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Fig. 1. E2EVE combines a driver and source image (resp. to the left and right of
the ⊕ symbol), generating a new version of the source that resembles the driver in
the edit region (marked in blue). The generated output looks realistic while faithfully
resembling the driver. Our method can be trained to work well on different types of
images, including bedrooms, dresses, and faces, and can use regions of arbitrary shape,
from rough rectangles to pixel-accurate segmentations (bottom-right).

Abstract. We consider the targeted image editing problem: blending
a region in a source image with a driver image that specifies the de-
sired change. Differently from prior works, we solve this problem by
learning a conditional probability distribution of the edits, end-to-end.
Training such a model requires addressing a fundamental technical chal-
lenge: the lack of example edits for training. To this end, we propose a
self-supervised approach that simulates edits by augmenting off-the-shelf
images in a target domain. The benefits are remarkable: implemented as
a state-of-the-art auto-regressive transformer, our approach is simple,
sidesteps difficulties with previous methods based on GAN-like priors,
obtains significantly better edits, and is efficient. Furthermore, we show
that different blending effects can be learned by an intuitive control of
the augmentation process, with no other changes required to the model
architecture. We demonstrate the superiority of this approach across
several datasets in extensive quantitative and qualitative experiments,
including human studies, significantly outperforming prior work.
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1 Introduction

A key part of the creative process is the ability to combine known factors in novel
ways. For instance, we can imagine how a dress would look like with a different
v-neck, or our bedroom would look like with the large windows we have seen
in a magazine. In this paper, we thus consider the problem of generating new
variants of a source image, guided by another image containing a feature, such
as a component of a dress or window style, that we wish to change in the source.
For additional control, we wish the edit operation to focus on a particular target
region of the source, leaving the context as unchanged as possible (see fig. 1).

Prior works consider image editing tasks, but often guided by a textual de-
scription of the desired change [21, 43, 51]. We argue that specifying edits vi-
sually rather than textually offers a far more fine grained and explicit level of
control, ultimately resulting in a more useful editor3. Formally, we can describe
the editing process as drawing a sample from a conditional image distribution
P (x̂|x, y,R), where x is the source image, y is the driver image, R the edit region
and x̂ is an updated version of the source x. The goal of the edit x̂ is to look
natural while being close to the source x everywhere except for the region R,
where it should resemble the driver image y.

A main challenge in learning the model P (x̂|x, y,R) is the lack of suitable
training data, namely quadruplets (x̂, x, y, R), that exemplify the desired map-
ping. Most authors have thus proposed to focus on learning an unconditional
prior distribution P (x) on images, for which abundant training data is usually
available, and then seeking an edit x̂ that is both likely according to the prior and
close in some sense to the driver y. This can be achieved in a pre-processing [8, 76]
or post-processing stage [4], and often uses a Generative Adversarial Network
(GAN) to model the prior P (x). Although demonstrating some impressive re-
sults, such approaches offer limited control on the edit x̂, which either shows
only a weak dependency on the driver image y, or does not stay on the image
manifold P (x), resulting in undesirable artifacts.

In this work, we overcome these challenges by considering a different approach
where we learn the conditional distribution P (x̂|x, y,R) directly, end-to-end.
For this, we propose new ways of synthesising suitable training quadruplets
(x̂, x, y, R) on a large scale and without requiring manual intervention. We do
this in a self-supervised manner: given an image x̂, we select an edit region R at
random and use it to decompose the image into source x and driver y images,
so that the edit can be written as a (random) function (x, y,R) = f(x̂) of x̂.
A shortcoming is that such x and y are statistically correlated, whereas in a
“creative” edit process a user must be able to choose y independently of x. A
key contribution is to show that, if the process f is carefully designed, then the
resulting images x and y are independent enough, meaning that they can be
used to learn a high-quality conditional generator P (x̂|x, y,R) which works even
when x and y are sampled independently.

3 After all, a picture is worth a thousand words!
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We pair this intuition with the adoption of state-of-the-art auto-regressive
image modelling using transformers for learning and sampling the distribution
P (x̂|x, y,R). Overall, our End-to-End Visual Editor (E2EVE) approach has sig-
nificant advantages over prior image editing works: (1) E2EVE learns directly
to map the input to the output representations; (2) hence, based on extensive
qualitative, quantitative and human-analysis experiments on several datasets, it
results in higher quality edits that are simultaneously more dependent on the
driver image and more natural looking than prior works based on GANs and
attention which train task-agnostic priors not necessarily optimal for editing;
(3) it is generally easier to implement and tune than GAN-based alternatives;
and (4) it is efficient because it allows to sample directly edits without involving
expensive pre- or post-processing steps required by some prior methods.

