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Model-Based Meta-Reinforcement Learning for
Flight with Suspended Payloads

Suneel Belkhale1, Rachel Li1, Gregory Kahn1, Rowan McAllister1, Roberto Calandra2, Sergey Levine1

(a) (b) (c) (d) (e)
Fig. 1: Our meta-reinforcement learning method controlling a quadcopter transporting a suspended payload. This task is challenging since each payload
induces different system dynamics, which requires the quadcopter controller to adapt online. The controller learned via our meta-learning approach is able
to (a) fly towards the payload, (b) attach the cable tether to the payload using a magnet, (c) take off, (d) fly towards the goal location while adapting to the
newly attached payload, and (e) deposit the payload using an external detaching mechanism.

Abstract—Transporting suspended payloads is challenging for
autonomous aerial vehicles because the payload can cause sig-
nificant and unpredictable changes to the robot’s dynamics.
These changes can lead to suboptimal flight performance or even
catastrophic failure. Although adaptive control and learning-
based methods can in principle adapt to changes in these hybrid
robot-payload systems, rapid mid-flight adaptation to payloads
that have a priori unknown physical properties remains an open
problem. We propose a meta-learning approach that “learns how
to learn” models of altered dynamics within seconds of post-
connection flight data. Our experiments demonstrate that our
online adaptation approach outperforms non-adaptive methods
on a series of challenging suspended payload transportation tasks.
Videos and other supplemental material are available on our
website: https://sites.google.com/view/meta-rl-for-flight

Index Terms—Machine Learning for Robot Control, Reinforce-
ment Learning, Probabilistic Inference.

I. INTRODUCTION

CONSIDER the task illustrated in Figure 1: the quadcopter
must maneuver such that the magnet (red) at the end

of the tether picks up the payload (green), then lift the
payload, and fly such that this payload follows a desired
trajectory. While the dynamics of the quadcopter may be
well-characterized, and system identification methods could
accurately identify its parameters, the complex interaction be-
tween the magnetic gripper and the payload are unlikely to be
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represented accurately by hand-designed models. Even more
unpredictable is the effect of the payload on the dynamics of
the quadcopter when the payload is lifted off the ground. For
example, a payload attached with a shorter cable will oscillate
faster compared to one attached with a longer cable. Because
the robot will be picking up and dropping off various a priori
unknown payloads, the robot must rapidly adapt to the new
dynamics to remain in flight. Learning can offer us a powerful
tool for handling complex interactions, such as those between
the magnetic gripper and the payload. Conventional learning-
based methods, however, typically require a large amount of
data to learn accurate models, and therefore may be slow to
adapt. The payload adaptation task illustrates the need for fast
adaptation: the robot must very quickly determine the payload
parameters, and then adjust its motor commands accordingly.
To address the challenge of rapid online adaptation, we pro-
pose an approach based on meta-learning. In our meta-learning
formulation, we explicitly train the model for fast adaptation
to scenarios with new dynamics, such as the task in Figure 1.

Our algorithm can be viewed as a model-based meta-
reinforcement learning method: we learn a predictive dynam-
ics model, represented by a deep neural network, which is
augmented with stochastic latent variables that represent the
unknown factors of variation in the environment and task.
The model is trained with different payload masses and tether
lengths, and uses variational inference to estimate the corre-
sponding posterior distribution over these latent variables. This
training procedure enables the model to adapt to new payloads
at test-time by inferring the posterior distribution over the
latent variables. Our novel contribution is in leveraging neural
network dynamics models in conjunction with meta-learning
for the task of controlling an aerial robot with a suspended
payload.

In the experiments, we demonstrate that our method enables
a quadcopter to plan and execute trajectories that follow
desired payload trajectories, drop off these payloads at des-
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ignated locations, and even pick up new payloads with a
magnetic gripper. To our knowledge, this is the first meta-
learning approach demonstrated on a real-world quadcopter
using only real-world training data that successfully shows
improvement in closed-loop performance compared to non-
adaptive methods for suspended payload transportation.

