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Abstract—Analytic DBMSs optimized for query interactivity
commonly push the computation down to storage nodes, thus
avoiding large network transfers and keeping query execution
wall-time to a minimum. In these systems, data is sharded and
stored locally by cluster nodes, which must all participate in
query execution. As the system scales-out, hardware failures and
other non-deterministic sources of tail latency start to dominate,
to a point where query latency and success ratio increasingly
violate the system’s SLA. We refer to this tipping point as the
system’s scalability wall, when sharding data between more nodes
only worsens the problem.

This paper describes how an analytic DBMS optimized for
low-latency queries can breach the scalability wall by sharding
different tables to different subsets of cluster nodes — a strategy
we call partial sharding — and reduce the query fan-out. Because
partial sharding requires the DBMS to implement many tedious
and complex shard management tasks, such as shard mapping,
load balancing and fault tolerance, this paper describes how a
database system can leverage an external general-purpose shard
management service for such tasks. We present a case study based
on Cubrick, an in-memory analytic DBMS developed at Facebook,
highlighting the integration points with a shard management
framework called Shard Manager. Finally, we describe the many
design decisions, pitfalls and lessons learned during this process,
which eventually allowed Cubrick to scale to thousands of nodes.

Index Terms—Interactive DBMS, analytics, sharding.

I. INTRODUCTION

A common architectural trend when designing analytical
DBMSs and query engines is to decouple compute and storage.
This strategy makes database systems easier to scale since
compute and storage can be scaled independently, in addition
to providing a cleaner separation of responsibilities between
these two components. Considering that query engines and
storage systems commonly use similar interfaces and connec-
tors, it also favors interoperability and makes these systems
more interchangeable and flexible. For example, a particular
query engine may be able to integrate with multiple storage
systems with different storage characteristics.

When considering interactive analytic engines, however,
where low query latency is paramount and every millisecond
during query execution counts, the most common strategy
is to push the computation closer to the data and use the
same set of servers for both compute and storage. Although
less flexible and harder to scale than decoupled systems,
these tightly coupled architectures commonly cut down query

stalls caused by network transfers, overall increasing data
locality and reducing query processing latency. Despite recent
improvements in networks, smart caching and push-down
strategies, tightly coupled system are still the predominant
architecture for latency sensitive analytic workloads [9] [20]
[13] [1].

Even though some of the state-of-art DBMSs for interactive
analytics are single-node and can only scale vertically [13]
[23], analytic DBMSs traditionally scale-out by horizontally
sharding tables [15] [6]. In these systems, tables are com-
monly sharded between all nodes to better utilize the cluster’s
resources, and queries are broadcast so that all available shards
are visited. Each node eventually returns a partial result, which
are merged and materialized on a query coordinator node. This
strategy works reasonably well for a small number of well
behaved hosts, but quickly deteriorates as the system scales-out
and tables are sharded between more nodes. The probability of
hardware failures and other non-deterministic errors affecting
query execution increases as more hosts need to be visited by
a query.

Although many techniques have been discussed in the
literature to amortize the effect of tail latencies [8], as the
system scales-out there is a tipping point where the query
success ratio drops below the system’s SLAs; at that point,
adding more hosts and sharding the dataset even further only
worsens the problem. In this paper, we refer to this situation as
the system’s scalability wall. Figure 1 illustrates query success
ratio as more nodes need to be visited to complete a query.
Assuming that servers have a 0.01% chance of failure at any
given time, a system with 99% query success SLA will hit the
scalability wall at about 100 servers.

When hitting the scalability wall, a viable strategy to
continue scaling-out the system is to break the full fan-out
model by partially sharding data, where tables and queries
are contained to subsets of cluster nodes. This model does
not target use cases comprised of a single massively large
table, but it is compelling for multi-tenant systems storing a
large number of small and medium sized tables. It prevents
broadcasts at query time, allowing the system to smoothly
scale-out by adding more nodes, which will eventually store
partitions/shards of a subset of database tables.

The partial sharding mode allows database systems to scale
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Fig. 1: Theoretical query success ratio as more nodes need to
be visited to complete a query, assuming that servers have a
0.01% chance of failure at any given time, and a system with
99% query success SLA.

while pushing compute closer to the data, but it raises many
other design questions. For instance, a system needs to decide
how tables are mapped to shards, how shards are mapped to
servers and how many shards each table should span. It also
brings some systems and operational considerations, such as
load balancing between shards, shard replication, shard migra-
tion between servers, failure models and machine automation.
Besides being a tedious effort that can take years to be
completed, building a full-fledged shard management system
for a DBMS is error-prone, promotes code duplication and
often generates suboptimal results [2]. Instead, DBMSs should
be able to re-use external general-purpose shard management
frameworks for these tasks, thus promoting consolidation, code
de-duplication and reliability.

This paper describes how an interactive analytic DBMS
can partially shard tables in order to breach the scalability
wall. A case study is described in the context of the Cubrick
database system [22], an in-memory analytic DBMS optimized
for low-latency interactive queries, developed from the ground
up at Facebook. Cubrick was adapted to leverage SM (Shard
Manager, a sharding-as-a-service framework that powers a
multitude of production services at Facebook [10]) for all
shard managements tasks, break the full fan-out model and
partially shard tables. We highlight the different trade-offs,
design choices, pitfalls and lessons learned during this process,
which eventually allowed Cubrick to scale to thousands of
nodes.

In this paper we make the following contributions:
• We present and characterize a common scalability limita-

tion present in many modern interactive analytic DBMSs.
• We describe how partial sharding can be leveraged to

overcome this limitation, discussing the many architec-
tural design trade-offs regarding mapping tables to shards
and servers.

• We discuss how complex and error-prone shard manage-
ment tasks can be decoupled from the DBMS code and
leverage an external general-purpose shard management
framework, in addition to detailing the API and integra-
tion points between these systems.

• We describe a case study based on Cubrick, an in-memory

analytic DBMS optimized for interactive queries, and
discuss how it was able to leverage an external general-
purpose shard management framework, breach the scala-
bility wall and scale to thousands of servers.