2 Related Work

Targeted Generative Image Editing. Approaches for editing images in targeted
locations include spatial manipulation of objects [77], adding or removing a
closed-set of objects [5, 6], or text-driven manipulation using CLIP [4, 58]. These
GAN-based approaches have some downsides: First, they require inverting GANs
to represent the input image — a difficult problem [1, 2, 7, 25, 38, 77] which can
limit the editability of the images [2, 61]. Second, they are not trained end-to-
end. Third, text-driven approaches offer limited fine-grained control of shape and
texture [4]. We address such shortcomings by training a sequence-to-sequence
model end-to-end for the task of targeted image-based visual editing.

Note that the targeted image manipulation task which we address, differs
from spatially-conditioned generation [31, 37, 45, 64, 68, 75], or global im-
age manipulation, where an entire image is generated/manipulated [35, 49].
In global manipulation works, interpolations in the latent space are located
which correspond to edits over the entire image, either via visual attribute clas-
sifiers [10, 33, 57, 71], unsupervised disentanglement [26, 47, 56, 63, 67], or via
image-text similarity [3, 11, 22, 40, 46, 55, 68]. Different to in-painting [29, 39],
in our task, generation depends on the driver image as well as image context.

Image Composition. Image composition combines possibly inconsistent images
into a single cohesive output. Previous approaches include collaging nearest
neighbors [30], composing foregrounds and backgrounds [62], composing a closed
set of visual attributes [42, 48], or using semantic pyramids [59]. Others fuse im-
ages by projecting their composition on the manifold generated by a GAN via
inversion [2, 8, 23, 32, 70, 76]. These methods work well if the driver image is
sufficiently aligned to the source (which usually requires manual intervention),
but worse than our end-to-end model when this is not the case.

Two Stage Image Synthesis. We adopt state-of-the-art two stage auto-regressive
models [9, 12, 15, 18, 19, 52, 69] for the image generator. These models scale
better than sequence-to-sequence [14, 50] models applied directly to pixels by
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Fig. 2. The E2EVE approach: (i) VAE Pre-Training: we train two quantized VAEs
(one for whole images, and one for image patches), each consisting of an Encoder, E,
and decoder, D. (ii) Training: Each data sample produces a masked source image
(via the operation R), and driver image (via random transformation T on the masked
region). Given these conditioning inputs, the model is self-supervised to predict the
data sample. Following prior work, the VAEs are kept frozen while training the gener-
ator. (iii) Inference: E2EVE generates edited images when the source and driver are
sampled independently from different images.

reducing first the dimensionality of images via a discrete autoencoder [19, 20,
44, 53]. Others have recently built on this work for text- or class-driven image
manipulation [11, 17, 66], whereas we consider image-driven editing. [74] shows a
(single) qualitative result for image-based out-painting using BERT [14], where a
small set of tokens in the output sequence is fixed (termed preservation controls),
and paired training data is sourced from the same image. We do not solve the
out-painting problem, but the target editing problem, with the added challenge
of preserving context while mixing images with very different statistics.

3 Method

We wish to learn a model that can “naturally” blend a given source image x
with a user-provided driver image y. Formally, we denote with x, x̂ ∈ R3×H×W

the source and output (RGB) images and with y ∈ R3×H′×W ′
the driver image

(where, usually, H > H ′ and W > W ′). Furthermore, we target the edit op-
eration on a region R ∈ {0, 1}H×W , expressed as a binary mask. We cast the
problem as one of learning a conditional probability distribution P (x̂|x, y,R)
and then sample the output image x̂ conditioned on the source image x, the
driver image y, and the edit region R (fig. 1).

Next, we discuss the advantages and requirements of this approach (sec-
tion 3.1), propose a self-supervised learning formulation that does not require
any manually-provided labels to train the model (section 3.2), and give the
technical details of the neural network that learns the conditional distribution
(section 3.3). An overview of our training and inference settings is shown in fig. 2.
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3.1 End-to-End Conditional Generation

Our approach is to learn a conditional distribution P (x̂|x, y,R) end-to-end,
which we do by means of an auto-regressive transformer network discussed
in section 3.3. In order to train such a model, we require training quadru-
plets (x̂, x, y, R) sampled from the joint distribution P (x̂, x, y, R). Each of these
quadruplets represents the outcome of a “creative” process, where a human artist
combines images x and y to generate a new image x̂. Because obtaining such
training data would require the intervention of human artists, it would be very
difficult to obtain a sufficiently large dataset to learn the required conditional
distribution. Hence, much of the research in image editing focuses on how to
avoid this bottleneck and use instead data which is readily available.