II. RELATED WORK

Prior work on control for aerial vehicles has demonstrated
impressive performance and agility, such as enabling aerial
vehicles to navigate between small openings [21], perform
aerobatics [19], and avoid obstacles [27]. These approaches
have also enabled aerial vehicles to aggressively control
suspended payloads [31, 32]. These methods typically rely
on manual system identification, in which the equations of
motion are derived and the physical parameters are estimated
for both the aerial vehicle [20, 35] and the suspended pay-
load [31, 32]. Although these approaches have successfully
enabled controlled flight of the hybrid system, they require a
priori knowledge of the system, such as the payload mass and
tether length [7]. When such parameters cannot be identified
in advance, alternative techniques are required.

Many approaches overcome the limitations of manual sys-
tem identification by performing automated system identifi-
cation, in which certain parameters are automatically adapted
online according to a specified error metric [30, 12, 17]. How-
ever, the principal drawback of manual system identification—
the reliance on domain knowledge for the equations of
motion—still remains. While certain rigid-body robotic sys-
tems are easily identified, more complex phenomena, such as
friction, contacts, deformations, and turbulence, may have no
known analytic equations (or known solutions). In suspended
payload control, adaptive model-based controllers could re-
quire a priori knowledge of the quadrotor dynamics and
suspended payload equations, 3d state estimation of both the
quadrotor and suspended payload, and camera parameters in
order to perform state estimation. In contrast, our data-driven
method only requires the pixel location of the payload and
the quadrotor’s commanded actions to control and adapt to
the suspended payload’s dynamics.

Prior work has also proposed end-to-end learning-based
approaches that learn from raw data, such as value-based
methods which estimate cumulative rewards [33] or policy
gradient methods that directly learn a control policy [34].
Although these model-free approaches have been applied to
various tasks [22, 29], including for robots [14], the learning
process generally takes hours or even days, making it poorly
suited for safety-critical and resource-constrained quadcopters.

Model-based reinforcement learning (MBRL) can provide
better sample efficiency, while retaining the benefits of end-
to-end learning [6, 9, 23, 5]. With these methods, a dynamics
model is learned from data and then either used by a model-
based controller or to train a control policy. Although MBRL
has successfully learned to control complex systems such as
quadcopters [1, 18], most MBRL methods are designed to
model a single task with unchanging dynamics, and therefore
do not adapt to rapid online changes in the system dynamics.

One approach to enable rapid adaptation to time-varying
dynamical systems is meta-learning, which is a framework for
learning how to learn that typically involves fine-tuning of a
model’s parameters [8, 11, 24] or input variables [26, 28].
There has been prior work on model-based meta-learning
for quadcopters. O’Connell et al. [25] used the MAML [8]
algorithm for adapting a drone’s internal dynamics model
in the presence of wind. Although they demonstrated the
meta-learning algorithm improved the model’s accuracy, the
resulting adapted model did not improve the performance of
the closed-loop controller. In contrast, we demonstrate that
our meta-learning approach does improve performance of the
model-based controller. Nagabandi et al. [24] and Kaushik
et al. [16] also explored meta-learning for online adaptation
in MBRL for a legged robot, demonstrating improved closed-
loop controller performance with the adapted model. Our work
focuses on suspended payload manipulation with quadcopters,
which presents an especially prominent challenge due to
the need for rapid adaptation in order to cope with sudden
dynamics changes when picking up payloads.

III. PRELIMINARIES

We first introduce our notation, problem formulation, and
preliminaries on model-based reinforcement learning (MBRL)
that our meta-learning algorithm builds upon. We represent
the hybrid robot-environment system as a Markov decision
process, with continuous robot-environment state s ∈ Rds ,
continuous robot action a ∈ Rda , and discrete time steps t.
The state evolves each time step according to an unknown
stochastic function st+1 ∼ p(st+1|st,at). We consider K
tasks {T1., ..., TK}. In each task, the robot’s objective is to
execute actions that maximize the expected sum of future
rewards r(st,at) ∈ R over the task’s finite time horizon T .

