautam Kumar, Nandita Dukkipati, Keon Jang, Hassan M. G. Wassel, Xian
Wu, Behnam Montazeri, Yaogong Wang, Kevin Springborn, Christopher Alfeld,
Michael Ryan, David Wetherall, and Amin Vahdat. 2020. Swift: Delay is Simple
and Effective for Congestion Control in the Datacenter. In Proceedings of the
Annual Conference of the ACM Special Interest Group on Data Communication on
the Applications, Technologies, Architectures, and Protocols for Computer Commu-
nication (SIGCOMM ’20). Association for Computing Machinery, New York, NY,
USA, 514–528. https://doi.org/10.1145/3387514.3406591

[27] W. Leland and D. Wilson. 1991. High time-resolution measurement and analysis
of LAN traffic: Implications for LAN interconnection. In IEEE INFCOM ’91. IEEE

Computer Society, 1360–1366. https://doi.org/10.1109/INFCOM.1991.147663
[28] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan Zhuang, Fei Feng, Lingbo Tang,

Zheng Cao, Ming Zhang, Frank Kelly, Mohammad Alizadeh, and Minlan Yu. 2019.
HPCC: High Precision Congestion Control. In Proceedings of the ACM SIGCOMM
Conference. 44–58. https://doi.org/10.1145/3341302.3342085

[29] Miroslav Lichvar and Aanchal Malhotra. 2021. NTP Interleaved Modes. IETF
Internet Draft: draft-mlichvar-ntp-interleaved-modes-07. (oct 2021). https://
datatracker.ietf.org/doc/html/draft-ietf-ntp-interleaved-modes-07.

[30] Nick McKeown, Guido Appenzeller, and Isaac Keslassy. 2019. Sizing Router
Buffers (Redux). SIGCOMM Comput. Commun. Rev. 49, 5 (nov 2019), 69–74.
https://doi.org/10.1145/3371934.3371957

[31] Radhika Mittal, Vinh The Lam, Nandita Dukkipati, Emily Blem, Hassan Wassel,
Monia Ghobadi, Amin Vahdat, Yaogong Wang, David Wetherall, and David Zats.
2015. TIMELY: RTT-Based Congestion Control for the Datacenter. SIGCOMM
Comput. Commun. Rev. 45, 4 (aug 2015), 537–550. https://doi.org/10.1145/2829988.
2787510

[32] Srinivas Narayana, Anirudh Sivaraman, Vikram Nathan, Prateesh Goyal, Venkat
Arun, Mohammad Alizadeh, Vimalkumar Jeyakumar, and Changhoon Kim. 2017.
Language-directed hardware design for network performance monitoring. In
Proceedings of the ACM SIGCOMM Conference. 85–98.

[33] Andrew Newell, Dimitrios Skarlatos, Jingyuan Fan, Pavan Kumar, Maxim Khutor-
nenko, Mayank Pundir, Yirui Zhang, Mingjun Zhang, Yuanlai Liu, Linh Le,
Brendon Daugherty, Apurva Samudra, Prashasti Baid, James Kneeland, Igor
Kabiljo, Dmitry Shchukin, Andre Rodrigues, Scott Michelson, Ben Christensen,
Kaushik Veeraraghavan, and Chunqiang Tang. 2021. RAS: Continuously Op-
timized Region-Wide Datacenter Resource Allocation. In Proceedings of the
ACM SIGOPS 28th Symposium on Operating Systems Principles (SOSP ’21). As-
sociation for Computing Machinery, New York, NY, USA, 505–520. https:
//doi.org/10.1145/3477132.3483578

[34] Peter Phaal, Sonia Panchen, and Neil McKee. 2001. RFC3176: InMonCorporation’s
sFlow: A Method for Monitoring Traffic in Switched and Routed Networks.
(2001).

[35] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C Snoeren.
2015. Inside the social network’s (datacenter) network. In Proceedings of the ACM
SIGCOMM Conference. Association for Computing Machinery, 123–137.

[36] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, and Alex C. Snoeren. 2017. Passive
Realtime Datacenter Fault Detection and Localization. In 14th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 17). USENIX
Association, Boston, MA, 595–612. https://www.usenix.org/conference/nsdi17/
technical-sessions/presentation/roy

[37] Ahmed Saeed, Varun Gupta, Prateesh Goyal, Milad Sharif, Rong Pan, Mostafa
Ammar, Ellen Zegura, Keon Jang, Mohammad Alizadeh, Abdul Kabbani, and
Amin Vahdat. 2020. Annulus: A Dual Congestion Control Loop for Datacen-
ter and WAN Traffic Aggregates. In Proceedings of the Annual Conference of
the ACM Special Interest Group on Data Communication on the Applications,
Technologies, Architectures, and Protocols for Computer Communication (SIG-
COMM ’20). Association for Computing Machinery, New York, NY, USA, 735–749.
https://doi.org/10.1145/3387514.3405899

[38] Danfeng Shan, Wanchun Jiang, and Fengyuan Ren. 2015. Absorbing micro-
burst traffic by enhancing dynamic threshold policy of data center switches.
In 2015 IEEE Conference on Computer Communications (INFOCOM). 118–126.
https://doi.org/10.1109/INFOCOM.2015.7218374

[39] Danfeng Shan and Fengyuan Ren. 2017. Improving ECN marking scheme with
micro-burst traffic in data center networks. In IEEE Conference on Computer
Communications (INFOCOM). IEEE, 1–9.