A popular approach is to consider an indirect formulation and learn instead
an unconditional image distribution P (x), for instance expressed as a GAN
generator x = G(z). Then, the output image x̂ = G(z∗) is “sampled” via an
optimization process like z∗ = argminz d(G(z)|R, y) where d(x̂|R, y) measures
compatibility between the region R of the generated image x̂ and the driver
image y. The advantage is that the model G can be learned from a collection X
of unedited images x ∼ P (x), which is often easy to obtain at scale. The disad-
vantage is that this model is not optimized for the final task of image editing.

By contrast, in our approach we learn directly the model Pθ(x̂|x, y,R) mini-
mizing the standard negative log-likelihood loss:

θ∗ = argmin
θ

− 1

|T |
∑

(x̂,x,y,R)∈T

logPθ(x̂|x, y,R)

 (1)

where T is a large collection of training quadruplets. Once learned, we can
directly draw samples x̂ ∼ Pθ∗(x̂|x, y,R). The main challenge is how to obtain
the training set T . The key to our method is a way of constructing T from X
in an automated fashion, at no extra cost. This is explained in the next section.

3.2 Synthesizing a Dataset of Meaningful Edits

Given a training set X of unedited images x, the goal is to create a dataset T
of “edits” (x̂, x, y, R) consisting of the generated image x̂, the source image x,
the diver image y, and the edit region R. The difficulty is that these quadruplets
should be representative of a “creative” process where the generated image x̂
is a meaningful blend of the source and driver images, x and y, according to
a human artist. Specifically, x̂ should resemble x as much as possible except in
the region R, where it should take the character of y, but without introducing
unnatural artifacts (e.g., simply pasting y on top of x would not do).

We propose to build such quadruplets as follows (see also fig. 4). We sample
an output image x̂ from the unedited collection X , thus pretending that the
latter is, in fact, the result of an edit operation. Then, we define the source and
driver images for this virtual edit as follows:

x = (1−R)⊙ x̂, y = T (R⊙ x̂), (2)
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Fig. 3. Intuition for augmenting training inputs. During training, the driver image y is
computed by applying a random transformation T to the masked region of the source
image x. Left: Three options for T that are used to train three different generators,
Gθn. Right: Samples from the three trained models when conditioned on x and an
independently sampled y. An optimal choice of T removes just enough information
that generated images are both natural-looking, and are faithful to the driver image y.

where R is the mask of a random image region, ⊙ is the element-wise product
(where broadcasting is used as required), and T : R3×H×W → R3×H′×W ′

is a
random image transformation, also known as an “augmentation”.

By optimizing the log-likelihood loss in eq. (1), the model Pθ(x̂|x, y,R) learns
to predict the full image x̂ from x (which misses the region R), and y, which
preserves some information about the missing region. Because x̂ is originally an
unedited image, the model learns to predict a natural-looking output.

The key design choice here is the random transformation T . For example, if
we set T = 1 to be the identity function, then the output image can be recon-
structed exactly as x̂ = x+y; in this case, the model Pθ(x̂|x, y,R) learns to paste
y onto x, which is uninteresting (see model Gθ1 in fig. 3). Additionally, if we set
T = 0 to be the null function, then y does not provide any information; in this
case, the model Pθ(x̂|x, y,R) learns to inpaint x̂, filling in the missing region in a
non-trivial manner, but ignoring the driver image y altogether (see model Gθ3 in
fig. 3). The augmentations T should find a sweet spot and remove just the right
amount of information from y (see model Gθ2 in fig. 3). While finding the opti-
mal choice for the random transformations T is ultimately an empirical process,
we describe next some important design criteria that were crucial for our results.

Decorrelating source and driver images. A difficulty with our approach is that,
because both source image x and driver image y are derived from the same im-
age x̂, they are not independent but paired. This is a problem because the user
should be free to choose almost any driver image y for editing, so the genera-
tor must work well for unpaired inputs x and y too. We can approximate this
condition by making x and y as uncorrelated as possible during training.