We approach this problem using the framework of model-
based reinforcement learning, which estimates the underlying
dynamics from data, with minimal prior knowledge of the
dynamics of the system. We can train a dynamics model
pθ(st+1|st,at) with parameters θ by collecting data in the real
world, which we can view as sampling “ground truth” tuples
(st,at, st+1). By collecting a sufficient amount of empirical
data Dtrain = {(s0,a0, s1), (s1,a1, s2), ...}, we can train the
parameters θ of the dynamics model via maximum likelihood

θ∗ = argmax
θ

p(Dtrain|θ)

= argmax
θ

∑
(st,at,st+1)∈Dtrain

log pθ(st+1|st,at) . (1)

To instantiate this method, we extend the PETS algorithm [5],
which has previously been shown to handle expressive neural
network dynamics models and attain good sample efficiency
and final performance. PETS uses an ensemble of neural
network models, each parameterizing a Gaussian distribution
on st+1 conditioned on both st and at. The learned dynamics
model is used to plan and execute actions via model predictive
control (MPC) [10, 15, 23]. MPC uses the dynamics model to
predict into the future, and selects the action sequence with
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Fig. 3: System diagram of our meta-learning for model-based reinforcement learning algorithm. In the training phase, we first gather data by manually
piloting the quadcopter along random trajectories with K different payloads, and saving the data into a single dataset Dtrain consisting of K separate training
task-specific datasets Dtrain .

= Dtrain
1:K . We then run meta-training to learn the shared dynamics model parameters θ and the adaptation parameters φ1:K for

each payload task. At test time, using the learned dynamics model parameters θ∗, the robot infers the optimal latent variable φ∗ online using all of the
data Dtest from the current task. The dynamics model, parameterized by θ∗ and φ∗, is used by a model-predictive controller (MPC) to plan and execute
actions that follow the specified path. As the robot flies, it continues to store data, infer the optimal latent variable parameters, and perform planning in a
continuous loop until the task is complete.

the highest predicted reward

a∗t = argmax
at

[
max

at+1:t+H

t+H∑
τ=t

Esτ∼pθ [r(sτ ,aτ )]

]
, (2)

in which sτ is recursively sampled from the learned dynamics
model: sτ+1 ∼ pθ(sτ+1|sτ ,aτ ), initialized at sτ ← st.
Once this optimization is solved, only the first action a∗t is
executed. A summary of this MBRL framework is provided
in Algorithm 1, and we refer the reader to Chua et al. [5] for
additional details.

Algorithm 1 Model-Based Reinforcement Learning
1: Initialize dynamics model pθ with random parameters θ
2: while not done do
3: Get current state st
4: Solve for action a∗t given pθ∗ and st using MPC . see (2)
5: Execute action a∗t
6: Record outcome: Dtrain ← Dtrain ∪ {st,a∗t , st+1}
7: Train dynamics model pθ using Dtrain . see (1)

IV. MODEL-BASED META-LEARNING FOR
QUADCOPTER PAYLOAD TRANSPORT

Our goal is to enable a quadcopter to precisely control
a wide variety of payloads without prior knowledge of the
payload’s physical properties. The primary challenge is that
the interaction between quadcopter actions and the suspended
payload state varies based on the type of payload, and these
variations in dynamics are difficult to identify and model a
priori. Although prior work on MBRL has been able to learn
to control complex systems, MBRL is unable to account for
factors of variation that are not accounted for in the state s. We
approach this problem of accounting for a priori unspecified
factors of variation through the lens of meta-learning, in which
we learn a model that is explicitly trained to adapt online.

The quadcopter’s objective is to pick up and transport a
suspended payload along a specified path to reach a goal
location (Figure 1). First, the quadcopter must fly to the
location of the payload (Figure 1a), attach itself to the payload
using a suspended cable (Figure 1b), and then lift the payload

off the ground (Figure 1c). The magnetic gripper is at the
end of a tether, so its dynamics are themselves complex
and assumed to be unknown before training. As soon as
the quadcopter takes off with the payload, the quadcopter’s
dynamics change drastically, and therefore online adaption
is critical. As the quadcopter flies with the payload towards
the goal location (Figure 1d), our method continuously adapts
to the new payload by updating and improving its dynamics
model estimate in real time. The adaptive model improves
the performance of the MPC controller, which enables the
quadcopter to reach the goal destination and release the
payload (Figure 1e). The quadcopter is then able to continue
transporting other payloads by adapting online to each new
payload it transports.