• We present operational stats about the current production
system and experimental results comparing tables with
different fan-out modes.

• We highlight some of the lessons learned, pitfalls and
different iterations the system went through, stressing the
bottlenecks and design changes.

The remainder of this paper is organized as follows. Section
II characterizes the scalability wall, a common scalability limi-
tation on many analytic DBMSs. Section III discusses database
sharding concepts, in addition to describing the architecture
and key features of Facebook’s shard management framework,
Shard Manager (SM). Section IV presents a case study based
on the Cubrick DBMS stressing the design decisions, while
Section V discusses some of the lessons learned during this
process. Finally, Section VI points to related work and Section
VII concludes this paper.

II. SCALABILITY WALL

A. Coupled and Decoupled Systems

There are two main categories of analytic database systems
in terms of compute and storage. In one hand, tightly coupled
systems use cluster nodes for both storage and compute, and
therefore all nodes have some type of local storage and can
participate in query execution [9] [20] [13] [1] [22]. On
the other hand, decoupled systems usually have a pool of
worker nodes that are used for query execution, while data
is transferred at query time from a remote storage system [24]
[14] [25] [3].

Even though many trade-offs need to be to considered
when comparing these two architectures, in general, decoupled
systems are easier to scale (considering that compute and
storage can be scaled and provisioned independently), while
tightly coupled systems provide lower query latency since
data is already stored locally where the computation happens.
A common pattern observed in production services is that
decoupled systems (sometimes referred to as disaggregated or
only disagg) are usually bound by network I/O, or sometimes
CPU due to heavy compression techniques meant to reduce
I/O. Tightly coupled systems, on the other hand, are usually
bound by CPU used for actual query processing.

There are many strategies that can be explored with the goal
of building systems that are both flexible and low latency. A
common technique is to cache frequently accessed data blocks
on compute nodes. In order to achieve satisfactory cache hit
rates, however, there needs to be a degree of affinity between
data blocks and computes nodes. Since the computation needs
to happen in a specific host (the one that has affinity for a
particular data block), we argue that, essentially, this strategy
is equivalent to pushing compute to data — or rather pushing
data to compute. Other techniques such as smart predicate
push down to storage nodes, in addition to operations such as



aggregates, group bys and joins were also explored by some
database systems [3].

Overall, although network improvements and the described
techniques are bridging the gap between decoupled and tightly
coupled systems, coupled systems are still the main architec-
ture leveraged by analytic systems optimized for query inter-
activity [13] [9] [22]. Considering this work targets analytics
DBMS optimized for interactive and low latency queries, the
remainder of this paper focuses on tightly coupled systems.

B. Full Sharding

In the trivial case, tightly coupled systems are single-node
and all storage and computation happens in the same server
[13] [20]. Single-node systems can still scale-up (vertically)
and leverage multicore intra-node parallelism, but there are
strict physical limits as to how far these systems can scale.
When scaling-out tightly coupled systems horizontally, how-
ever, there must be a strategy as to how compute and storage
are distributed among nodes in a cluster. Since interactive
analytic systems optimize for query latency, the predominant
strategy is to distribute (horizontally partition, or to shard)
table storage between all cluster nodes, in order to fully
utilize the resources available [6] [15]. Compute is usually
pushed down to where data is stored and only smaller partial
results are transferred through the network, providing optimal
parallelization from a resource utilization perspective, while
minimizing the amount of data transferred. Most systems also
provide ways to replicate (instead of horizontally partition)
tables which are smaller and used more frequently between all
clusters nodes, in order to speed up joins with larger distributed
tables [6]. We refer to these systems as fully-sharded.

Considering that all nodes participate in query execution,
fully-sharded system queries need to be broadcast. This strat-
egy works well for a reasonably small number of well-behaved
nodes, but reliability quickly deteriorates the more nodes are
added. The larger the cluster size, the more likely queries are
to be stalled by hardware or software failures, or to be delayed
by network instabilities and other causes of tail latency [8].
For instance, assume that the probability of a server failure in
a given instant is 0.01%. Figure 1 illustrated the query failure
ratio as more nodes were added to a hypothetical cluster.
We refer to the tipping point where query failure ratio falls
below the system’s SLA as the system’s scalability wall, when
adding more servers will make query success rates even lower.

Even though the probability of failure can vary greatly
due to hardware reliability characteristics, all fully-sharded
systems are bound to hit the scalability wall if enough scale is
required. Figure 2 extends the presented model, illustrating the
query success curves for larger cluster sizes, given different
server failure probabilities.

C. Breaching the Wall

When hitting the scalability wall, there are two strategies
that can be used in order to continue scaling a given system.
An analytic system can trade query consistency and accuracy
for scale, and assume that partial results from servers that
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Fig. 2: Theoretical model of query success ratio considering
servers with different chances of failure at any given time.

.

do not answer in a given time interval are ignored [1]. This
compromise might be acceptable for log analysis, monitoring
and other workloads where accuracy is not fundamental, but
there are many BI and data analytics workloads where this
assumption cannot be made. In such cases, the only strategy
left is to prevent tables from being sharded among all cluster
nodes, and hence control the query fanout. We refer to the
these systems as partially-sharded.

In partially sharded systems, each table is allocated to only
a few shards, and the number of allocated shards is usually
much lower than the total number of cluster nodes. Although
this model is not applicable to use cases comprised of a single
large table, it is sufficient for multi-tenant systems containing a
large number of small and medium sized tables. Furthermore,
multi-tenant systems already commonly pose some limitation
to the maximum size of tables, in order to prevent single users
or tables from monopolizing a large chunk of the cluster’s
capacity. Section IV-B presents an in-depth discussion about
the number of shards assigned for each table.

Considering that all fully-sharded systems are bound to hit
the scalability wall, we argue in this paper that all tightly
coupled analytical systems must be partially-sharded in order
to be scalable. However, there are many questions and design
decisions that need to be considered when building a partially-
sharded system. Some of the questions are:

• Data distribution and location. How are tables mapped
to shards, and how are shards mapped to nodes? Over
how many shards is a given table distributed? How is this
number determined? How to locate the shards required by
a particular query?