While we cannot achieve this result exactly, we propose two methods to
approximate it, block and free-form, both shown in fig. 4. Block edits are
simple: we let the transformation T (R ⊙ x̂) take a further sub-crop RT of the
crop R it is given as input, thus removing the most direct source of correlation
between x and y: spatial continuity. Furthermore, we found empirically that if
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Fig. 4. Left: block edits. We sample an output image x̂ and generate the corresponding
edit input (x, y,R) by sampling a square region R, a transformation T cutting a sub-
region RT from R, and extracting the source image x and a driver y from these two.
Right: free-form edits. The same approach, but this time R is a pixel-accurate segmen-
tation mask extracted manually or automatically ( RT remains a square sub-region) .

the sub-crop is always centered in R and of a fixed relative size w.r.t. R, then
the model learns, as one would expect, to paste this crop in the middle. Instead,
we let T further randomize the position (pos augment) and size (size augment)
of the sub-crop relative to the edit region during training. We parameterize the
sub-cropping operation via α, which defines the ratio of the sub-crop width,
to the edit region width. The size augment operation allows α to vary during
training. The model hence learns to find a meaningful placement for the patch y
in the context of x, without assuming spatial continuity or a specific geometric
arrangement. Optionally, we further decorrelate source and driver images via
free-form edits. The difference is that we let R be the output of a semantic
segmentation network, while T still takes a square sub-crop RT from region
R. Because y is fully contained in the edit region R and the latter separates a
foreground object from the background, this significantly reduces the correlation
between x and y. While this approach requires additional machinery (e.g., a
segmentation network), empirically it can obtain impressive results (fig. 5).

Controlling the learned editor. In order to favour generalization, the augmen-
tations above should remove as much information as possible from the crop y
except for the information that the editor should transfer from the driver image
y to the generated image x̂. For example, it would be possible to consider fur-
ther augmentations such as color jitter, but this would cause the editor to learn
to ignore the color, which we usually wish to transfer. In general, by choosing
different augmentations we can control what information the editor learns to
transfer from the driver image to the generated one (e.g., style and colour), and
what to ignore (e.g., the specific spatial arrangement).

3.3 Two-Stage Conditional Auto-Regressive Image Generation

In order to implement the conditional distribution Pθ(x̂|x, y,R), we use an auto-
regressive (AR) model. AR models have been shown to be highly expressive for
image generation [19, 52], they can be conditioned on multiple signals elegantly
and without architectural changes, and, unlike GANs [54], are mode-covering.
In practice, this leads to more varied generation results and the ability to model



8 Brown et al.

datasets with more variation. We summarise next how this model is applied to
our case and point the reader to the supp. mat. for additional details.

The goal is to model a conditional distribution P (x̂|c), where c lumps together
all conditioning information. An AR model further decomposes x̂ = (x̂1, . . . , x̂M )
into M components and factorizes the distribution as the product P (x̂|c) =∏M

m=1 P (x̂m|x̂1, . . . , x̂m−1, c). The model is trained by minimizing the negative
log likelihood (1) (avoiding unstable adversarial techniques used in GANs). For
modelling images x, a challenge lies in finding a suitable decomposition, such that
the individual factors P (x̂m|x̂1, . . . , x̂m−1, c) can be implemented effectively. To
this end, we build upon the two stage process of Esser et al. [19] and use a
transformer on top of a discrete autoencoder. Note that the focus of this work is
on end-to-end targeted image editing and the training formulation; we describe
the two-stage auto-regressive method for completeness and reproducibility.

Specifically, in the first stage we learn a compressed and discretized repre-
sentation z = Φ(x̂) ∈ {1, . . . ,K}M of the images, where here K is the size of
the discrete encoding space and M the resulting number of discrete tokens. For
this, we use the VQ-GAN [19], achieving 16-fold image compression (we use sep-
arate encoders for x and y). Naturally, the encoder comes with a paired decoder
x̂ = Ψ(z) that allows to reconstruct the image from the code. This achieves two
important goals: it allows (1) to scale the generator model to higher resolution
images, and (2) to predict discrete distributions for the second stage.

The second stage uses a transformer to model the factors P (x̂m|x̂1, . . . , x̂m−1, c).
Specifically, the conditioning information c = (x, y,R) consists of source image
x, driver image y and region R. The sequence of tokens Sm = (z1, . . . , zm) ⊕
Φ(x)⊕Φ(y) (where ⊕ denotes concatenation), comprising the partially-predicted
output tokens along with the conditioning tokens, is fed to the transformer to
output a K-dimensional histogram P (zm = ·|Sm). Spatial encodings are added
to the tokens, but there is no need to explicitly encode the region R as it can
be inferred from x because x = (1 − R) ⊙ x̂ has a R-shaped ‘hole’. While this
way of encoding for R may seem näıve, it is in fact simple and powerful: prior
work such as EdiBERT [32] use “occlusion tokens”, and hence lose the ability
to express pixel-accurate edit regions, which we can do effortlessly.