A. Data Collection

We first collect data by manually piloting the quadcopter
(Figure 3, left) along random paths for each of the K sus-
pended payloads, though any off-policy data collection method
that visits a diverse number of state and action sequences
could also be used. We save all the data into a single dataset
Dtrain, consisting of K separate datasets Dtrain .

= Dtrain
1:K

.
=

{Dtrain
1 , ...,Dtrain

K }, one per payload task.

B. Model Training with Known Dynamics Variables

In this section, we consider the case in which we know
all the “factors of variation” in the dynamics across tasks,
represented explicitly as a “dynamics variable” zk ∈ Rdz
that is known at training time, but unknown at test-time
(deployment). For example, we might know that the only
source of variation is the tether length L, and therefore we
can specify zk←Lk ∀ k at training time. We can then learn a
single dynamics model pθ across all tasks by using zk as an
auxiliary input to PETS [5]:

st+1 ∼ pθ(st+1|st,at, zk). (3)

Having zk as an auxiliary input is necessary for accurate
modelling because the factors of variation that affect the
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payload’s dynamics, such as the tether length, are not present
in the state s, which only tracks the position of the tether end
point. The combination of both st and zt is more complete
representation of the hybrid robot-payload system state, which
enables more accurate predictions.

Training is therefore analogous to (1), but with an additional
conditioning on z1:K

.
= [z1, ..., zK ]:

θ∗
.
= argmax

θ
log p(Dtrain|z1:K , θ)

= argmax
θ

K∑
k=1

∑
(st,at,st+1)∈Dtrain

k

log pθ(st+1|st,at, zk) . (4)

The variables in this training process can be summarized
in the graphical model shown in Figure 4a, in which every
variable is observed except for the “true” model parameters θ,
which we infer approximately as θ∗ using maximum likelihood
estimation in (4).

C. Meta-Training with Latent Dynamics Variables

The formulation in §IV-B requires knowing the dynamics
variables z1:K at training time. This is a significant assumption
because not only does it require domain knowledge to identify
all possible factors of variation, but also that we can measure
each factor at training time.

To remove this assumption, we now present a more general
training procedure that infers the dynamics variables z1:K and
the model parameters θ jointly, as shown by Figure 4b, without
needing to know the semantics or values of z1:K . We begin
by placing a prior over z1:K ∼ p(z1:K) = N (0, I), and then
jointly infer the posterior p(θ, z1:K |Dtrain

1:K). We refer to this as
meta-training, summarized graphically in Figure 4b and shown
in the broader algorithm flow diagram in Figure 3 (center).

Unfortunately, inferring p(θ, z1:K |Dtrain
1:K) exactly is compu-

tationally intractable. We therefore approximate this distribu-
tion with an approximate—but tractable—variational poste-
rior [13], which we choose to be a Gaussian with diagonal
covariance, factored over tasks,

qφk(zk) = N (µk,Σk) ≈ p(zk|Dtrain) ∀ k ∈ [K] , (5)

and parameterized by φk
.
= {µK ,Σk}. Our meta-learning

training objective is to again maximize the likelihood of the
full dataset Dtrain = Dtrain

1:K , analogous to Equation (4). The
only difference to §IV-B is that we must (approximately)
marginalize out z1:K because it is unknown:

log p(Dtrain|θ) = log

∫
z1:K

p(Dtrain|z1:K , θ)p(z1:K)dz1:K

=

K∑
k=1

logEzk∼qφk
p(Dtrain|zk, θ) · p(zk)/qφk (zk)

≥
∑
k=1

Ezk∼qφk

∑
(st,at,st+1)∈Dtrain

k

log pθ(st+1|st,at, zk)−KL(qφk(zk)||p(zk))

.
= ELBO(Dtrain|θ, φ1:K) . (6)

The evidence lower bound (ELBO) above is a computationally
tractable approximate to log p(Dtrain|θ). For additional details
on variational inference, we refer the reader to Bishop [2].