• Load balancing. How to prevent hot shards from being
co-located within the same node? Which criteria to utilize
when characterizing hot shards? How to move a shard
between cluster nodes?

• Fault tolerance. How to monitor and detect if shards
are alive? How to failover shards between cluster nodes?
How to drain hosts?

• Cluster resize. How to add and remove cluster nodes
on-the-fly, while ensuring the system is properly load
balanced?

The remaining of this paper discusses possible answers for



these questions, and the design decisions taken by a real-life
partially-sharded production DBMS system.

III. SHARDING

Database sharding is a form of horizontal partitioning that
splits table rows into smaller and more manageable segments.
These segments (or shards) are stored by separate database
instances, usually on different hosts in order to provide paral-
lelism and scale-out the system.

There are many application-specific decisions that need
to be made when designing a sharded database system. For
example, deciding how tables and table rows are mapped to
shards, and which shards need to be queried given a particular
set of filters. However, there are also many shard management
tasks that need to be performed on a real-life sharded system,
such as shard heartbeats, load balancing, shard migrations and
shard failover. These operations are complex and can be error-
prone if implemented on a per-application basis. To address
this issue, a few libraries that abstract shard management tasks
were developed in the last decade, leaving applications free to
concentrate on business logic and application-specific tasks [2]
[12].

In the next sections, we describe Facebook’s implementation
of a shard management framework, called Shard Manager
(SM), leveraged by many infrastructure services at Facebook.
Due to space limitations, we only describe the characteristics
required to contextualize how a truly scalable in-memory
analytics DBMS system can be built on top of such a shard
management system; a complete description is outside the
scope of this paper.

A. Shard Manager

Shard Manager (SM) [10] is a framework developed at
Facebook that provides sharding-as-a-service to distributed
applications. SM simplifies the development of distributed
sharded applications by abstracting shard management tasks
such as shard placement, migration and failover, load bal-
ancing, high availability, primary and secondary replica man-
agement, resource constraint checks and machine automation
stack integration. Applications using SM need to (a) im-
plement a partitioning scheme (mapping application keys to
shards), (b) provide system metrics that will be used for load
balancing, and (c) specify shard replication and placement
configuration.

SM’s architecture is comprised of the following compo-
nents:

• SM Server. This is the central SM scheduler that collects
shard metrics for all applications and makes shard place-
ment decisions. The server also exposes APIs to allow
users to register new applications or change the current
configuration.

• Application Server (AS). These are the services written
by users which, in fact, host the shards. An SM-specific
library is linked to the service, providing endpoints that
allow SM server to communicate with it, collect counters,
add and drop shards.

• SM Client. A library used by Application Server clients
to interact with Application Server. SM Client learns
from a Service Discovery system where a particular shard
is located, and dispatches requests to the appropriate
servers.

• Datastore. Zookeeper1 is used to store SM server’s
persistent state and collect heartbeats from Application
Server libraries. If heartbeats stop, SM Server gets noti-
fied by zookeeper and a shard failover operation might
be triggered.

• Service Discovery System. A Service Discovery sys-
tem (also based in Zookeeper) is utilized to expose
shard↔server mappings. Facebook’s service discovery
system is called Services Management Configuration
(SMC). Since service discovery is heavily used by ap-
plication clients and the number of clients can be large,
SMC uses a multi-level data distribution tree to cache and
propagate this data. However, this can add a small delay
to how long it takes for client to learn about changes to
shard assignment.

Zookeeper
(Zeus)

SM Server

AS

AS Client

...AS AS

SMC
Cache

Service
Discovery

System
(SMC)

Fig. 3: Overall architecture of a service using SM.

The overall architecture is depicted in Figure 3. An SM
Server monitors and coordinates multiple Application Servers
(AS), and might instruct them to add or drop shards, according
to load balancing rules or external factors (servers being
drained, failures, etc). Application Servers are fully respon-
sible for implementing the business logic of addShard() and
dropShard() endpoints. On a stateful service, for instance,
the addShard() implementation would be responsible for
discovering what data needs to be recovered, where to recover
it from, and the actual recovery process that copies data and
metadata to the new server. This workflow excludes SM Server
from the data intensive path, making it more self-contained and
easier to scale.

When required to interact with AS, AS clients need to
provide a service name and a shard number to SM Client
library. SM Client library will resolve the pair (service, shard)
to a hostname by leveraging the service discovery system

1Facebook has its own implementation of a distributed coordination system,
called Zeus, which is used in production. Zeus provides full Zookepeer API.



SMC. SMC is backed by Zookeeper and cached by a service
running locally on every single server in the fleet, in order to
avoid unnecessary network round-trips to reach to a shard.

1) Shard Replication: SM’s fault tolerance model is based
on shard replication. Shards in SM can have two different
roles, primary and secondary, and at any given time there is
at least one primary copy of a shard, and potentially multiple
secondary ones. Application server developers can control
the number of secondary replicas by specifying a replication
factor configuration. Moreover, SM also let developers control
how replicas of a shard need to be spread, and whether
failure domains are composed of single servers, racks, or entire
regions.

SM provides support for three different replication models:

• Primary-only. In primary-only mode, each shard has a
single replica and therefore there is no redundancy. This
is the case when replication factor is zero.

• Primary-secondary. In primary-secondary mode, there
is a single primary replica for each shard, and multiple
secondary. Primary replicas are commonly responsible
for handling writes and coordinating data replication to
secondary replicas. Optionally, read-only traffic can be
served from secondary replicas.

• Secondary-only. Each shard has multiple replicas, and
they all play the same role.

No matter the fault tolerance mode being used, it is impor-
tant to notice that SM only controls shard roles and server
assignments. The replication of the actual data stored within
shards, as well as handling writes, dealing with conflicts,
consensus and which type of traffic to direct to which replica,
are all responsibilities of the application.