We train a GPT-2 [50] style transformer. The factors P (x̂m|x̂1, . . . , x̂m−1, c)
require each predicted token to depend only on those prior to it in the sequence.
Hence, GPT-2 uses causal masking allowing only unidirectional attention to-
wards earlier tokens in the sequence. All factors are trained efficiently in parallel
using teacher forcing [24, 65]. During inference, only the conditioning informa-
tion is provided so the target sequence is predicted iteratively, sampling one
symbol zm at a time from the corresponding histogram. In practice, inference is
faster than for some GAN alternatives, as shown in the sup. mat.

4 Experiments

We compare our method to others that, given a source image x and a driver
image y, produce one or more edits x̂. Good edits have three properties: (1)
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naturalness (the edit x̂ looks like a sample from the prior P (x)); (2) locality (x̂
is close to x outside the edit region R — although a certain amount of slack
is necessary to allow the edit to blend in naturally); and (3) faithfulness (x̂
resembles y within the edit region R). Achieving only one of the three objectives
is trivial (for example, setting x̂ = x ignoring y is natural and local but unfaithful
whereas copying y on top of x is is local and faithful but unnatural) so a good
model must seek for a trade-off between these properties.

Measuring these properties is not entirely trivial; for the quantitative anal-
ysis, we take the standard FID measure for naturalness [27], the L1 distance
∥(1 − R) ⊙ (x̂ − x)∥1 to measure locality, and a retrieval approach to measure
faithfulness. For the latter, we consider a set Ydstr of 100 distractor images of the
same size as the driver image y, use the edited region x̂|R as a query, and find
its nearest neighbour y∗ = argminŷ∈{y}∪Ydstr

d(x̂|R, ŷ), incurring the loss δy∗ ̸=y.
In this expression, d(·, ·) is the Inception v3 [60] feature distance (pre-trained on
ImageNet [13]) which is the same encoder used for FID calculation.

Evaluation data. Recall that our goal is to evaluate the quality of automated
editing algorithms. To feed such algorithms, we need triplets (x, y,R) consisting
of a source image x, a driver image y and an edit region R. In section 3.2 we
explained how to build such a dataset for the purpose of training our model —
with the added complexity that, for training, we also need to know the result
x̂ of the edit process. We could use the same dataset for evaluation, but this
would unfairly advantage our model. Instead, since knowing the output x̂ is
not required to measure naturalness, locality and faithfulness, we are free to
choose new and less constrained triplets (x, y,R) for evaluation, resulting in
more challenging edits and a fairer evaluation. However, we wish to avoid too
many cases in which cohesive blending is impossible (e.g., where y is a patch of
sky and x|R is a face). Hence, we assemble evaluation triplets as follows: given a
sample image x and an edit region R, we define y = x′|R to be a crop taken at
the same spatial location from a different image x′ in the dataset. The effect is
to (very) weakly constrain x|R and y to be compatible (e.g., both sky regions,
or face regions) by exploiting the photographer bias in the datasets we consider.

We conduct experiments on three datasets: (1) the privateDresses-7m dataset
containing 7 million images mainly depicting a woman wearing a dress; (2) LSUN
bedrooms [72] containing 3m images of bedrooms; and (3) FFHQ [35], containing
70K aligned faces. We sample x by considering 1024 images from the validation
sets of Dresses-7m and FFHQ, and 256 for LSUN bedrooms (due to its small
size). For each (x, y,R), we consider 10 edit samples and obtain naturalness,
locality and faithfulness by averaging over all images thus generated (totalling
10,240 and 2,560 samples, respectively). All images in this paper are from Un-
Splash 4 (dresses and bedrooms), or DFDC [16] (faces).

Implementation Details. We use a transformer architecture with 24 layers, 16
head multi-head attention, embedding size 1024, and we train it using standard

4 www.unsplash.com
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cross-entropy loss. The masked source image (1 − R) ⊙ x and the driver image
y are encoded using VQ-GANS with 16× compression and 1024 codebook size.
Source x and output x̂ images have resolution 256×256 and y resolution 64×64.
The token sequences Sm (comprising the coded x, y and partial x̂) has maximum
length 516. Our final model uses pos augment and size augment— the latter
forms y by taking a sub-crop in the region R, with α varying from 0.4 to 0.7.
We use a batch size of 512, and the AdamW [41] optimizer with learning rate
4.5e-6. During inference, for each input (x, y,R), we generate 20 samples x̂ and
keep the 10 with highest similarity to y (a method termed Filter, in table 2).
In order to focus the sampling on more realistic/likely outputs we use nucleus
sampling [28] with a p-value of 0.9. Following prior work [19, 52], the VQ-GANs
are kept frozen when training the transformer.