Our meta-training algorithm then optimizes both θ and the
variational parameters φ1:K of each task with respect to the

at st st+1 zk θ

t ∈ [T ] k ∈ [K]

(a) Training-time payloads with known factors of variation zk .

at st st+1 zk φk θ

t ∈ [T ] k ∈ [K]

(b) Training-time payloads with unknown factors of variation zk .

a∗t st st+1 ztest φtest θ∗

t ∈ [T ]

(c) Test-time payload with unknown factors of variation ztest.

Fig. 4: Probabilistic graphical models of the drone-payload system dynamics.
At each time step t, the system state evolves as a function of the current state
st, action at, function parameters θ, and dynamics variable zk which encodes
the k’th payload’s idiosyncrasies. Shaded nodes are observed. At training
time, the factors of variation between payloads might be known (Fig. 4a) or
unknown (Fig. 4b) while training model’s parameters θ. Regardless of the
training regime, test-time ztest is always unknown (Fig. 4c), which we infer
given the trained (fixed) model parameters θ∗.

evidence lower bound

θ∗
.
= argmax

θ
max
φ1:K

ELBO(Dtrain|θ, φ1:K) . (7)

Note that θ∗ will be used at test time, while the learned
variational parameters φ1:K will not be used at test time
because the test task can be different from the training tasks.

D. Test-Time Task Inference

At test time, the robot must adapt online to the new task—
such as a different type of payload—by inferring the unknown
dynamics variables ztest in order to improve the learned dy-
namics model pθ∗ and the resulting MPC planner. Inference is
performed by accumulating transitions (st,at, st+1) into Dtest,
and using this data and the meta-trained model parameters θ∗

to infer the current value of ztest in real time, as seen in the
right side of Figure 3. A summary of the variables involved
in the inference task is given by Figure 4c.

Similarly to §IV-C, exact inference is intractable, and we
therefore use a variational approximation for ztest:

qφtest(ztest) = N (µtest,Σtest) ≈ p(ztest|Dtest) , (8)

parameterized by φtest .
= {µtest,Σtest}. Regardless of training

regime (§IV-B or §IV-C), inferring ztest uses the same proce-
dure outline below.

To infer the relevant effects that our test-time payload is
having on our system, we again use variational inference to
optimize φtest such that the approximate distribution qφtest(ztest)
is close to the true distribution p(ztest|Dtest), measured by the
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Kullback-Leibler divergence:

φ∗
.
= argmax

φ
−KL(qφ(ztest)||p(ztest|Dtest, θ∗))

= argmax
φ

Eztest∼qφ log p(ztest|Dtest, θ∗)−log qφ(ztest)

= argmax
φ

Eztest∼qφ log p(Dtest|ztest, θ∗)−log qφ(ztest)+log p(ztest)

= argmax
φ

Eztest∼qφ

∑
(st,at,st+1)∈Dtest

log pθ∗(st+1|st,at,ztest)−KL(qφ(ztest)||p(ztest))

= argmax
φ

ELBO(Dtest|θ∗, φ) . (9)

Note the objective (9) corresponds to the test-time ELBO
of Dtest, analogous to training-time ELBO of Dtrain (6). Thus
(9) scores how well φ describes the new data Dtest, under
our variational constraint that q is assumed to be Gaussian.
Since θ∗ was already inferred at training time, we treat it as
a constant during this test-time optimization. Equation (9) is
tractable to optimize, and therefore at test time we perform
gradient descent online in order to learn φtest and therefore
improve the predictions of our learned dynamics model.

E. Method Summary

A summary of the full training and test-time procedure is
provided in both Figure 3 and Algorithm 2. During the training
phase, a human pilot gathers data for K different tasks con-
sisting of suspended payloads with different dynamics. During
flight, tuples {st,at, st+1} are recorded into the corresponding
task dataset, as well as the dynamics variable zk if it is known
(§IV-B). We then train the dynamics model pθ∗ using the
dataset Dtrain via (7).