2) Shard Migration: Shard migration is the process of
moving the responsibility over a particular shard from one
server to another. SM server periodically monitors all shards
and application servers, and might decide to trigger a shard
migration based on a variety of reasons, such as load balancing
constraints, servers being drained or failures.

There are two types of shard migration: live shard mi-
grations and failovers. Live shard migrations are triggered
when the server that currently hosts the shard is still healthy,
commonly used by load balancing or when draining servers
and racks. A failover is triggered when the old server is
unavailable, usually on hardware failure scenarios.

Shard migrations are coordinated by SM server and ex-
ecuted using the addShard() and dropShard() endpoints
implemented by application servers. There are a few work-
flows that can be used by SM when migrating shards, which
depend on the fault tolerance mode being used and the number
of primary and secondary replicas existent. For example,
primary replica migration on a primary-secondary service
works by disabling the primary, electing a secondary to be
the new primary, then allocating a new secondary replica.
SM also provides a more intricate migration protocol called
graceful shard migration that allows primary shards to be
migrated without any downtime (see Section IV-E). However,

a thorough description of these different workflows is outside
the scope of this paper.

3) Load Balancing: SM has two goals when distributing
shards between servers: (a) to ensure that shards can only be
assigned to servers that have enough capacity, and (b) to evenly
spread the load between servers. Therefore, an important
design decision is to select an appropriate metric to both
describe a server’s capacity, and the capacity required by a
shard — its size or weight. Since different application running
on SM may be throttled by different resources and have
different load balancing objectives, SM makes a conscious
design choice of decoupling measurement and management,
allowing applications to provide their own custom metrics, like
CPU, memory usage, disk capacity, queue sizes, or any other
internal application counters. Based on the provided metrics,
SM server is responsible for handling the load distribution
logic, and orchestrating shard migration operations based on
its internal load balancing algorithm.

There are a few other important features supported by SM
regarding load balancing:

• Support for asymmetric shards. In order to support
applications where shards may have different sizes, met-
rics collected need to be exported per-shard. Having data
about the size of individual shards allows SM to take
better informed load balancing decisions.

• Support for dynamic shards. Since shard sizes can
change over time, SM server must periodically collect
shard size metrics. If the metric being utilized has a
spiky nature (such as CPU usage), it is the application’s
responsibility to smooth out bursts by using moving
averages, for example.

• Support for multiple load balancing metrics. SM
allows applications to export multiple metrics for load
balancing, as long as there is some degree of correlation
between the timeseries, and they do not create competing
goals.

• Heterogeneous servers. Considering that in large clusters
it is possible to find servers with different hardware
configurations, SM allows application servers to export
the total capacity for a particular host. For example, a
cluster using memory usage as the load balancing metric
might be composed of servers with different memory
capacity. In addition, SM also allows application server
to periodically export (and change) the current capacity
of a host, which might be useful in some complex load
balancing scenarios (see Section IV-F).

• Throttling load balancing migrations. Lastly, since
shard migrations invariably cause some degree of over-
head to the system, SM allows application owners to
configure and throttle the maximum number of shard
migrations allowed on a single load balancing run.

IV. CUBRICK - A CASE STUDY

Cubrick is an in-memory analytic DBMS developed from
the ground up at Facebook, focused on low-latency OLAP
queries to power dashboards and interactive data exploration



tools. Cubrick leverages a novel partitioning technique —
called Granular Partitioning [21] — that provides fast and
low overhead indexing abilities over multiple columns by
range partitioning the dataset on every dimension column. An
earlier version of Cubrick’s internal partitioning technique was
described in [22].

Currently, Cubrick’s deployment at Facebook is comprised
of thousands of datasets and millions of queries per day,
backed by thousands of servers spanning multiple data centers.
Despite being used only by internal analytic tools, tens of
thousands of people use Cubrick every month.

In the early days, Cubrick was a fully-sharded system, in
which every table was sharded among all hosts in the cluster.
The more datasets (and consequently, servers) were added, the
harder it got to maintain the same level of SLAs. Tail-latencies
and increasing server failure rates all hurt the provided guar-
antees, and adding servers only made the problem worse. In
other words, the system hit the scalability wall.

In order to overcome this issue, in a second generation
multiple (but smaller) Cubrick clusters were deployed, one
per customer, allowing the system to scale further and onboard
new use cases. The more use cases — and therefore, clusters
— were added, the harder management became. Deployment
of new software versions, capacity provisioning per cluster and
resource usage imbalance quickly became problematic.

To address both scalability and manageability concerns,
the current generation of Cubrick employs a partial-sharding
model, where each table is comprised of a few shards, de-
pending on its size, and the SM framework is used for shard
management. Decoupling shard management from Cubrick’s
main business logic removed substantial complexity from the
service, which allowed the team to focus on DBMS devel-
opment (instead of distributed systems problems), in addition
to making the service more flexible and reliable. It allowed
Cubrick to incorporate dynamic sharding and load balancing,
made the system able to adapt to workload changes, and
automatically integrated with data center automation tools.
Finally, it made sharding easier to monitor and maintain —
because it is broadly used at Facebook, SM has full-fledged
management consoles and monitoring dashboards.

The next section describes how Cubrick’s data model was
mapped and adapted to leverage SM’s abstractions, some of
the pitfalls and lessons learned.

A. DBMS Sharding

Similarly to other distributed DBMSs, Cubrick segments
each table into multiple horizontal partitions. The assignment
of records to partitions may be done according to some
deterministic function or randomly (refer to [22] for more
details). Each table partition is mapped to a shard, and each
shard ultimately gets mapped to a physical server by SM.
When mapping records to partitions, the goal is to minimize
the skew between partitions of the same table, so that at query
time each server has, on average, the same amount or work
to perform. Let’s assume a hypothetical table dim users,
containing 4 partitions. Internally, we refer to each partition of

this table as: dim users#0, dim users#1, dim users#2
and dim users#3 (# is a special character and thus not
allowed as part of table names).