Baselines. We compare our method against the following image composition
baselines: (1) Copy-paste generates x̂ by pasting y onto x at the specified loca-
tion R; (2) Inpaint ablates our method by removing the tokens y from the input,
thus generating x̂ by inpainting the region R unconditionally while disregard-
ing y; (3) GAN inv, inspired by [32, 70, 76], takes the copy-paste output and
uses the StyleGANv2 [36] or StyleGANv2-ADA [34] networks to re-encode and
thus denoise the resulting image via GAN inversion [2], “blending” the edit; (4)
EdiBERT [32] is a related transformer-based approach, which iteratively refines
the output of copy-paste output using BERT [14] (for fairness, we use the same
VQ-GAN and sample filtering by similarity to driver as for our method); (5)
In-Domain GAN [76] uses a regularised form of GAN inversion to blend source
and driver images. Pre-trained models are available for all test datasets except
Dresses-7m; unfortunately, we were unable to successfully train the GAN-based
models on the latter (possibly due to the significant diversity of this data), so in
this case we limit the other baselines. Some off-the-shelf models are trained on
the validation sets that we use for testing, which disadvantages our approach in
the comparison. For more details on experimental settings, please see supp. mat.

4.1 Quantitative Evaluation

Block edits. Table 1 reports the evaluation metrics for all baselines and datasets.
Our approach significantly outperforms others in naturalness: because our
method is trained explicitly with the goal of blending source and driver im-
ages, it works even for cases where the images are poorly aligned, where prior
works based on fitting priors on unedited images fail (see fig. 5).

The copy-paste baseline outperforms other methods on the faithfulnessmet-
ric but has very poor naturalness — this is expected as the edited image contains
a 1-to-1 copy of the driver image. The opposite is true for the inpainting base-
lines, which attain good naturalness but very poor faithfulness as they ignore
the driver image altogether. Our method is second only to copy-paste in faith-
fulness while also scoring best in naturalness. Other baselines sit somewhere in
between, but generally do not fair very well in faithfulness because, by projecting
the composite image to the prior manifold, they distort the cue too much.
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Table 1. . Results for block edits and free-form edits. Naturalness is computed over both
the whole image (Image), and just the edit-region (Edit-R) using FID. Faithfulness is
computed via retrieval, where R@K measures whether or not the sample is retrieved in
the top-k instances. Locality is measured using L1 distance outside of the edit-region

Naturalness ( ↓ ) Faithfulness (↑) Locality ( ↓ )

Image Edit-R R@1 R@5 R@20 (L1)

Dresses-7m
(block-edits)

Baseline: Copy-Paste 21.457 35.924 1.000 1.000 1.000 0.000
Baseline: Inpaint 15.797 25.769 0.071 0.214 0.515 0.095
EdiBERT [32] 17.193 32.621 0.554 0.837 0.963 0.052
(ours) E2EVE 14.411 24.743 0.797 0.937 0.978 0.056

FFHQ
(block-edits)

Baseline: Copy-Paste 33.330 25.811 1.000 1.000 1.000 0.000
Baseline: Inpaint 18.328 12.665 0.421 0.704 0.895 0.139
GAN inv [2]: StyleGANv2 26.583 16.223 0.590 0.823 0.948 0.198
GAN inv [2]: StyleGANv2-Ada 26.657 16.290 0.593 0.821 0.949 0.199
In-domain [76] 19.880 14.270 0.539 0.800 0.938 0.178
EdiBERT [32] 13.192 12.230 0.718 0.925 0.983 0.093
(ours) E2EVE 12.770 10.574 0.853 0.970 0.994 0.106

LSUN
Bedrooms
(block-edits)

Baseline: Copy-Paste 24.402 28.828 1.000 1.000 1.000 0.000
Baseline: Inpaint 15.080 21.493 0.113 0.297 0.596 0.161
GAN inv [2]: StyleGANv2 23.735 33.530 0.405 0.689 0.866 0.259
In-domain [76] 32.333 43.544 0.171 0.363 0.608 0.208
EdiBERT [32] 16.518 27.528 0.537 0.816 0.946 0.111
(ours) E2EVE 14.107 22.187 0.789 0.923 0.981 0.119

Dresses-7m
(free-form edits)

Baseline: Copy-Paste 23.107 58.259 0.581 0.700 0.817 0.000
Baseline: Inpaint 13.718 24.516 0.193 0.385 0.659 0.103
EdiBERT [32] 15.277 27.359 0.650 0.843 0.937 0.079
(ours) E2EVE 14.000 25.973 0.814 0.920 0.951 0.072

As for locality, copy-paste is also optimal, as it does not change the context
region at all. Compared to non-trivial baselines, our method is first or second
best in this metric, affecting the context region much less than GAN methods.
However, EdiBERT is also very competitive as it is designed to leave the context
nearly exactly unchanged (via periodic collage of the output with the context).
However, relaxing locality is often necessary to obtain a more reasonable blending
effect — an intuitive fact that we show qualitatively in fig. 5f.