At test time, we initialize qφtest(ztest) to be the prior N (0, I)
and the quadcopter begins to transport payloads with a priori
unknown physical properties ztest. At each time step, we solve
for the optimal action a∗t given pθ∗ and the current estimate
of ztest using the MPC planner in (3). The quadcopter exe-
cutes the resulting action and records the observed transition
{st,a∗t , st+1} into the test dataset Dtest. We then adapt the
latent variable online by inferring qφ∗(ztest) using Dtest. The
quadcopter continues to plan, execute, and adapt online until
the payload transportation task is complete.

F. Method Implementation

The quadcopter we use is the DJI Tello (Figure 1), which
enables rapid experimentation for suspended payload control
due to its small 98 mm× 93 mm× 41 mm size, light 80 g
weight, long 13 minute battery life, and powerful motors.
In our tasks, 3D printed payloads weighing between 10–15
grams are attached to the Tello via a string. Our experiments
vary primarily the string length between 18–30cm long since
the dynamics are more sensitive to string length than mass.
We found that this range of string lengths exhibits a larger
variation in dynamics while staying in the field of view of
our external camera and not interfering with onboard altitude
estimation.

During data collection, we record the controls (actions)
and the location of the payload, which we track with an
externally mounted RGB camera using OpenCV [4]. The
recorded actions are Cartesian velocity commands a ∈ R3

Algorithm 2 Model-Based Meta-Reinforcement Learning
for Quadcopter Payload Transport

1: // Training Phase
2: for Task k = 1 to K do
3: for Time t = 0 to T do
4: Execute action at from human pilot
5: if zk is known then . case §IV-B
6: Record outcome: Dtrain ← Dtrain ∪ {st,at, st+1, zk}
7: else . case §IV-C
8: Record outcome: Dtrain ← Dtrain ∪ {st,at, st+1}
9: Train dynamics model pθ∗ given Dtrain . see (7)

10: // Test Phase
11: Initialize variational parameters: φ∗ ← {µtest = 0,Σtest = I}
12: for Time t = 0 to T do
13: Solve optimal action a∗t given pθ∗ , qφ∗ , and MPC . see (2)
14: Execute action a∗t
15: Record outcome: Dtest ← Dtest ∪ {st,a∗t , st+1}
16: Infer variational parameters φ∗ given Dtest . see (9)

and the recorded states are the pixel location and size of
the payload s ∈ R3, which are saved every control step
into the corresponding dataset in Dtrain. In our comparative
experiments, the final dataset Dtrain consisted of approximately
16,000 data points (1.1 hours of flight) split between 18cm and
30cm, which were then used by our meta-learning for model-
based reinforcement learning algorithm.

We instantiate the dynamics model as a neural network
consisting of four fully-connected hidden layers of size 200
with swish activations. The model was trained using the Adam
optimizer with learning rate 0.001. We used 95% of the
data for training and 5% as holdout. The model chosen for
evaluation was the one which obtained the lowest loss on
the holdout data. MPC is run on an external laptop, with
a time horizon of 5 steps, and we used the cross entropy
method [3] to optimize, with a sample size 50, selecting
10 elite samples, and 3 iterations. This computation takes
50-100ms, so we selected our control frequency to be 4Hz
for both training and test time, to allow the remaining 150-
200ms for latent variable inference at each step. We adapted
code from a PyTorch implementation of PETS [5] found
https://github.com/quanvuong/handful-of-trials-pytorch.

V. EXPERIMENTAL EVALUATION

We now present an experimental evaluation of our meta-
learning approach in the context of quadcopter suspended
payload control tasks. Videos and supplementary material are
available on our website1.

In these experiments, we aim to answer the following
questions:

Q1 Does online adaptation via meta-learning lead to better
performance compared to non-adaptive methods?

Q2 How does our meta-learning approach compare to
MBRL conditioned on a history of states and actions?

Q3 How does our approach with known versus unknown
dynamics variables compare?

Q4 Can we generalize to payloads that were not seen at
training time?

1https://sites.google.com/view/ral-meta-rl-for-flight
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TABLE I: Comparative evaluation of our method for the tasks of following a circle, square or figure-8 trajectory with either an 18cm or 30cm payload cable
length. The table entries specify the average pixel tracking error over 5 trials, with ∞ denoting when all trials failed the task by deviating outside of the
camera field of view. Note that the cable length was not given to any method a priori, and therefore online adaptation was required in order to successfully
track the specified path. Our method was able to most closely track all specified paths for all payloads.