[40] D. Shan, F. Ren, P. Cheng, R. Shu, and C. Guo. 2018. Micro-Burst in Data Centers:
Observations, Analysis, and Mitigations. In 2018 IEEE 26th International Confer-
ence on Network Protocols (ICNP). 88–98. https://doi.org/10.1109/ICNP.2018.00019

[41] John Sonchack, Oliver Michel, Adam J Aviv, Eric Keller, and Jonathan M Smith.
2018. Scaling hardware accelerated network monitoring to concurrent and
dynamic queries with *flow. In 2018 USENIX Annual Technical Conference. 823–
835.

[42] Alexei Starovoitov. 2017. bpf: program testing framework. (March 2017). https:
//lwn.net/Articles/718784/.

[43] Praveen Tammana, Rachit Agarwal, and Myungjin Lee. 2016. Simplifying
Datacenter Network Debugging with PathDump. In 12th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 16). USENIX Asso-
ciation, Savannah, GA, 233–248. https://www.usenix.org/conference/osdi16/
technical-sessions/presentation/tammana

[44] Balajee Vamanan, Jahangir Hasan, and TN Vijaykumar. 2012. Deadline-aware
datacenter TCP (d2tcp). ACM SIGCOMM Computer Communication Review 42, 4
(2012), 115–126.

[45] Jim Warner. [n. d.]. packet buffers. ([n. d.]). https://people.ucsc.edu/~warner/
buffer.html.

[46] Qiao Zhang, Vincent Liu, Hongyi Zeng, and Arvind Krishnamurthy. 2017. High-
resolution measurement of data center microbursts. In Proceedings of the ACM
SIGCOMM Internet Measurement Conference. 78–85.

13

https://doi.org/10.1145/1015467.1015499
https://doi.org/10.1145/1015467.1015499
https://www.usenix.org/conference/nsdi18/presentation/arzani
https://doi.org/10.1109/TNET.2020.3032999
https://doi.org/10.1145/1452520.1452545
https://doi.org/10.1145/1452520.1452545
https://doi.org/10.1145/3098822.3098840
https://doi.org/10.1145/3098822.3098840
https://doi.org/10.1109/90.664262
https://doi.org/10.1109/INFCOM.2005.1498335
https://doi.org/10.1109/INFCOM.2005.1498335
https://doi.org/10.1145/948205.948225
https://doi.org/10.1145/948205.948225
https://doi.org/10.1145/2486001.2486014
https://doi.org/10.1145/2486001.2486014
https://doi.org/10.1145/2934872.2934903
http://buffer-workshop.stanford.edu/papers/paper25.pdf
http://buffer-workshop.stanford.edu/papers/paper25.pdf
https://doi.org/10.1109/INFOCOM42981.2021.9488849
https://doi.org/10.1109/INFOCOM42981.2021.9488849
https://doi.org/10.1145/3387514.3406591
https://doi.org/10.1109/INFCOM.1991.147663
https://doi.org/10.1145/3341302.3342085
https://datatracker.ietf.org/doc/html/draft-ietf-ntp-interleaved-modes-07
https://datatracker.ietf.org/doc/html/draft-ietf-ntp-interleaved-modes-07
https://doi.org/10.1145/3371934.3371957
https://doi.org/10.1145/2829988.2787510
https://doi.org/10.1145/2829988.2787510
https://doi.org/10.1145/3477132.3483578
https://doi.org/10.1145/3477132.3483578
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/roy
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/roy
https://doi.org/10.1145/3387514.3405899
https://doi.org/10.1109/INFOCOM.2015.7218374
https://doi.org/10.1109/ICNP.2018.00019
https://lwn.net/Articles/718784/
https://lwn.net/Articles/718784/
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/tammana
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/tammana
https://people.ucsc.edu/~warner/buffer.html
https://people.ucsc.edu/~warner/buffer.html

[47] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Marina Lipshteyn,
Yehonatan Liron, Jitendra Padhye, Shachar Raindel, Mohamad Haj Yahia, and
Ming Zhang. 2015. Congestion Control for Large-Scale RDMA Deployments.
In Proceedings of the 2015 ACM Conference on Special Interest Group on Data
Communication (SIGCOMM ’15). Association for Computing Machinery, New
York, NY, USA, 523–536. https://doi.org/10.1145/2785956.2787484

14

https://doi.org/10.1145/2785956.2787484

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Background
	2.2 Why study contention and burstiness?
	2.3 Millisampler Rationale

	3 The Meta Network
	4 Millisampler and SyncMillisampler
	4.1 Millisampler
	4.2 Millisampler measurements
	4.3 Performance
	4.4 SyncMillisampler
	4.5 Validation
	4.6 Discussion

	5 Dataset
	6 A Quick View of Bursts
	7 Characterizing Contention
	7.1 How does contention vary across racks?
	7.2 How does contention vary over a day?
	7.3 Does contention vary over a run?
	7.4 Takeaways

	8 Contention, bursts, and loss
	8.1 How does contention level impact loss?
	8.2 How do burst properties impact loss?
	8.3 Takeaways

	9 Implications For Data Centers
	10 Related Work
	11 Conclusion
	12 ACKNOWLEDGEMENTS
	References