Finally, we also conduct a human-study on the Dresses-7m dataset using
Amazon Mechanical Turk. We showed 256 edit samples using our method and
EdiBERT to 3 human assessors each, asking two questions: which of the two
outputs is more realistic, and which is more faithful to the driver image. The
results show that by majority vote, human annotators think that our samples
are more natural 83.2% of the time, and more faithful 80.5% of the time. The
key to the performance improvements are that E2EVE is trained end-to-end for
targeted visual editing, whereas prior work are not. Furthermore, we outperform
EdiBERT, which uses the same VQ-GAN with a 50% larger transformer.
Free-form edits. Here, we use a semantic segmentation network to extract the
edit region R from image x, while we define y as a crop taken from within
a semantic region of a different image x′ in the dataset (see section 3.2) We
conduct experiments on Dresses-7m and compare to EdiBERT. The results are
shown in table 1. Our approach again outperforms the previous methods in terms
of naturalness and faithfulness and, this time, in locality too, because we
can better capture irregular edit regions compared to EdiBERT which results in
blocky artifacts. Experiments with random free-form masks are in the supp. mat.
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Fig. 5. Qualitative results from E2EVE. Rows a,b: Block edits from E2EVE trained
on Dresses-7m. Row c,d: Comparisons to prior work trained on FFHQ. Row e: Com-
parisons to prior work trained on LSUN-Bedrooms. Rows f,g,h: edits from E2EVE on
FFHQ using random masks of increasing size. Rows i,j: one edit after another (sequen-
tial) on the same source image using prior work, and E2EVE, respectively. Rows k,l:
free-form edits from E2EVE trained on Dresses-7m. Please zoom in for details. In each
case, the masked region in the source image is that contained within the blue line.
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⊕ = ⊕ = ⊕ =

Fig. 6. E2EVE generalises surprisingly well to out-of-domain driver images (e.g. images
of weather and nature). Three examples using the same source image from block-edit
Dresses-7m model. As shown, E2EVE generates cohesive and varied samples.

4.2 Qualitative Evaluation

We show qualitative comparisons against prior work in fig. 5. Our edits combine
naturalness, faithfulness and locality, whereas others fail at achieving all three
goals as well as we do. Due to the augmentations in our training edits, our
method is better able to cope with uncorrelated driver images y than other
approaches that only rely on a pre-learned unconditional prior distribution P (x).
For example, in fig. 5c,d our approach can successfully mix images coming from
faces with different gender or pose, showing better naturalness and faithfulness.
As for locality, while EdiBERT is highly competitive in table 1, this comes at
a cost: in fig. 5a,d our method achieves better naturalness by coloring both
sleeves in the same way and by completing the glasses even though part of
them lie outside of the edit region, whereas EdiBERT cannot. fig. 5k,l shows
free-form edits where the entire clothing item is masked. Although structural
details of the dress are hidden by the mask, E2EVE generates natural and varied
structure that is different to the source and faithful to the driver image. In fig. 5e
E2EVE generates more natural looking samples than prior work that edit with
respect to the spatial geometry of the room. We also see that E2EVE generalises
surprisingly well to out-of-domain driver images, as shown in fig. 6 for the block-
edit Dresses-7m model. In fig. 5f,g,h, E2EVE generates impressive samples
with small, medium or large random free-form masks. In fig. 5j E2EVE makes
sequential edits with random Rs while maintaining naturalness – empirically this
fails with prior works (fig. 5i). See the supp. mat. for additional results.

4.3 Ablations

In table 2 we analyse and ablate design choices in E2EVE. We report additional
metrics: negative log likelihood (NLL) on the validation set and sample diversity,
computed pairwise between samples from the same inputs using LPIPS [73].