Algorithm
Avg. Tracking Error (pixels) for each Task Path and Payload String Length (cm)

Circle Square Figure-8
18 30 18 30 18 30

Ours (unknown variable) 23.62±2.67 24.41±3.90 23.88±2.81 26.57±3.84 24.67±1.33 29.08±6.00
Ours (known variable) 31.81±6.49 30.49±2.65 26.37±3.63 31.68±4.68 29.84±2.84 28.28±3.76
MBRL ∞ ∞ ∞ ∞ ∞ ∞
MBRL with history 39.96±4.40 42.36±2.84 32.37±2.40 39.26±5.16 34.17±1.90 41.01±7.26
PID controller 70.58±4.01 67.98±2.50 65.79±9.99 69.53±6.85 90.15±10.40 86.37±9.27

TABLE II: Generalization results. Training data consists of 18cm & 30cm cable lengths augmented with only a few minutes of 24cm data. At test-time, we
use 21cm and 27cm cables, to test the model’s ability to adapt to new dynamics at intermediate cable lengths.

Algorithm
Avg. Tracking Error (pixels) for each Task Path and Payload String Length (cm)

Circle Square Figure-8
21cm 27cm 21cm 27cm 21cm 27cm

Ours (3 unknown variables) 16.8±1.3 21.7±2.1 24.1±2.4 24.3±1.4 36.2±2.5 40.1±3.8
MBRL with history 21.1±4.7 25.9±1.6 28.3±2.5 37.0±2.6 43.8±3.7 41.9±3.9

Q5 Is the test-time inference procedure able to differentiate
between different a priori unknown payloads?

Q6 Can our approach enable a quadcopter to fulfill a com-
plete payload pick-up, transport, and drop-off task, as
well as other realistic payload transportation scenarios?

We evaluated our meta-learning approach with both known
variables (§IV-B) and latent variables (§IV-C), and compared
to multiple other approaches, including:
• MBRL, in which the state consists of only the current

payload pixel location and size.
• MBRL with history, a simple meta-learning approach in

which the state consists of the past 8 states and actions
concatenated together.

• PID controller, which consists of three PID controllers,
one for each Cartesian velocity command axis. We man-
ually tuned the PID gains by evaluating the performance
of the controller on a trajectory following path not used
in our experiments for a single payload.

A. Trajectory Following

We first evaluate the ability of our method to track specified
payload trajectories in isolation, separately from the full pay-
load transportation task. Each task consists of following either
a circle or square path (Figure 5) in the image plane or a figure-
8 path parallel to the ground, and with a suspended cable either
18cm or 30cm long. Given this single factor of variation, we
used a latent variable of dimension one. Although the training
data included payloads with these cable lengths, the length
was unknown to all methods during test-time experiments.

Table I shows the results for each approach in terms of
average pixel tracking error, with visualizations of a subset of
the executions shown in Figure 5. Both the online adaptation
methods—our approach and MBRL with history—better track
the specified goal trajectories compared to the non-adaptation
methods—MBRL and PID controller—which shows that on-
line adaptation leads to better performance (Q1). Our meta-
learning approach also outperforms the other meta-learning
method MBRL with history (Q2). Interestingly, our approach

Ours (Unknown) Ours (Known) MBRL w/ history
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Fig. 5: Comparison of our meta-learning approach with unknown and known
factors of variation versus model-based reinforcement learning (MBRL)
conditioned on a history of states and actions. The tasks are to either follow
a circle or square in the image plane, or a figure-8 parallel to the ground. The
specified goal paths are colored in red and the path taken by each approach
is shown in cyan. Our approaches are better able to adapt online and follow
the specified trajectories.