SM provides a flat key space for shards — from
[0..maxShards) — , where maxShards is configurable. A
usual deployment utilizes between 100k and 1M total shards.
Furthermore, there must be a function to provide the mapping
of application keys (tables names and partitions) to SM shards.
Since the number of shards is fixed for a particular service,
Cubrick leverages a simple hash(tbl) %maxShards function
to map table partitions to SM shards. In case changing the
maximum number of shards had to be supported, a consistent
hashing function could have been used instead.

In the example above, the following mapping would have
been applied (assuming 100k total shards):

table name shard
dim users#0 15863
dim users#1 11617
dim users#2 45311
dim users#3 20163

1) Collisions: One inherent issue when mapping an arbi-
trarily large application key space (table names) to a finite
number of shards, and a large number of shards to a smaller
number of servers, is handling different types of collisions.
There are two main types of collisions to avoid: (a) partition
collisions and (b) shard collisions.

Partition collisions. Partition collisions, or partitions from
different tables mapped to the same shard, are expected and
unavoidable, and only dictate that a particular set of table
partitions will always be stored within the same host. If SM
decides that a particular shard needs to be migrated, all table
partitions mapped to that shard need to be shipped together to
the new server. The problem with the naive hashing approach
described above is being susceptible to collisions within the
same table. For example:

table name shard
test table#0 25140
test table#1 28396
test table#2 25140
test table#3 37422

in which case, the server to host shard 25140 would always
have to perform twice as much work as other partitions,
and hence increase query latency. To overcome this problem,
Cubrick’s current shard mapping function hashes only partition
zero, and monotonically increments the remaining partitions.
For instance:

table name shard
test table#0 25140
test table#1 25141
test table#2 25142
test table#3 25143

This mapping method prevents collisions within the same
table as long as tables have at most numShards number



of partitions, which is always the case in our production
deployments.

Shard collisions. A different type of collision happens when
different shard containing partitions of the same table are
mapped to the same host by SM. Although having the same
effect as partition collisions (query latency increases since
some servers might need to be perform twice as much work),
shard collisions can be resolved by just moving one of the
shards to another server.

There are two aspects worth noting about shard collisions.
First, if a shard migration is requested by SM and Cubrick
detects it will cause a shard collision, i.e. the target server
already stores a shard that contains a partition of one of the
tables within the shard being migrated, Cubrick server throws a
non-retryable exception. A non-retryable exception alerts SM
server that the application server cannot take this particular
shard, and that it should try migrating it somewhere else. This
approach, however, does not prevent collisions at table creation
time, when shards are already allocated and the new table ends
up containing shard collisions.

Second, when there is a shard collisions and multiple
partitions of the same table are stored within the same server
(say, s1), s1 will use about twice as much resources to execute
the same workload. Query latency will increase since s1 needs
to scan twice as much data; aggregation, group by and join
buffers will be larger resulting in higher overall memory usage.
Considering that SM server periodically collects resource us-
age counters per shards, eventually it will request the migration
of one of these shards to a new server to smooth out resource
usage between servers (load balancing is described in more
details in Section IV-F).

Figure 4a illustrates the number of shard and partition
collisions found in the current Cubrick deployment. About
7% of tables have shard collision, where different shards
containing different partitions of the same table are assigned
to the same host by SM; about 3% have partition collision of
different tables, where different partitions of different tables
are assigned to the same shard by SM; and no tables have
partition collision on the same table, which is prevented by
design by the shard mapping function described above.

Other approaches. Finally, an alternate approach explored
by the team when mapping table partitions to shards (which
is in fact used internally by other systems inside Facebook
[1]) is to map table partitions to shard replicas. Using that
strategy, each table is mapped to a single shard, and different
table partitions are stored within shard secondary replicas.
Even though this approach provides the compelling property of
avoiding shard collisions (since SM will never assign different
shard replicas to the same host), there are some key limitations.
First, in this strategy all tables need to have the exact same
number of partitions — limited to the cluster’s replication
factor —, making it harder to deal with table size variability.
Second, there is an implicit assumption that shard replicas
store, in fact, copies of the exact same data. This strategy
would break this invariant, and potentially make it harder to
integrate and leverage other SM features in the future.

B. Partitions per Table

From a resource scheduling perspective, having shards
with similar sizes facilitates the shard allocation process, and
contributes to a more even load balance. In real production
workloads though, tables can have very different sizes, and
even tables with similar sizes can have very disparate query
workload characteristics. In the extreme case, one single shard
can never exceed the amount of resources available on a single
host. In order to ensure a single shard does not grow too large,
and that shards on average have similar sizes, Cubrick adopts
a dynamic table partitioning model, where the number of
partitions created for a particular table (and hence, the number
of shards) changes according to the table size.

Considering that at table creation time the DMBS has little
context on how large the table will grow, we found that a good
starting point is to use 8 partitions for every newly created
table. It provides a good balance between giving tables enough
space so that re-partitions are not triggered too frequently, and
allowing even small tables to leverage parallel CPU power of
8 servers for query processing.

When a single table partition exceeds a certain size thresh-
old, a re-partition operation is triggered. Re-partition oper-
ations essentially change the number of partitions a table
has (say, from 8 to 16), and allows for a finer control over
table partition size; if a partition gets too large, create more
partitions; if they get too small, collapse the data into fewer
partitions. However, table re-partitions are computationally
expensive operations that require data shuffling of part of the
table, so its usage must be sporadic.

Figure 4b illustrates the number of partitions per table in
Cubrick’s current deployment. The vast majority of tables in
the system are composed of 8 partitions, since they never hit
the size threshold in which they are re-partitioned. For the
larger tables that are re-partitioned (about 10%), the maximum
number of table partitions for a single table is about 602.

C. Locating a Table

Having tables with different number of partitions brings the
following load balancing question: when interacting with a
table, which partition should a client connect to? In Cubrick,
queries are invariably executed by the hosts that store partitions
of a table, always pushing the compute closer to the data.
The host that receives the client connection is called a query
coordinator. A query coordinator is required to run on a host
that stores one partition of the target table (or one of the target
tables, in case of joins or sub-queries). A query coordinator has
additional responsibilities, if compared to other query workers,
such as merging partial results, query parsing, compilation
and distribution, and coordination of multi-step queries. For
an ideal load distribution, query coordinators must be evenly
balanced between table partitions.