Starting from the construction of the training edits T (section 3.2), reducing
α (rows a-d) means removing more of the image x̂ from the crop y. As predicted
in section 3.2, removing information from y increases naturalness (lower FID)
at the expense of weaker faithfulness (lower R). α = 0.6 provides a balance.
pos augment (row e vs. b) increases naturalness by preventing the model from
simply pasting the driver image in the centre of the edit region. size augment
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Table 2. Model ablations and sweeps for block edits. Key: NLL: Negative log likelihood.
α, pos-aug, size-aug: the parameters used to define the sub-cropping transformation T .
Filter: filtering E2EVE samples by visual similarity to the driver image. 2VQ: using
two VQ-GANs rather than one. Datasets: D: Dresses-7m, B: Bedrooms, F -FFHQ.

Naturalness (↓) Faithfulness (↑) Locality (↓) NLL (↓) Diversity (↑)
α pos-aug size-aug Filter 2VQ Data Image Edit-R R@1 R@5 R@20 (L1) Image Edit-R

a. 0.8 ✗ ✗ ✓ ✓ D 17.241 30.076 0.882 0.980 0.996 0.056 2.181 0.135 0.309
b. 0.6 ✗ ✗ ✓ ✓ D 15.593 29.364 0.920 0.986 0.997 0.056 1.704 0.137 0.315
c. 0.4 ✗ ✗ ✓ ✓ D 13.967 26.975 0.811 0.954 0.988 0.056 1.594 0.139 0.327
d. 0.0 ✗ ✗ ✓ ✓ D 15.797 25.769 0.071 0.214 0.515 0.095 1.537 0.190 0.419

e. 0.6 ✓ ✗ ✓ ✓ D 15.605 26.513 0.887 0.980 0.997 0.056 1.518 0.142 0.338
f. 0.5-0.6 ✓ ✓ ✓ ✓ D 14.951 26.186 0.856 0.968 0.992 0.056 1.460 0.143 0.344
g. 0.4-0.7 ✗ ✓ ✓ ✓ D 14.589 27.824 0.864 0.970 0.992 0.056 1.494 0.139 0.328
h. 0.4-0.7 ✓ ✓ ✓ ✓ D 14.411 24.743 0.797 0.937 0.960 0.056 1.448 0.143 0.344

i. 0.4-0.7 ✓ ✓ ✗ ✓ D 13.913 24.583 0.611 0.817 0.929 0.056 1.448 0.145 0.351
j. 0.4-0.7 ✓ ✓ ✗ ✓ B 14.347 22.998 0.636 0.831 0.929 0.119 2.942 0.287 0.460
k. 0.4-0.7 ✓ ✓ ✗ ✓ F 12.636 10.699 0.723 0.899 0.976 0.106 2.392 0.203 0.321
l. EdiBERT [32] ✗ B 16.643 29.775 0.356 0.627 0.823 0.111 - 0.291 0.575
m. EdiBERT [32] ✗ F 13.036 12.891 0.536 0.778 0.925 0.093 - 0.181 0.423

n. 0.4-0.7 ✓ ✓ ✓ ✗ D 14.107 23.916 0.720 0.891 0.963 0.056 1.454 0.144 0.347

(row h) randomizes the choice of α in a range during training, so that the edi-
tor learns to automatically resize the driver image as needed. This significantly
improves naturalness at the cost of a reduction of faithfulness (row h vs. e).
In part, this is likely due to limitations of the retrieval model used to measure
faithfulness, which struggles to cope with geometric deformations even when
they preserve the style of the driver. α and augmentation have no effect on the
locality (rows a-h). A benefit is that our final model generates more diverse sam-
ples (row h vs g) by learning to place the driver image at different positions and
sizes. Interestingly, NLL is also minimised by the final model despite the fact
that y is less correlated to x̂ than in other cases: this is likely because additional
augmentations reduce overfitting to the training data. For further discussion,
please see supp. mat.

5 Conclusions, Limitations and Future work

We present E2EVE, a new approach for targeted visual image editing. The key
innovation is an effective method for self-supervising the model end-to-end, based
on only an unlabelled collection of natural images. Using this, we can train a
conditional image generator that responds well to diverse user inputs, signif-
icantly outperforming prior work qualitatively and quantitatively without any
manual supervision. Limitations remain: our data generation technique might be
difficult to extend to text-based edits and some proposed edits are unreasonable
(see sup. mat.) because the model lacks a full understanding of the semantic
content of images. Furthermore, as our model is unsupervised and data-driven,
it may contain surprising unwanted biases. Next steps include extending E2EVE
beyond images to spatial editing in 3D scenes and spatio-temporal video editing.
Acknowledgements. We are grateful to the advice and support of Yanping
Xie, Antoine Toisoul, Thomas Hayes, and the EdiBERT authors.
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