with unknown latent variables at training time outperformed
our approach with known latent variables (Q3). A possible ex-
planation is that inferring unknown latent variables at training-
time captures unspecified types of variation from potentially
hard to observe factors, in comparison to specifying observable
types of variation (e.g. tether length). In addition, sampling
latent variables from a distribution with full support during
training could prevent test set latent samples from being out of
distribution. Nevertheless, this shows our approach does not
require a priori knowledge of latent factors during training
to successfully adapt at test time. We also demonstrate our
method’s ability to generalize to new payloads not seen during
training (Q4). While we found training using only two string
lengths was sufficient to learn to adapt to either dynamics,
the ability to generalize improves with several example tasks.
In our case, learning how string lengths affect the dynamics
benefited from a few minutes of data from a third (24cm)
string length, allowing us to rapidly interpolate to unseen string
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Fig. 6: Visualization of the inferred latent variable and tracking error over time
for the task of following a figure-8 trajectory. We show our approach trained
with known variables (left column) and unknown variables (right column) with
either a payload cable length of 18 cm (top row) or 30 cm (bottom row). For
all approaches, the inferred latent variable converges as the quadcopter flies
and adapts online. The converged final latent values are different depending
on the cable length, which shows the online adaptation mechanism is able
to automatically differentiate between the different payloads. Furthermore, as
the latent value converges, the tracking error also reduces, which demonstrates
that there is a correlation between inferring the correct latent variable and the
achieved task performance.

lengths of 21cm or 27cm at test-time, shown in Table II.
Figure 6 and Figure 8 show the inferred dynamics variable

and tracking error while our model-based policy is executing
at test time. We observe that the dynamics variable converges
to different values depending on the cable length, which shows
that our test-time inference procedure is able to differentiate
between the dynamics of the two different payloads (Q5).
More importantly, as the inferred value converges, our learned
model-based controller becomes more accurate and is there-
fore better able to track the desired path (Q1).

B. End-to-End Payload Transportation

We also evaluated our approach on an end-to-end payload
transportation task (Figure 1), in which the quadcopter must
follow a desired trajectory to the payload, attach to the payload
using a magnet, lift the payload and transport it along a
specified trajectory to the goal location, drop off the payload,
and then follow a trajectory back to the start location. Figure 7
shows our approach successfully completes the full task (Q6)
due to our online adaptation mechanism (Q1), which enables
the drone to follow trajectories better and pick up the payload
by automatically inferring whether the payload is attached or
detached (Q5). Furthermore, the continuous nature of this task
highlights the importance of online adaptation: each time the
quadcopter transitions between transporting a payload and not
transporting a payload, the quadcopter must re-adapt online to

be able to successfully follow the specified trajectories.

C. Additional Use Cases

In addition to enabling trajectory following and end-to-
end payload transportation, we demonstrated our approach to
transport a suspended payload (Q6): towards a moving target,
around an obstacle by following a predefined path, and along
trajectories dictated using a “wand”-like interface (see videos
and website).

VI. DISCUSSION & CONCLUSION

We presented a meta-learning approach for model-based
reinforcement learning that enables a quadcopter to adapt to
various payloads in an online fashion with minimal state infor-
mation. At the core of our approach is a deep neural network
dynamics model that learns to predict how the quadcopter’s
actions affect the flight path of the payload. We augment
this dynamics model with stochastic latent variables, which
represent unknown factors of variation in the task. These latent
variables are trained to improve the accuracy of the dynamics
model and be amenable for fast online adaptation. Our ex-
periments demonstrate that the proposed training and online
adaptation mechanisms improve performance for real-world
quadcopter suspended payload transportation tasks compared
to other adaptation approaches.
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[28] Steindór Sæmundsson, Katja Hofmann, and Marc Peter Deisen-
roth. Meta reinforcement learning with latent variable Gaussian
processes. arXiv preprint arXiv:1803.07551, 2018.

[29] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan,
and Philipp Moritz. Trust region policy optimization. In
International Conference on Machine Learning, pages 1889–
1897, 2015.

[30] Jean-Jacques E Slotine and Weiping Li. On the adaptive
control of robot manipulators. International Journal of Robotics
Research, 6(3):49–59, 1987.

[31] Sarah Tang and Vijay Kumar. Mixed integer quadratic program
trajectory generation for a quadrotor with a cable-suspended
payload. In International Conference on Robotics and Automa-
tion, pages 2216–2222, 2015.
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