The following strategies were implemented and used in
production before landing on the current approach:

2There is no explicit limit on the maximum number of partitions for a given
table, but there is a limit on the maximum dataset size that can be currently
loaded in Cubrick, which is about 1TB.
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Fig. 4: Operational stats extracted from the current Cubrick deployments.

1) Always forward queries to partition 0. In this strategy,
clients always append #0 to the table name, apply the
mapping function to get a shard number, and use SM
client to connect to the appropriate host. This strategy
causes resource usage imbalance since the same host is
always used as query coordinator.

2) Forward to partition 0, and from there forward to an-
other random partition. This strategy balances query co-
ordinators between partitions, but requires an additional
network hop. Additional network hops are particularly
bad when retrieving large buffers since it requires one
extra network transfer.

3) First retrieve the current number of available partitions,
then randomly forward the connection to one of them.
This strategy perfectly balances query coordinators and
avoids extra network transfers of query buffers, but
requires an extra roundtrip before initiating the query.

4) Cache number of partitions per table, then forward
to a random one. This is the current strategy used in
production deployments.

Cubrick queries are always submitted to a query proxy
(see Section IV-D), which handles automatic retries, admission
control, blacklisting, logging and other proxy functions. The
proxy is responsible for keeping a cache containing the current
number of partitions per table, and randomizing the target
partition. To avoid extra roundtrips and keep the cache up-to-
date, the number of partitions per table is always included as
part of query results metadata, and updates the proxy’s cache.

D. Fault Tolerance

Cubrick’s current production deployment is composed of
three regions, each containing a full copy of all tables and
partitions. The number of regions was chosen so that even
in the event of disasters or codes pushes (when one entire
region might be down) there is still redundancy and at least two
other regions to load balance queries and support the incoming
traffic.

Queries are always submitted to a Cubrick proxy service,
which is a stateless service also running in the same three
regions. Cubrick proxy is responsible for handling all user
queries and deciding which is the most suitable region to
dispatch a query to. This decision is based on region avail-
ability (since entire regions might be down or drained), and
proximity to client in order to reduce latency. Proxies are also
responsible for retrying queries which failed due to some types
of errors, such as a hardware failures during query execution
or target table/partition corrupted. In these cases, the query
is transparently retried on a different region and users are
unaware of the failure. Finally, the proxy is also responsible
for a list of features such as admission control, blacklisting,
logging and query tracing.

Once a query is dispatched to be executed in a certain
region, all table partitions required by the query are required
to be available within that region — there is no cross-region
traffic during query execution. If some partition is unavailable,
queries will fail and be retried on a different region by Cubrick
proxy. Failovers – or shard migrations when the old server
is unavailable – are automatically handled by downloading a
copy of the failed shard from a healthy region.

Conceptually, the SM fault tolerance mode used by Cubrick



is secondary-only (since all shard replicas play the same role),
replication factor is two (since there are three copies of
each shard), and spread is defined as a region (since shard
replicas cannot be placed in the same region). Even though this
model is supported by SM (as described in Section III-A1),
for operational simplicity and flexibility Cubrick is currently
deployed as three independent primary-only services.

E. Shard Migration

One of the benefits when integrating with a shard manage-
ment framework is the ability to leverage dynamic sharding,
where shards can be transparently migrated from one server to
another. There are many scenarios that might trigger a shard
migration, for example: (a) load balancing, (b) server failures
(c) data center automation tools or (d) service admin manual
intervention. All the aforementioned cases are automatically
handled by SM servers (or by tools integrated with SM
servers), and will eventually generate calls to the only two
endpoints that need to be implemented by application services:
addShard() and dropShard().

There are a few steps executed by a Cubrick server on a
shard migration: (a) identifying all table partitions that map to
the shard being migrated, (b) creating the appropriate table
and shard metadata on the new host, and (c) moving the
actual table partition data. On a live shard migration, the data
is directly copied from the old healthy server, whereas on a
failover, data and metadata are copied from a healthy server
in a different region (see Section IV-D).

Graceful shard migration. In order to support shard migra-
tion without any downtime, SM provides a slightly different
workflow called graceful shard migration (as described in
Section III-A2). The endpoints called by SM to migrate shard
s1 from oldServer to newServer are the following:

• prepareAddShard(s1): SM informs newServer to pre-
pare for taking over s1. From this point onwards, SM
server expects newServer to be able to answer requests
for s1, only if they are being forwarded by oldServer.

– Cubrick copies all data and metadata stored within
s1 from oldServer to newServer.

• prepareDropShard(s1): SM informs oldServer to start
forwarding all requests related to s1 to newServer.

• addShard(s1): SM informs newServer that it is now
effectively responsible for s1. newServer starts handling
requests related to s1 from all sources.

• At this point, SM server instructs the service discovery
system (SMC) that newServer is now responsible for
shard s1. As described in Section III-A, it might take
a few seconds until this information is fully propagated
to all clients. Figure 4c illustrates the usual propagation
delay observed in production clusters.

• dropShard(s1): SM informs oldServer to drop all data
and metadata related to s1.

– Cubrick waits for a pre-defined number of sec-
onds (SMC’s usual propagation delay), and finally,
when the number of requests per second to s1 in

oldServer drops to zero, all data and metadata are
deleted.

Naturally, the graceful protocol is only used on live shard
migrations; failovers are translated to a single addShard() call
in the target server, considering that oldServer is down and
unavailable to forward requests during the protocol execution.
Although hardware and other non-deterministic failures can
cause unavailability for a few tables in one single region, these
errors are automatically retried by Cubrick proxy on a different
regions in a user-transparent manner (as described in Section
IV-D). Figure 4d illustrates the number of shard migrations
executed daily on a production Cubrick cluster.

