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1. Overview
In this supplementary, we provide details about the im-

plementation of our approach (Section 2), three experiments
to further verify the design choices and model demonstra-
tion (Section 3), and lastly the comparison with other meth-
ods (Section 4). Importantly, we urge the reviewers to watch
our supplementary video for the best demonstration of our
method.

2. Implementation Details
Model Architecture: Our rendering networks R1 and R2

are variants of the UNet architecture as shown in Figure 1
and Figure 2. The discriminator for the adversarial loss
uses a multi resolution PatchGAN over 3 spatial scales as in
[2]. The networks are trained over 1500 frames per identity
with a batch size of 4 at a resolution of 1024 × 1024.

Figure 1. Architecture of the stage 1 network. It takes the raster-
ized 8-channel neural texture and produces an intermediate ‘static’
base RGB image and a 5-channels latent feature of the same reso-
lution as the input.

Model Efficiency Metric (rIPFIP): As described in the
manuscript we introduce a metric to measure the relative
improvement of an approach that leverages 3D informa-
tion over V2V (which is a purely 2D approach and has the
largest number of model parameters of the models in our
paper) scaled by the relative improvement in the number

Figure 2. Architecture of the stage 2 network. It takes the inter-
mediate features from state 1 and the rasterized body normals and
produces the RGB image and a mask for the clothed human body
at the same resolution as the input.

of parameters in the model. More specifically, this metric
consists of 2 terms. The first term measures the relative im-
provement of the perceptual quality of a method (in LPIPS)
over V2V and the second term measures the compactness
of the model without taking into account the quality of the
synthesized image. These two terms are expressed as

dLPIPS(x) =
(LPIPSV 2V − LPIPSx)

LPIPSV 2V
, (1)

d#p(x) =
log(#pV 2V )− log(#px)

log(#pV 2V )
, (2)

where #p represents the number of parameters in a model.
Both these terms lie in (−∞, 1] (↑ is better). Our model
efficiency metric is defined as

rIPFIP(x) = dLPIPS(x) ∗ d#p(x), (3)

which takes into account both the compactness of the model
and the synthesized quality of the image of a particular
method x.

3. Additional Verification Experiments
Normal Injection Ablation: We study the different ways
in which normal information can be fused into the pipeline
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to account for self-occlusions and pose dependent dynamic
effects in Table 1. Our current design of injecting the nor-
mal inR2 produces the best avatars quantitatively. Further-
more, we notice that injecting normal information to R1

reduces the performance. This is because the R1 learns a
‘static’ base texture irrespective of the pose and having the
the pose-conditioning hurts learning of this static base tex-
ture.

Table 1. Normal Injection Ablation. ‘early’ refers to concatenat-
ing the normals at the input of R1, ‘late’ refers concatenating the
normals at the input of R2, and ‘both’ refers to adding the normals
at input of both stages. ‘+so’ refers to models trained with the split
optimization strategy.

SSIM ↑ LPIPS ↓ FLIP↓

early 0.962 0.0703 0.0363
late 0.968 0.0584 0.0321
both 0.966 0.0636 0.0332
early+so 0.965 0.0636 0.0342
late + so (ours) 0.973 0.0508 0.0289
both + so 0.966 0.0630 0.0338

Split optimization: Figure 4 shows the advantage of split
optimization in terms of convergence of the avatar, as seen
in the reconstruction error (in Table 2 in the main text). We
also note that the split optimization improves performance
regardless of the choice of fusion paradigm (see Table 1
in this supplementary file). This demonstrates the benefit
of mesh geometric misalignment modeling, which leads to
faster convergence and better results quantitatively rather
than relying on purely data-driven optimization with well-
tuned losses (GAN, feature loss, decaying `1 loss) and ag-
gressive data augmentation.
Identity mixing: Figure 3 shows our avatars with clothing
components replaced from other learned identities. Notice
the ID specific and clothing specific deformations retained
even after mixing identities.

4. Additional Comparison
Liquid Warping GAN (LWG): LWG [1] is a recent strong
method that combines the benefits of explicit 3D modeling
with image2image translation. Similar to us, LWG can syn-
thesis the person appearance in novel view and poses. This
method, however, does not have a persistent 3D texture that
enables stable virtual rendering from arbitrary poses and
viewpoints. We show a comparison with this method in
Figure 6. In all aspects, realism of the reconstruction, face
details and mask accuracy, our method notably outperforms
LWG.
User study: As mentioned in the main text, we conducted
2 user studies with 80 participants and provide some more
details about the studies here. In the first study, We gener-

Figure 3. Our avatars with identity and appearance mixing. The
identities and pose are same along each row and the clothing is
constant along each column. We observe that once we have learnt
multiple identities, we can mix and match textures between them.

ated avatars using Vid2Vid (V2V), Textured Neural Avatar
(TNA), and Deferred Neural renderer trained with added
VGG loss (DNR), and our proposed ANR model. Each user
was presented with 20 stimuli for 5s each, and asked to se-
lect the image which had the most realistic avatar. Avatars
generated from all methods were posed in the same man-
ner and composited into the same background. An example
stimulus for this study is shown in Figure 7. ANR was pre-
ferred 81.6% of the time.

In the second user study, we conducted a 2-alternative
forced choice study where users were presented a real im-
age and an avatar generated from our method in different
poses and asked to select the more realistic image. The im-
ages disappear after 10s after which the user has unlimited
time to choose the best avatar. An avatar can be considered
completely photo-realistic if we are able to fool the users
50% of the time (random choice). Our avatars were picked
30% of the time, showing strong realism in many cases.
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Figure 4. Reconstruction loss on validation poses of a learnt avatar. We observe that split optimization converges faster and achieves
significantly lower reconstruction loss for the same training architecture.

Figure 5. Avatars learned using ANR in various novel poses and viewpoints
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Figure 6. Comparison with Liquid warping GAN [1] on viewpoint synthesis. Top two rows: Liquid warping GAN; bottom two rows: our
method. Our model is robust to a variety of poses and is able to preserve texture details, particularly visible on the white T-shirt. Figure is
best viewed electronically at full magnification.

Figure 7. Example stimulus in first user study. We generated avatars Vid2Vid (V2V), Textured Neural Avatar (TNA), and Deferred Neural
renderer trained with added VGG loss (DNR), and our proposed ANR model. Each user was presented with 20 stimuli for only 5s each
and asked to select the image which had the most realistic avatar. Avatars generated from all methods were posed in the same manner and
composited into the same background.
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