F. Load Balancing

As described in Section III-A3, SM provides a flexible way
to configure load balancing as long as application owners
provide the correct per-shard metrics and server capacity. Over
the years, Cubrick went through a few changes regarding how
data and shards are stored, which required changes to the
metrics reported to SM server. The three different generations
are described in the next Subsections.

1) First Generation: As an in-memory analytic DBMS,
Cubrick’s first generation had an implicit assumption that
all data would be available in main memory before query
execution. Therefore, the server capacity metric exported to
SM was set to the amount of physical memory available on
the host — or rather, to 90% of the available memory to save
memory for kernel and other basic services running on every
host. In addition, the size reported for each shard was set to
the sum of the memory footprint of all table partitions inside
that shard.

Even though only accounting for table size and excluding
metrics such as QPS and CPU usage from load balancing deci-
sions, this approach worked reasonably well in our production
deployments for about a year.

2) Second Generation: The first Cubrick change that re-
quired adjustments to the metrics used for load balancing was
a feature called adaptive compression. With adaptive compres-
sion, Cubrick maintains hotness counters for each data block
in the system (also called brick in Cubrick terminology), that
are incremented once they are needed by a query, and slowly
and stochastically decay over time if not used3. Considering
that access patterns between data blocks are usually skewed
(for instance, more recently loaded data is usually queried
more frequently than old data), this strategy provides a clear
separation between frequently (hot) and seldomly (cold) used
data blocks. Figure 4e illustrates the distribution of hot/cold
data blocks in a current production deployment.

When there is memory pressure, i.e. the host is running low
on free memory, a memory monitor procedure is triggered and
incrementally compresses data blocks based on their hotness
counter (from coldest to hottest), eventually freeing up some
memory. In the same way, if there is a surplus of available

3The strategy used to classify hot and cold data blocks was inspired by
[16].



memory, compressed data blocks are uncompressed (from
hottest to coldest), reducing the amount of compressed data,
and likely the amount of decompressions at query time.

Adaptive compression provides many important benefits,
such as only compressing when there is memory pressure,
and thus minimizing the impact of decompressions on query
runtime, but it breaks the load balancing strategy used in the
first generation. Shard sizes (memory footprint) now depend
on the current server’s resource usage, and might shrink or
expand if there is memory shortage or surplus. Therefore,
considering that a shard’s size can substantially (and non-
deterministically) change once it is migrated from one server
to another, load balancing becomes a challenging (if not
impossible) task.

To overcome this issue, currently, instead of reporting the
actual shard memory footprint, Cubrick reports the decom-
pressed size per shard, which is the memory footprint this
shard would incur if all data were to be decompressed. The
motivation behind this change is providing a consistent metric
to SM that does not change given the server’s current resource
usage, but only based on the actual shard size. Shard size
can still change, however deterministically, if more data is
added to a table partition. Lastly, the capacity of a server,
as reported to SM, is now set to the current host’s memory
capacity multiplied by the average compression ratio observed
in production deployments.

3) Third Generation: Currently, we are working on a third
generation, which not only compresses, but also evicts data to
SSD once enough memory pressure is given. This new model
will likely require changes on which metrics are exported for
load balancing, considering that now all data for a shard can
be evicted and memory footprint could essentially be zero.
The strategy currently being explored by the team is to export
SSD available space as the hosts capacity, and SSD footprint
per shard as shard size. However, this approach does not take
into account that shards can have different working sets (sets
of hot data blocks), and that query latency can deteriorate if
a particular host does not have enough memory to keep the
working sets of all shards in memory. Since in such cases
the amount of I/O requests would increase, the team is also
investigating adding number of IOPS as a load balancing
metric.

Nonetheless, choosing the optimal load balancing metric for
this scenario is still an open problem, and it has been actively
investigated by the team. This is one of our focuses for future
research.

G. Data Center Automation

One important aspect of large scale distributed systems is
their integration with data center automation tools. Having
automated workflows to handle different types of machine
management requests is essential to avoid manual interven-
tion, facilitate operations and contribute to self-driven cluster
management. Other than handling hardware and other non-
deterministic failures, which are more frequent the larger the
cluster size, there are many other planned situations where

servers might need to be drained and removed from produc-
tion clusters. Server decommission events, rack and cluster
physical movement, power, network and server maintenances,
and disaster preparedness exercises are all examples of normal
events that need to be automatically handled when operating
large scale clusters.

Considering that SM is used by many services at Facebook,
it provides out of the box integration with all data center
automation systems. By providing a centralized control plane
for all maintenance and machine management requests, SM
is able to execute multiple safety checks and, for example,
(a) control whether requests can be fulfilled without compro-
mising the application’s fault tolerance model, (b) check for
conflicts with load balancing operations, and (c) ensure there
will be enough capacity left to operate the cluster once the
request is finished. Figure 4f illustrates the number of host
failures that are automatically handled per day on Cubrick
hosts by datacenter automation tools. All these workflows are
integrated with SM and required no human intervention.

H. Fan-out Experiment

In order to measure the variability added by a larger number
of hosts participating in query execution, we conducted an
experiment where the same simple query was executed every
500ms for about one week in a production cluster, over tables
with varying fan-out levels (resulting in more than 1M queries
per table). The results are illustrated in Figure 5 (y-axis on a
log scale), showing how, in practice, higher fan-out queries are
more susceptible to non-deterministic sources of tail latencies.
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Fig. 5: Query latency for varying fan-out levels.

V. LESSONS LEARNED

In this Section, we highlight some of the important lessons
learned while developing Cubrick and integrating it with an
external shard management framework, in addition to general
lessons about operating a reliable system at scale.

A. Flexibility

Other than allowing the Cubrick team to remove large pieces
of ad-hoc shard management code, the integration with an
external shard management framework made the system more
reliable and better coupled with other machine management



systems. However, the trade-off is flexibility. All workflow
nuances need to be carefully mapped to what is supported by
the underlying framework, and cases where these workflows
are incompatible and the framework needs to be extended
are much harder to handle, since they depend on agreements
between different teams that might have different priorities.

From our experience developing and managing operations
for large scale production clusters, the benefits of this integra-
tion largely outweigh the flexibility costs, nonetheless.

B. Load Balancing Metrics

Even though the pattern observed in most metrics change
over time, considering that new service features are added,
code paths are optimized and new workloads are onboarded
into the system, there is usually one (or a few metrics) that
invariably describe the load and health of a particular shard.
The optimal metric commonly goes beyond simple CPU and
memory usage counters, so it is important to actively monitor
the system and ensure that the metrics that correctly describe
server load are identified.

C. Note on Reliability

As systems scale-out, hardware failures and other forms of
server unavailability become the norm rather than the excep-
tion. Therefore, work needs to be put in place to ensure that
different failure modes are automated and do not require any
manual intervention from system admins. Also, that automated
tests are built to regularly exercise the failover code paths and
avoid regressions.

However, there are also other types of larger scale failures
that happen more sporadically, such as rack, main switch
board or even full region/datacenter failures. These failures are
usually a lot more disastrous to a service’s availability. Other
than taken into account when designing the service, these
failure modes need to be documented and well understood.
Since testing these failure modes is usually more complicated
and harder to simulate with simple unit or integration tests,
we found that by regularly simulating disasters scenarios, for
instance, taking racks and even full regions offline deliberately,
the different fail modes are better understood and tested, and
overall more reliable.

Lastly, careful reviews of the dependencies of your system
need to be conducted regularly, highlighting what their failure
modes are, and what is the impact to your service health.
Questions like “can my service be available if dependency
X is down?”, or “are there degraded modes my service can
provide, to ensure my system remains available if service X is
down?”, need to be asked and discussed, in order to prevent
large scale outages and domino effects, and expose possible
circular dependencies.

In the case study presented in this paper, for example,
the Cubrick service was consciously designed in such a way
as to survive scenarios where Shard Manager is unavailable.
If SM server is down, metrics won’t be collected and no
load balancing or shard migration decision will be made, but
the Cubrick service is still available for loads and queries.

Likewise, clients would still be able to resolve shard ids into
hostnames since the mappings are propagated and cached
locally by the service discovery system.

VI. RELATED WORK

There are a variety of systems that make the architectural
decision of decoupling compute and storage. Presto [24] is
an open source query engine developed at Facebook that can
execute SQL queries and act as a federation layer between
different storage engines. Dremel [17] and Procella [5] are
both distributed SQL query engines developed by Google that
are able to process data stored in a distributed filesystem called
Colossus. Snowflake [7] is a cloud-based database system that
segregates compute and storage and provides data warehouse
as a service to users. Redshift [11] is a popular database system
from Amazon that tightly couples compute and storage, but
also provides an external connector to data stored on Amazon
S3. Lastly, there are many other traditional query engines that
took similar trade-offs and decoupled compute and storage,
such as Impala [14], developed by Cloudera, Spark SQL [3]
and Hive [25], a query engine based on Hadoop map-reduce
jobs.

On the other hand, there is a class of tightly coupled
database systems that use the same set of hosts for both
compute and storage, in order to reduce network traffic and
query latency. Scuba [1] is a system focused on log analysis
workloads developed at Facebook that fans-out queries to
storage nodes, ignoring answers from dead or slow hosts, thus
trading consistency for efficiency. SAP Hana [9] and MemSQL
[6] are both relational distributed DBMSs that shard tables
between all hosts in a cluster in order to scale-out. They both
support two types of tables, one distributed among all nodes
in the cluster, and one replicated to all nodes, used by smaller
dimension tables frequently joined to larger tables. Vertica [15]
is another example of distributed column-oriented DBMS that
takes similar trade-offs. To the best of our knowledge, none
of the described systems support the partial sharding model
described in this paper.

There is also a class of tightly coupled analytic DBMSs
optimized for low latency queries that do not provide scale-
out capabilities (yet), such as Hyper [13] and Peloton [20].
DuckDB [23] is a new embedded analytic engine distributed
as a library, with similar characteristics — tightly coupled,
single node.

Other shard management libraries and frameworks have
been proposed in the past. Slicer [2] is a general purpose
sharding service developed by Google, which took similar
design decisions and trade-offs as Shard Manager. Microsoft
Orleans [4] is a framework for writing distributed applications,
but it relies on consistent hashing for shard placement, limiting
the system’s flexibility. Azure Service Fabric (ASF) [18] is
another framework developed by Microsoft, but supports a less
flexible consistency model if compared to Shard Manager.

Lastly, Azure’s SQL Elastic Database [19] enables users to
partially shard databases on Azure’s cloud. Although similar
in many aspects to the work presented on this paper, Azure’s



Elastic Database focuses on sharding full databases, instead of
tables inside the database, like proposed in this work. In addi-
tion, it does not highlights a clear separation of responsibilities
between shard management and application’s business logic,
or describes how load balancing and live shard migrations
could be used on a real production database system.

VII. CONCLUSIONS

Interactive analytic DBMSs commonly leverage tightly cou-
pled architectures, where cluster nodes are responsible for both
storage and compute, to provide low query latency guarantees.
This paper characterized a common scalability limitation on
these systems, referred to as scalability wall, which most
sharded analytic DBMSs are bound to hit when enough scale
is required. A strategy that can overcome this problem, called
partial-sharding, was presented, as well as discussions about
the many design decisions that need to be considered when
building a partially sharded system.

This paper also presented a case study based on Cubrick, a
production interactive analytic DBMS developed at Facebook,
and how partially sharding tables allowed it to scale to
thousands of nodes, while still providing tight query latency
and success SLAs. Cubrick leverages a shard management
framework called Shard Manager, also developed at Facebook,
to offload the responsibilities and complexity of shard man-
agement tasks.

Even though Cubrick has already been running in produc-
tion for many years, there are still areas of active research. The
main focus are on optimal load balancing metrics to better
reflect host utilization, and prevention of shard collisions at
table creation time.
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